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Today - Basics of Digital Image Processing

• Linear Filtering 
‣ Gaussian Filtering 

• Multi Scale Image Representation 
‣ Gaussian Pyramid, Laplacian Pyramid 

• Edge Detection 
‣ ‘Recognition using Line Drawings’ 

‣ Image derivatives (1st and 2nd order) 

• Hough Transform 
‣ Finding parametrized curves, generalized Hough transform 

• Object Instance Identification using Color Histograms 

• (Several slides are taken from Michael Black @ Brown)
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Computer Vision and its Components

• computer vision: ‘reverse’ the imaging process 
‣ 2D (2-dimensional) digital image processing 
‣ ‘pattern recognition’ / 3D image analysis 

‣ image understanding 

Information
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Image Filtering: 2D Signals and Convolution

• Image Filtering 
‣ to reduce noise,  

‣ to fill-in missing values/information 

‣ to extract image features (e.g.edges/corners), etc 

• Simplest case: 
‣ linear filtering: replace each pixel by a linear combination of its neighbors 

• 2D convolution (discrete): 
‣ discrete Image:  I[m,n] 

‣ filter ‘kernel’:      g[k,l] 

‣ ‘filtered’ image:  f[m,n]

f [m,n] = I ⇥ g =
�

k,l

I[m� k, n� l]g[k, l]

f [m,n] g[k, l]I[k, l]
�1 0 1
�1 0 1
�1 0 1

8 5 2
7 5 3
9 4 1

18 �=
can be expressed as matrix multiplication!
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Linear Systems

• Basic Properties: 
‣ homogeneity T[a X]          = a T[X] 

‣ additivity        T[X1 + X2]      =  T[X1] + T[X2] 

‣ superposition T[aX1 + bX2]  = a T[X1] + b T[X2] 

‣ linear systems <=> superposition 

• examples: 
‣ matrix operations (additions, multiplication) 

‣ convolutions
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Filtering to Reduce Noise

• “Noise” is what we’re not interested in 
‣ low-level noise: light fluctuations, sensor noise, quantization effects,  

finite precision, … 

‣ complex noise (not today): shadows, extraneous objects. 

• Assumption: 
‣ the pixel’s neighborhood contains information about its intensity

2 3 3
3 20 2
3 2 3

�
2 3 3
3 3 2
3 2 3
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Model: Additive Noise

• Image I = Signal S + Noise N:

S + N = I
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Model: Additive Noise

• Image I = Signal S + Noise N 
‣ I.e. noise does not depend on the signal 

• we consider: 
‣ Ii : intensity of i’th pixel  

‣ Ii = si + ni with E(ni) = 0 

- si deterministic 

- ni,nj independent for i ≠ j 

- ni,nj   i.i.d. (independent, identically distributed) 

• therefore: 
‣ intuition: averaging noise reduces its effect  

‣ better: smoothing as inference about the signal
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Average Filter

• Average Filter 
‣ replaces each pixel with an average of its neighborhood  

‣ Mask with positive entries that sum to 1 

• if all weights are equal, it is called a BOX filter

1
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Gaussian Averaging (An Isotropic Gaussian)

• Rotationally symmetric 
• Weights nearby pixels more than 

distant ones 
‣ this makes sense as ‘probabilistic’ 

inference 

• the pictures show a smoothing 
kernel proportional to 

g(x, y) =
1

2�⇥2
exp

�
�x2 + y2

2⇥2

⇥
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Smoothing with a Gaussian

• Effects of smoothing: 
‣ each column shows realizations of an image of Gaussian noise  

‣ each row shows smoothing with Gaussians of different width

noise increase

smoothing 
increase



High Level Computer Vision - April 26, 2o17 12

Smoothing with a Gaussian

• Example:

Original Image Box-filteredGaussian-filtered
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Efficient Implementation

• Both, the BOX filter and the Gaussian filter are separable: 
‣ first convolve each row with a 1D filter 

