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Scalable and Holistic Learning and Perception

Overview

• My research 
• Recent advance in Deep Learning 
• What is Deep Learning? 
• Model representation 
• Learning Algorithm: Backprop 
• Convolutional Neural Networks 

• please note: no lecture next week
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Scalable and Holistic Learning and Perception

Research Profile
• Computer Vision 

‣ Object/Person/Activity/Material Rec. & Det. 
‣ Image/Video (Co) Segmentation 
‣ Vision & Human Gaze 
‣ Vision & Language 

• Machine Learning 
‣ Topic Models/Bayesian Non-Parameterics 
‣ Unsupervised/Weakly/Zero-Shot/Active L. 
‣ Computation with Budget Constraints 
‣ Deep Learning 

• Additional Research Areas 
‣ Natural Language Processing 
‣ Robotics 
‣ Graphics 
‣ HCI / UbiComp 
‣ Natural Sciences & Privacy
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Computer Vision: Objekterkennung

1000 Klassen; 1ms pro Bild;  92.5% Erkennungsrate 
http://demo.caffe.berkeleyvision.org
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Architectures get deeper

5

3 ⨉ more accurate in 3 years

Accuracy 16
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Architectures get deeper
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Architectures get deeper
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Computer Vision: Semantic Segmentation

8

Badrinarayanan et al. 2015
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling
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Computer Vision: Semantic Segmentation
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Badrinarayanan et al. 2015
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling
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Computer Vision: Semantic Segmentation

9
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Color image Groundtruth FCN Baseline 2 Baseline 3 Ours 

Fig. 5. Visualization examples of semantic segmentation on NYUDv2. Column 1 shows
the RGB images and column 2 shows the ground truth (black represents the unlabeled
pixels).column 3 shows the results from FCN [1], column 4 and 5 shows the results
from the second baseline and the third baseline, and the results from our whole system
are shown in the column 6. Best view in color.

the e↵ectiveness of combining superpixel with convolutional networks. Our full
model consistently improves over all baselines and outperforms the FCN model
4.7pp, 7.7pp, 6.1pp, 6.2pp.

Besides, we also report the qualitative results as shown in Fig 5. Our data-
driven pooling networks can generate more precise and smooth segmentation
than FCN and multi-view networks with pixel correspondence. And it also
achieves more accurate estimation than single-view model. Therefore, leveraging
multi-view data and using data-driven pooling to integrate the spatial-temporal
information are e↵ective.
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the e↵ectiveness of combining superpixel with convolutional networks. Our full
model consistently improves over all baselines and outperforms the FCN model
4.7pp, 7.7pp, 6.1pp, 6.2pp.

Besides, we also report the qualitative results as shown in Fig 5. Our data-
driven pooling networks can generate more precise and smooth segmentation
than FCN and multi-view networks with pixel correspondence. And it also
achieves more accurate estimation than single-view model. Therefore, leveraging
multi-view data and using data-driven pooling to integrate the spatial-temporal
information are e↵ective.

Input Groundtruth Output
Yang He; Wei-Chen Chiu; Margret Keuper; Mario Fritz 
STD2P: RGBD Semantic Segmentation Using Spatio-Temporal Data-Driven Pooling 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, (to appear)
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“Predicting the Future”

10

Apratim Bhattacharyya; Mateusz Malinowski; Bernt Schiele; Mario Fritz 
Long-Term Image Boundary Extrapolation 
arXiv:1611.08841 [cs.CV], 2016. 
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Computer Vision & NLP: Image Captioning

Rakshith Shetty; Marcus Rohrbach; Lisa Anne Hendricks; Mario Fritz; Bernt Schiele 
Speaking the Same Language: Matching Machine to Human Captions by Adversarial Training 
arXiv:1703.10476 [cs.CV], 2017
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Speaking the Same Language:
Matching Machine to Human Captions by Adversarial Training

Rakshith Shetty1 Marcus Rohrbach2 Lisa Anne Hendricks2

Mario Fritz1 Bernt Schiele1

1Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
2UC Berkeley EECS, CA, United States

Abstract

While strong progress has been made in image caption-

ing over the last years, machine and human captions are

still quite distinct. A closer look reveals that this is due to

the deficiencies in the generated word distribution, vocabu-

lary size, and strong bias in the generators towards frequent

captions. Furthermore, humans – rightfully so – generate

multiple, diverse captions, due to the inherent ambiguity in

the captioning task which is not considered in today’s sys-

tems.

To address these challenges, we change the training ob-

jective of the caption generator from reproducing ground-

truth captions to generating a set of captions that is indis-

tinguishable from human generated captions. Instead of

handcrafting such a learning target, we employ adversar-

ial training in combination with an approximate Gumbel

sampler to implicitly match the generated distribution to the

human one. While our method achieves comparable perfor-

mance to the state-of-the-art in terms of the correctness of

the captions, we generate a set of diverse captions, that are

significantly less biased and match the word statistics better

in several aspects.