‣ then convolve each column with a 1D filter 

‣ remember: 
- convolution is linear - associative and commutative 

• Example: separable BOX filter

(fx � fy)� I = fx � (fy � I)

fx � fy fx fy
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

= 1
3

1
3

1
3 �

1
3
1
3
1
3
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Example: Separable Gaussian

• Gaussian in x-direction 

• Gaussian in y-direction 

• Gaussian in both directions

g(x, y) =
1

2�⇥2
exp

�
�x2 + y2

2⇥2

⇥

g(x) =
1⇥
2�⇥

exp
�
� x2

2⇥2

⇥

g(y) =
1⇥
2�⇥

exp
�
� y2

2⇥2

⇥
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Multi-Scale Image Representation

• In this class: 
‣ Gaussian Pyramids  

‣ Laplacian Pyramids -> later 

• Example of a Gaussian Pyramid
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Motivation: Search across Scales
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Computation of Gaussian Pyramid
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Gaussian Pyramid
• Questions of interest: 
‣ which information is 

preserved over ‘scales’ 

‣ which information is lost 
over ‘scales’
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Fourier Transform in Pictures

• a *very* little about Fourier transform to talk about spatial 
frequencies…

+ ...



High Level Computer Vision - April 26, 2o17 20

Another Example

• a bar  
‣ in the big images is 

a hair (on the 
zebra’s nose) 

‣ in smaller images, a 
stripe 

‣ in the smallest 
image, the animal’s 
nose
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Today - Basics of Digital Image Processing

• Linear Filtering 
‣ Gaussian Filtering 

• Multi Scale Image Representation 
‣ Gaussian Pyramid, Laplacian Pyramid 

• Edge Detection 
‣ ‘Recognition using Line Drawings’ 

‣ Image derivatives (1st and 2nd order) 

• Hough Transform 
‣ Finding parametrized curves, generalized Hough transform 

• Object Instance Identification using Color Histograms 

• (Several slides are taken from Michael Black @ Brown)
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Image Edges: 
What are edges? Where do they come from?

• Edges are changes in pixel 
brightness
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Image Edges: 
What are edges? Where do they come from?

• Edges are changes in pixel 
brightness 
‣ Foreground/Background 

Boundaries 
‣ Object-Object-Boundaries 
‣ Shadow Edges 
‣ Changes in Albedo or 

Texture 
‣ Changes in Surface Normals
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Line Drawings:  
Good Starting Point for Recognition?
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Example of Recognition & Localization

• David Lowe
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Example of Recognition & Localization

• David Lowe 
‣ 1. ‘filter’ image to find brightness changes 

‣ 2. ‘fit’ lines to the raw measurements
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Example of Recognition & Localization

• David Lowe 
‣ 3. ‘project’ model into the image and ‘match’ to lines  

(solving for 3D pose)
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Class of Models

• Common Idea & Approach (in the 1980’s) 
‣ matching of models (wire-frame/geons/generalized cylinders...)  

to edges and lines 

• so the ‘only’ remaining problem to solve is:  
‣ reliably extract lines & edges that can be matched to these models...
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• Barbara Image: 
‣ entire image

29

Actual 1D profile

‣ line 250: 

‣ line 250  
smoothed  
with a  
Gaussian:
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What are ‘edges’ (1D)

• Idealized Edge Types: 

• Goals of Edge Detection: 
‣ good detection: filter responds  

to edge, not to noise 

‣ good localization: detected  
edge near true edge 

‣ single response:  
one per edge 
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Edges

• Edges: 
‣ correspond to fast changes 

‣ where the magnitude of the derivative is large

smoothing

“image” of 2 
step-edges

single line of 
“image”

31
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Edges & Derivatives…

1st derivative

2nd derivative
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Compute Derivatives

• we can implement this as a linear filter: 
‣ direct:  

‣ or symmetric:

�1 1

�1 0 1

d

dx
f(x) = lim

h�0

f(x + h)� f(x)
h

⇥ f(x + 1)� f(x)
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Edge-Detection

• based on 1st derivative: 
‣ smooth with Gaussian 

‣ calculate derivative 

‣ finds its maxima

34

g � f

g

f

d

dx
(g � f)
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Edge-Detection

• Simplification: 
‣ remember:  

derivative as well as convolution are linear operations 

‣ saves one operation

35

f

d

dx
g

d

dx
(g � f) =

�
d

dx
g

⇥
� f

�
d

dx
g

⇥
� f
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• Barbara Image: 
‣ entire image

36

1D Barbara signal

‣ line 250 
(smoothed): 

‣ 1st  
derivative
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• Barbara Image: 
‣ entire image

37

1D Barbara signal: 
note the amplification of small variations

‣ line 250 
(smoothed): 

‣ 1st  
derivative
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thresholding the  
derivative?



High Level Computer Vision - April 26, 2o17 39

Implementing 1D edge detection

• algorithmically: 
‣ find peak in the 1st derivative 

‣ but 
- should be a local maxima 

- should be ‘sufficiently’ large 

‣ hysteresis: use 2 thresholds 
- high threshold to start edge curve (maximum value of  

gradient should be sufficiently large) 

- low threshold to continue them (in order to bridge  
“gaps” with lower magnitude) 

- (really only makes sense in 2D...)
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• partial derivatives 
‣ in x direction: 

‣ often approximated with simple filters (finite differences):

40

Extension to 2D Edge Detection: 
Partial Derivatives

‣ in y direction:

d

dx
I(x, y) = Ix ⇥ I �Dx

d

dy
I(x, y) = Iy ⇥ I �Dy

Dx =
1
3

�1 0 1
�1 0 1
�1 0 1

Dy =
1
3

�1 �1 �1
0 0 0
1 1 1
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Finite Differences
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Finite Differences responding to noise

• increasing noise level (from left to right) 
‣ noise: zero mean additive Gaussian noise
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• derivative in x-direction: 

‣ in 1D: 

‣ in 2D:

43

Again: Derivatives and Smoothing

Dx � (G� I) = (Dx �G)� I
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What is the gradient ?

no change

change

∂I
∂x
, ∂I
∂y

"

#$
%

&'
= k,0( )

∂I
∂x
, ∂I
∂y

"

#$
%

&'
= 0,k( )

no change

no change

change
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small  
change

∂I
∂x
, ∂I
∂y

"

#$
%

&'
= kx ,ky( )

What is the gradient ?

• gradient direction is 
perpendicular to edge 

• gradient magnitude measures 
edge strength

large change
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2D Edge Detection

• calculate derivative 
‣ use the magnitude of the gradient 

‣ the gradient is: 

‣ the magnitude of the gradient is: 

‣ the direction of the gradient is:

∇I = Ix , Iy( ) = ∂I
∂x
, ∂I
∂y

#

$%
&

'(

∇I = Ix
2 + Iy

2

θ = arctan Iy , Ix( )
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2D Edge Detection

• the scale of the smoothing filter affects derivative estimates, and 
also the semantics of the edges recovered 
‣ note: strong edges persist across scales

1 pixel 3 pixels 7 pixels
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2D Edge Detection
• there are 3 major issues: 
‣ the gradient magnitude at different scales is different; which should we choose? 

‣ the gradient magnitude is large along a thick trail; how do we identify the significant 
points? 

‣ how do we link the relevant points up into curves?
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‘Optimal’ Edge Detection: Canny

• Assume: 
‣ linear filtering 

‣ additive i.i.d. Gaussian noise 

• Edge Detection should have: 
‣ good detection: filter response to edge, not noise 

‣ good localization: detected edge near true edge 

‣ single response: one per edge 

• then: optimal detector is approximately derivative of Gaussian 

• detection/localization tradeoff: 
‣ more smoothing improves detection 

‣ and hurts localization

49
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The Canny edge detector

original image 
(Lena)

thresholding

50

norm 
(=magnitude) of 

the gradient

thinning  
(non-maximum 

suppression
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Non-maximum suppression