1. Introduction
Image captioning systems have a variety of applications

ranging from media retrieval and tagging to assistance for
the visually impaired. In particular, models which combine
state-of-the-art image representations based on deep convo-
lutional networks and deep recurrent language models have
led to ever increasing performance on evaluation metrics
such as CIDEr [33] and METEOR [7] as can be seen e.g.
on the COCO image Caption challenge leaderboard [6].

Despite these advances, it is often easy for humans to
differentiate between machine and human captions – in par-

Ours: a person on skis jump-
ing over a ramp

Ours: a skier is making a turn
on a course

Ours: a cross country skier
makes his way through the
snow

Ours: a skier is headed down a
steep slope

Baseline: a man riding skis down a snow covered slope

Figure 1: Four images from the test set, all related to ski-
ing, shown with captions from our adversarial model and
a baseline. Baseline model describes all four images with
one generic caption, whereas our model produces diverse
and more image specific captions.

ticular when observing multiple captions for a single image.
As we analyze in this paper, this is likely due to artifacts and
deficiencies in the statistics of the generated captions, which
in turn becomes more apparent when multiple samples are
observed. More specifically, we observe that state-of-the-art
systems frequently “reveal themselves” by generating a dif-
ferent word distribution and using smaller vocabulary. An
even closer look shows that generalization from the training

1

ar
X

iv
:1

70
3.

10
47

6v
1 

 [c
s.C

V
]  

30
 M

ar
 2

01
7



High Level Computer Vision - May 24, 2o17

Computer Vision + NLP: Visual Turing Test

12

What is on the right side of the cabinet? How many drawers are there? What is the largest object?

Vision+Language: bed 3 bed

Language only: bed 6 table

Table 4. Examples of questions and answers. Correct predictions are colored in green, incorrect in red.

What is on the refrigerator? What is the colour of the comforter? What objects are found on the bed?

Vision+Language: magnet, paper blue, white bed sheets, pillow

Language only: magnet, paper blue,green, red, yellow doll, pillow

Table 5. Examples of questions and answers with multiple words. Correct predictions are colored in green, incorrect in red.

only in Table 5. Despite some failure cases, the latter model
makes “reasonable guesses” like predicting that the largest
object could be table or an object that could be found on the
bed is either a pillow or doll. The last Table 6 shows remain-
ing failure cases that include (in order) strong occlusion, a
possible answer not captured by our ground truth answers,
and unusual instances (red toaster).

5. Conclusions
We have presented a neural architecture for answering

natural language questions on image that contrasts with
prior efforts based on semantic parsing and outperforms
prior work by doubling performance on this challenging
task. A variant of our model that does not use the im-
age to answer the question performs only slightly worse
and even outperforms a new human baseline that we have
collected under the same condition. We conclude that our
model has learnt biases and patterns that can be seen as
forms of common sense knowledge and prior knowledge

that humans use to accomplish this task. We contribute an
extended collection of additional answers that complement
the existing dataset and study inter human agreement and
consensus on the question answer task. We propose two
new metrics “Average Consensus” and “Min Consensus”
that constitute a more realistic, which takes into account
human disagreement, measure and a more optimistic one
that ignores consensus but captures disagreement in human
question answering.

Acknowledgements. Marcus Rohrbach was supported by
a fellowship within the FITweltweit-Program of the German
Academic Exchange Service (DAAD).

References
[1] J. Berant and P. Liang. Semantic parsing via paraphrasing.

In ACL, 2014.
[2] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares,

H. Schwenk, D. Bahdanau, and Y. Bengio. Learning phrase
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How many drawers are 
there?

3

Mateusz Malinowski; Mario Fritz 
A Multi-World Approach to Question Answering 
about Real-World Scenes based on Uncertain Input 
Neural Information Processing Systems (NIPS), 2014. 

Mateusz Malinowski; Marcus Rohrbach; Mario Fritz 
Ask Your Neurons: A Neural-based Approach to 
Answering Questions about Images 
IEEE International Conference on Computer Vision 
(ICCV), 2015, 



High Level Computer Vision - May 24, 2o17

Graphics

13

e.g. 
Konstantinos Rematas; Tobias Ritschel; Mario Fritz; 
Efstratios Gavves; Tinne Tuytelaars 
Deep Reflectance Maps  
IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), 2016. 
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AI and Planning
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Robotics

15
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Robotics

15



Creative Aspects

16

deepart.io

http://turing.deepart.io


UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP LEARNING AND OPTIMIZATIONS - 19

Imitating famous painters

19
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Music

• bachbot.com

18

http://bachbot.com
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Privacy & Safety

19

Tribhuvanesh Orekondy; Bernt 
Schiele; Mario Fritz 
Towards a Visual Privacy 
Advisor: Understanding and 
Predicting Privacy Risks in 
Images  
arXiv:1703.10660 [cs.CV], 2017. 