• Check if pixel is local maximum along gradient direction 
‣ choose the largest gradient magnitude along the gradient direction 

‣ requires checking interpolated pixels p and r

51
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Butterfly Example (Ponce & Forsyth)
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line drawing vs. edge detection
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• recall:  
‣ the zero-crossings of the second derivative  

tell us the location of edges

55

Edges & Derivatives…

1st derivative

2nd derivative
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• 1st derivative: 

• 2nd derivative: 

• mask for  
‣ 1st derivative:                  2nd derivative:

56

Compute 2nd order derivatives

d

dx
f(x) = lim

h�0

f(x + h)� f(x)
h

⇥ f(x + 1)� f(x)

d2

dx2
f(x) = lim

h�0

d
dxf(x + h)� d

dxf(x)
h

⇥ d

dx
f(x + 1)� d

dx
f(x)

⇥ f(x + 2)� 2f(x + 1) + f(x)

�1 1 1 �2 1
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The Laplacian

• The Laplacian: 

‣ just another linear filter:

∇2 f =
∂2 f
∂x2

+
∂2 f
∂y2

∇2 G⊗ f( ) = ∇2G⊗ f
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• in 1D: • in 2D (‘mexican hat’):

58

Second Derivative of Gaussian
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1D edge detection 

• using Laplacian

59

f

d2

dx2
gLaplacian of Gaussian 

operator

�
d2

dx2
g

⇥
� f
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Approximating the Laplacian

• Difference of Gaussians (DoG) at different scales:
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The Laplacian Pyramid
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Edge Detection with Laplacian

• sigma = 4 • sigma = 2
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Edge Detection Today

• Still topic of active research after 
40 years 

• Today dominated by learning-
based methods 

• Quantitative Evaluation eg. on 
Berkeley Segmentation Data Set 
‣ 500 images 

‣ 5 Annotations per image

63
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[F = 0.80] Human
[F = 0.74] SE
[F = 0.74] SCG − Ren, Bo (2012)
[F = 0.73] Sketch Tokens − Lim, Zitnick, Dollar (2013)
[F = 0.73] gPb−owt−ucm − Arbelaez, et al. (2010)
[F = 0.64] Mean Shift − Comaniciu, Meer (2002)
[F = 0.64] Normalized Cuts − Cour, Benezit, Shi (2005)
[F = 0.61] Felzenszwalb, Huttenlocher (2004)
[F = 0.60] Canny

Figure 5. Results for BSDS 500. See Table 1 and text for details.
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Today - Basics of Digital Image Processing

• Linear Filtering 
‣ Gaussian Filtering 

• Multi Scale Image Representation 
‣ Gaussian Pyramid, Laplacian Pyramid 

• Edge Detection 
‣ ‘Recognition using Line Drawings’ 

‣ Image derivatives (1st and 2nd order) 

• Hough Transform 
‣ Finding parametrized curves, generalized Hough transform 

• Object Instance Identification using Color Histograms 

• (Several slides are taken from Michael Black @ Brown)
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Discussion

• edge detection + contour extraction 
‣ edges are defined as discontinuities in the image 
‣ we can assemble them, to obtain corresponding object contours 
‣ but contours do not necessarily correspond to object boundaries 

• problem: 
‣ there is basically no knowledge used how object contours look like 
‣ obviously humans use such knowledge to segment objects 
‣ in principle: if we knew which object is in the image it would be much simpler to 

segment the object
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Hough Transformation

• detection of straight lines 
‣ use the ‘knowledge’ that many contours belong to straight lines 

• representation of a line: y = a x + b 
‣ 2 parameters: a and b - determine all points of a line 

‣ this corresponds to a transformation: (a,b) -> (x,y) 
- y = a x + b 

‣ inverse interpretation: transformation of (x,y) -> (a,b) 
- b = (-x)a + y 

‣ usage: points for which the magnitude of the first derivate is large lie potentially on 
a line
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Hough Transformation