Seong Joon Oh; Mario Fritz; Bernt 
Schiele 
Adversarial Image Perturbation for 
Privacy Protection -- A Game 
Theory Perspective  
arXiv:1703.09471 [cs.CV], 2017. 
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Deep Learning

• Deep Learning is based on 
‣ Availability of large datasets 
‣ Massive parallel compute power 
‣ Machine learning  

• Strong improvements due to 
‣ Internet 
‣ GPUs 
‣ Hierarchical models with end-to-end learning

20
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Overview of Deep Learning

21
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Traditional Approach

• Fixed feature extraction 
‣ too general 
‣ too specific 
‣ often not task specific 

• How to increase capacity of leaning algorithms? 
‣ linear? 
‣ kernalized / lifted?

23

feature extraction 
(hand crafted)

Classification Car
y

x



Motivation
• Features are key to recent progress in recognition
• Multitude of hand-designed features currently in use

– SIFT, HOG, LBP, MSER, Color-SIFT………….
• Where next? Better classifiers? Or keep building 

more features?

Felzenszwalb,  Girshick,  
McAllester and Ramanan, PAMI 2007

Yan & Huang  
(Winner of PASCAL 2010 classification competition)



Hand-Crafted Features

• LP-β  Multiple Kernel Learning (MKL)
– Gehler and Nowozin, On Feature Combination for 

Multiclass Object Classification, ICCV’09
• 39 different kernels

– PHOG, SIFT, V1S+, 
Region Cov.  Etc.  

• MKL only gets  
 few % gain over  
 averaging features

à Features are  
doing the work
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Deep Learning: Trainable features

• Parameterized feature extraction 
• Features should be 

‣ efficient to compute 
‣ efficient to train (differentiable)

26

Features Classifier 
y = f(Merkmale,!)

x

yMerkmale = f(x, ✓)
Car

�
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Deep Learning: Joint Training of all Parameters

• Parameterized feature extraction 
• Features should be 

‣ efficient to compute 
‣ efficient to train (differe 

• Joint training of feature extraction and classification 
• Feature extraction and classification merge into one pipeline

27

Features Classifier 
y = f(Merkmale,!)

x

yMerkmale = f(x, ✓)

“End-to-End” System

Car
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Deep Learning: Joint Training of all Parameters

• All parts are adaptive 
• No differentiation between feature extraction and classification 
• Non linear transformation from input to desired output

28

Features Classifier 
y = f(Merkmale,!)

x

yMerkmale = f(x, ✓)

“End-to-End” System

Car
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Deep Learning: Complex Functions by Composition

• How can we build such systems? 
• What is the parameterisation (hypothesis)? 
• Composition of simple building blocks can lead to complex systems 

( e.g. neurons - brain)

29

Features Classifier 
y = f(Merkmale,!)

x

yMerkmale = f(x, ✓)

“End-to-End” System

Car
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Deep Learning: Complex Functions by Composition

• How can we build such systems? 
• What is the parameterisation (hypothesis)? 
• Composition of simple building blocks can lead to complex systems 

( e.g. neurons - brain)Jeder Block hat trainierbare Parameter 
• Each block has trainable parameters

30

x

y
Car�1 �2 �3 �4
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Deep Learning: Complex Functions by Composition
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• Each block has trainable parameters

31
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Deep Learning: Complex Functions by Composition

32

x

y
Car�1 �2 �3 �4

Lee et al. “Convolutional Deep Belief Networks for Scalable Unsupervised 
Learning of Hierarchical Representations”
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Deep Learning: Complex Functions by Composition

33

x

y
Car�1 �2 �3 �4

Lee et al. “Convolutional Deep Belief Networks for Scalable Unsupervised 
Learning of Hierarchical Representations”
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Deep Learning: Complex Functions by Composition

34

x

y
Car�1 �2 �3 �4

Lee et al. “Convolutional Deep Belief Networks for Scalable Unsupervised 
Learning of Hierarchical Representations”
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Summary of Main Ideas in Deep Learning

1. Learning of feature extraction 

2. Efficient and trainable systems by differentiable building blocks 

3. Composition of deep architectures via non-linear modules 

4. “End-to-End” training: no differentiation between feature extraction and 
classification

35
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Einführung in Deep Learning

Some Inspiration from the Brain

• Motivation from the brain 
‣ effective 
‣ universal learning machine? 