• for a particular point (x,y) determine all lines  
which go through this point: 
‣ the parameters of  

all those lines are 
given by: b = (-x)a + y 

‣ I.e. those lines are given by a  
line in the parameter space (a,b)
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Hough Transformation

• implementation: 
‣ the parameter space (a,b) has to be discretized 

‣ for each candidate (x,y) for a line, store the line  
b = (-a) x + y  

‣ in principle each candidate (x,y) votes for the discretized parameters 

‣ the maxima in the parameter space (a,b) correspond to lines in the image 

• problem of this particular parameterization 
‣ the parameter ‘a’ can become infinite (for vertical lines) 

‣ problematic for the discretization
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Hough Transformation

• choose another parameterization: 

‣ for this parameterization the domain is limited: 
-      is limited by the size of the image 
- and 

x cos(�) + y sin(�) = ⇥

�

�

y

x

� � [0, 2⇥]
�
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Examples

• Houghtransform for a square (left) and a circle (right)
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Examples
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Hough Transform

• the same idea can be used for other parameterized contours 
‣ Example:  

- circle: (x-a)2 + (y-b)2 = r2  
- 3 parameters: center point (a, b) and radius r 

• Limitation: 
‣ the parameter space should not become too large 

‣ not all contours can be parameterized
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Generalized Hough Transform

• Generalization for an arbitrary contour 
‣ choose reference point for the contour (e.g. centre) 

‣ for each point on the contour remember where it is located w.r.t. to the reference 
point  

‣ e.g. if the center is the  
reference point: remember  
radius r and angle relative  
to the tangent of the contour 

‣ recognition: whenever you find  
a contour point, calculate the  
tangent angle and ‘vote’ for all  
possible reference points
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Today - Basics of Digital Image Processing

• Linear Filtering 
‣ Gaussian Filtering 

• Multi Scale Image Representation 
‣ Gaussian Pyramid, Laplacian Pyramid 

• Edge Detection 
‣ ‘Recognition using Line Drawings’ 

‣ Image derivatives (1st and 2nd order) 

• Hough Transform 
‣ Finding parametrized curves, generalized Hough transform 

• Object Instance Identification using Color Histograms 

• (Several slides are taken from Michael Black @ Brown)
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Object Recognition (reminder)

• Different Types of Recognition Problems: 
‣ Object Identification 

- recognize your apple,  
your cup, your dog 

- sometimes called:  
“instance recognition” 

‣ Object Classification 
- recognize any apple,  

any cup, any dog 

- also called:  
generic object recognition,  
object categorization, … 

- typical definition:  
‘basic level category’



High Level Computer Vision - April 26, 2o17

• Example Database for Object Identification:  
‣ COIL-100 - Columbia Object Image Library 
‣ contains 100 different objects, some form the same object class  

(e.g. cars,cups)

76

Object Identification 
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Challenges = Modes of Variation

• Viewpoint changes 
‣ Translation 
‣ Image-plane rotation 
‣ Scale changes 
‣ Out-of-plane rotation 

• Illumination 
• Clutter 
• Occlusion 
• Noise

2D image

3D object

ry

rx
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Appearance-Based Identification / Recognition

• Basic assumption 
‣ Objects can be represented 

by a collection of images 
(“appearances”). 

‣ For recognition, it is  
sufficient to just compare 
the 2D appearances. 

‣ No 3D model is needed. 

⇒ Fundamental paradigm shift in the 90’s

3D object

ry

rx
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Global Representation

• Idea 
‣ Represent each view (of an object) by a global descriptor. 

‣ For recognizing objects, just match the (global) descriptors. 
‣ Modes of variation can be taken care of by: 

- built into the descriptor 

• e.g. a descriptor can be made invariant to image-plane rotations, translation 

- incorporate in the training data or the recognition process. 