• Properties we want: 
‣ differentiable 
‣ efficient 

• Highly simplified neural model 
‣ Combination of inputs is linear 
‣ No spike 
‣ No temporal model 
‣ Fixed topology

37
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Short Intro: “Standard” Neural Networks

38

slide	taken	from	David	Stutz	(Aachen)

[Reading	-	Chapter	5.1	-	5.3	@	Bishop	2006]
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Short Intro: Perceptron

39

slide	taken	from	David	Stutz	(Aachen)
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Short Intro: Perceptron

40

slide	taken	from	David	Stutz	(Aachen)
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Short Intro: Perceptron - Activation Functions

41slide	taken	from	David	Stutz	(Aachen)
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Single Layer Perceptron

42

slide	taken	from	David	Stutz	(Aachen)
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Short Intro: Two-Layer Perceptron

43

slide	taken	from	David	Stutz	(Aachen)
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Short Intro: Multi-Layer Perceptron (MLP)

44

slide	taken	from	David	Stutz	(Aachen)



High Level Computer Vision - May 24, 2o17

Training: Overview

45
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Training: Overview

• Use Chain Rule to compute gradient 
recursively

46
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Training: Overview
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Network Training - Error Measures
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Learning by Optimization

• Highly non-convex energy
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Learning by Optimization
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Learning by Optimization
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Lernen durch Optimierung

• Gradient Descent
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Lernen durch Optimierung

• Gradient Descent
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Network Training - Approaches
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Network Training - Parameter Optimization
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Parameter Optimization by Gradient Descent
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Gradient Checking & Training

• Only two things need to be implemented to define new layer: 
‣ forward pass 

‣ error back propagation 

• Often buggy implementations lead to reduced energy/loss 
‣ Gradient check: compare numeric (finite differences) gradient to analytic 

• Watch overfitting

60
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• Only two things need to be implemented to define new layer: 
‣ forward pass 

‣ error back propagation 

• Often buggy implementations lead to reduced energy/loss 
‣ Gradient check: compare numeric (finite differences) gradient to analytic 

• Watch overfitting

62

epochs

loss/energy

train

test

validation



High Level Computer Vision - May 24, 2o17

Convolutional Neural Networks
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Multistage Hubel&Wiesel Architecture 
Slide: Y.LeCun

Cognitron / Neocognitron  
 [Fukushima 1971-1982]
• Also HMAX [Poggio 2002-2006]

• [Hubel & Wiesel 1962]
• simple cells detect local features
• complex cells “pool” the outputs 

of simple cells within a retinotopic 
neighborhood. 

Convolutional Networks 
 [LeCun 1988-present] 



Convolutional Neural Networks

• LeCun et al. 1989

• Neural network with 
specialized connectivity 
structure
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– Arabic & Chinese   [Ciresan et al. 2012]



Convnet Successes

• Handwritten text/digits
– MNIST  (0.17% error [Ciresan et al. 2011])
– Arabic & Chinese   [Ciresan et al. 2012]

• Simpler  recognition benchmarks
– CIFAR-10  (9.3% error [Wan et al. 2013])
– Traffic sign recognition

• 0.56% error vs 1.16% for humans [Ciresan et al. 2011]



Convnet Successes

• Handwritten text/digits
– MNIST  (0.17% error [Ciresan et al. 2011])
– Arabic & Chinese   [Ciresan et al. 2012]

• Simpler  recognition benchmarks
– CIFAR-10  (9.3% error [Wan et al. 2013])
– Traffic sign recognition

• 0.56% error vs 1.16% for humans [Ciresan et al. 2011]

• But (until recently) less good at  
more complex datasets

– E.g. Caltech-101/256 (few training examples) 



Characteristics of Convnets

• Feed-forward: 
– Convolve input
– Non-linearity (rectified linear)
– Pooling (local max) / (=subsampling)

• Supervised
• Train convolutional filters by  

back-propagating classification error

Input Image

Convolution (Learned)

Non-linearity

Pooling

[LeCun et al. 1989]

Feature maps



Application to ImageNet
[Deng et al. CVPR 2009] 

• ~14 million labeled images, 20k classes 

• Images gathered from Internet 

• Human labels via Amazon Turk 



Application to ImageNet

[NIPS 2012]

[Deng et al. CVPR 2009] 

• ~14 million labeled images, 20k classes 

• Images gathered from Internet 

• Human labels via Amazon Turk 



Krizhevsky et al. [NIPS2012]

• 7 hidden layers, 650,000 neurons, 60,000,000 parameters
• Trained on 2 GPUs for a week

• Same model as LeCun’98 but: 
-   Bigger model (8 layers) 
- More data (106 vs 103 images) 
- GPU implementation (50x speedup over CPU) 
- Better regularization (DropOut)



ImageNet Classification 2012

• Krizhevsky et al. - 16.4% error (top-5)
• Next best (non-convnet) – 26.2% error



ImageNet Classification 2012

• Krizhevsky et al. - 16.4% error (top-5)
• Next best (non-convnet) – 26.2% error
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Commercial Deployment
• Google & Baidu, Spring 2013 for personal image search
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