• e.g. viewpoint changes, scale changes, out-of-plane rotation 

- robustness of descriptor or recognition process (descriptor matching) 

• e.g. illumination, noise, clutter, partial occlusion

= ==
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Case Study: 
Use Color for Recognition

• Color: 
‣ Color stays constant under geometric transformations 
‣ Local feature  

- Color is defined for each pixel 

- Robust to partial occlusion 

• Idea 
‣ Directly use object colors for identification / recognition 
‣ Better: use statistics of object colors
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Color Histograms

• Color statistics 
‣ Given: tri-stimulus R,G,B for each pixel 
‣ Compute 3D histogram  

- H(R,G,B) = #(pixels with color (R,G,B))

[Swain & Ballard, 1991]
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Color Histograms

[Swain & Ballard, 1991]

• Robust representation 
‣ presence of occlusion, rotation
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Color

• One component of the 3D color space is intensity 
‣ If a color vector is multiplied by a scalar, the intensity changes, but not 

the color itself.  
‣ This means colors can be normalized by the intensity. 

- Intensity is given by:  I = R + G + B: 

‣ „Chromatic representation“

r =
R

R + G + B

g =
G

R + G + B

b =
B

R + G + B
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Color

• Observation: 
‣ Since r + g + b = 1, only 2 parameters are necessary 
‣ E.g. one can use r and g  
‣ and obtains b = 1 - r - g

r + g + b = 1
⇥ b = 1� r � g

R + G + B = 1

R

B

G
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Recognition using Histograms

• Histogram comparison 
‣ Database of known objects 
‣ Test image of unknown object

test image

known objects
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Recognition using Histograms

• Database with multiple training views per object

test image
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Histogram Comparison

• Comparison measures 
‣ Intersection 

• Motivation 
‣ Measures the common part of both histograms 
‣ Range: [0,1] 
‣ For unnormalized histograms, use the following formula
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Histogram Comparison

• Comparison Measures 
‣ Euclidean Distance 

• Motivation 
‣ Focuses on the differences between the histograms 
‣ Range: [0,∞] 
‣ All cells are weighted equally. 
‣ Not very discriminant
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Histogram Comparison

• Comparison Measures 
‣ Chi-square 

• Motivation 
‣ Statistical background: 

- Test if two distributions are different 

- Possible to compute a significance score 

‣ Range: [0,∞] 
‣ Cells are not weighted equally! 

- therefore more discriminant 

- may have problems with outliers (therefore assume that each cell  
contains at least a minimum of samples)
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Histogram Comparison

• Which measure is best? 
‣ Depends on the application… 

‣ Both Intersection and χ2 give good performance. 
- Intersection is a bit more robust.  

- χ2 is a bit more discriminative. 

- Euclidean distance is not robust enough. 

‣ There exist many other measures 
- e.g. statistical tests: Kolmogorov-Smirnov 

- e.g. information theoretic:  Kullback-Leiber divergence, Jeffrey divergence, ...
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Recognition using Histograms

• Simple algorithm 
1. Build a set of histograms H = {M1, M2, M3, ...} for each known object 

- more exactly, for each view of each object 

2. Build a histogram T for the test image. 
3. Compare T to each Mk∈H 

- using a suitable comparison measure 

4. Select the object with the best matching score 
- or reject the test image if no object is similar enough.

“Nearest-Neighbor” strategy
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Color Histograms

• Recognition (here object identification) 
‣ Works surprisingly well 
‣ In the first paper (1991), 66 objects could be recognized almost 

without errors

[Swain & Ballard, 1991]
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Discussion: Color Histograms
• Advantages 
‣ Invariant to object translations 

‣ Invariant to image rotations 

‣ Slowly changing for out-of-plane rotations 

‣ No perfect segmentation necessary 

‣ Histograms change gradually when part of the object is occluded 

‣ Possible to recognize deformable objects 
- e.g. pullover 

• Problems 
‣ The pixel colors change with the illumination  

(„color constancy problem“) 
- Intensity 

- Spectral composition (illumination color) 

‣ Not all objects can be identified by their color distribution.


