

High Level Computer Vision

Basic Image Processing - April 26, 2017

Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de

mpi-inf.mpg.de/hlcv

Today - Basics of Digital Image Processing

- Linear Filtering
 - Gaussian Filtering
- Multi Scale Image Representation
 - Gaussian Pyramid, Laplacian Pyramid
- Edge Detection
 - 'Recognition using Line Drawings'
 - Image derivatives (1st and 2nd order)
- Hough Transform
 - Finding parametrized curves, generalized Hough transform
- Object Instance Identification using Color Histograms
- (Several slides are taken from Michael Black @ Brown)

Computer Vision and its Components

- computer vision: 'reverse' the imaging process
 - > 2D (2-dimensional) digital image processing
 - 'pattern recognition' / 3D image analysis
 - image understanding

Image Filtering: 2D Signals and Convolution

- Image Filtering
 - to reduce noise,
 - to fill-in missing values/information
 - to extract image features (e.g.edges/corners), etc
- Simplest case:
 - Inear filtering: replace each pixel by a linear combination of its neighbors
- 2D convolution (discrete):
 - discrete Image: I[m,n]
 - filter 'kernel': g[k,l]
 - 'filtered' image: f[m,n]

$$f[m,n] = I \otimes g = \sum_{k,l} I[m-k,n-l]g[k,l]$$

can be expressed as matrix multiplication!

Linear Systems

- Basic Properties:
 - homogeneity T[a X] = a T[X]
 - additivity $T[X_1 + X_2] = T[X_1] + T[X_2]$
 - superposition $T[aX_1 + bX_2] = a T[X_1] + b T[X_2]$
 - linear systems <=> superposition
- examples:
 - matrix operations (additions, multiplication)
 - convolutions

Filtering to Reduce Noise

- "Noise" is what we're not interested in
 - low-level noise: light fluctuations, sensor noise, quantization effects, finite precision, ...
 - complex noise (not today): shadows, extraneous objects.
- Assumption:
 - the pixel's neighborhood contains information about its intensity

Model: Additive Noise

• Image I = Signal S + Noise N:

Model: Additive Noise

- Image I = Signal S + Noise N
 - I.e. noise does not depend on the signal
- we consider:
 - I_i : intensity of i'th pixel
 - $I_i = s_i + n_i$ with $E(n_i) = 0$
 - s_i deterministic
 - n_i,n_i independent for i ≠ j
 - n_i,n_i i.i.d. (independent, identically distributed)
- therefore:
 - intuition: averaging noise reduces its effect
 - better: smoothing as inference about the signal

Average Filter

- Average Filter
 - replaces each pixel with an average of its neighborhood
 - Mask with positive entries that sum to 1
- if all weights are equal, it is called a BOX filter

Gaussian Averaging (An Isotropic Gaussian)

- Rotationally symmetric
- Weights nearby pixels more than distant ones
 - this makes sense as 'probabilistic' inference

 the pictures show a smoothing kernel proportional to

$$g(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

Smoothing with a Gaussian

- Effects of smoothing:
 - each column shows realizations of an image of Gaussian noise
 - each row shows smoothing with Gaussians of different width

Smoothing with a Gaussian

• Example:

Efficient Implementation

- Both, the BOX filter and the Gaussian filter are separable:
 - first convolve each row with a 1D filter
 - then convolve each column with a 1D filter

$$(f_x \otimes f_y) \otimes I = f_x \otimes (f_y \otimes I)$$

- remember:
 - convolution is linear associative and commutative
- Example: separable BOX filter

Example: Separable Gaussian

• Gaussian in x-direction

$$g(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

• Gaussian in y-direction

$$g(y) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{y^2}{2\sigma^2}\right)$$

• Gaussian in both directions

$$g(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

Multi-Scale Image Representation

- In this class:
 - Gaussian Pyramids
 - Laplacian Pyramids -> later
- Example of a Gaussian Pyramid

High resolution — Low resolution

Motivation: Search across Scales

Irani & Basri

Computation of Gaussian Pyramid

Gaussian Pyramid

max planck institut informatik

High Level Computer Vision - April 26, 2017

Fourier Transform in Pictures

• a *very* little about Fourier transform to talk about spatial frequencies...

Another Example

128

512 256

64 32

- a bar
 - in the big images is a hair (on the zebra's nose)
 - in smaller images, a stripe
 - in the smallest image, the animal's nose

8

16

Today - Basics of Digital Image Processing

- Linear Filtering
 - Gaussian Filtering
- Multi Scale Image Representation
 - Gaussian Pyramid, Laplacian Pyramid
- Edge Detection
 - 'Recognition using Line Drawings'
 - Image derivatives (1st and 2nd order)
- Hough Transform
 - Finding parametrized curves, generalized Hough transform
- Object Instance Identification using Color Histograms
- (Several slides are taken from Michael Black @ Brown)

Image Edges: What are edges? Where do they come from?

 Edges are changes in pixel brightness

Image Edges: What are edges? Where do they come from?

- Edges are changes in pixel brightness
 - Foreground/Background Boundaries
 - Object-Object-Boundaries
 - Shadow Edges
 - Changes in Albedo or Texture
 - Changes in Surface Normals

Line Drawings: Good Starting Point for Recognition?

Example of Recognition & Localization

• David Lowe

Parameters: 3D position and orientation

Example of Recognition & Localization

- David Lowe
 - 1. 'filter' image to **find brightness changes**
 - > 2. 'fit' lines to the raw measurements

Example of Recognition & Localization

- David Lowe
 - 3. 'project' model into the image and 'match' to lines (solving for 3D pose)

3D Model "match"

Parameters: 3D position and orientation

Class of Models

- Common Idea & Approach (in the 1980's)
 - matching of models (wire-frame/geons/generalized cylinders...) to edges and lines

- so the 'only' remaining problem to solve is:
 - reliably extract lines & edges that can be matched to these models...

Actual 1D profile

- Barbara Image:
 - entire image

line 250:

line 250

with a

smoothed

Gaussian:

What are 'edges' (1D)

• Idealized Edge Types:

- Goals of Edge Detection:
 - good detection: filter responds to edge, not to noise
 - good localization: detected edge near true edge
 - single response: one per edge

Edges

- Edges:
 - correspond to fast changes
 - where the magnitude of the derivative is large

Edges & Derivatives...

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x)$$

- we can implement this as a linear filter:
 - direct:

• or symmetric:

Edge-Detection

- based on 1st derivative:
 - smooth with Gaussian
 - calculate derivative
 - finds its maxima

Edge-Detection

- Simplification:
- $\frac{d}{dx}(g\otimes f) = \left(\frac{d}{dx}g\right)\otimes f$ remember: derivative as well as convolution are linear operations

1D Barbara signal

- Barbara Image:
 - entire image

line 250 (smoothed):

1st

derivative

1D Barbara signal: note the amplification of small variations

- Barbara Image:

100

200

300

400

600

500

Implementing 1D edge detection

- algorithmically:
 - find peak in the 1st derivative
 - but
 - should be a local maxima
 - should be 'sufficiently' large
 - hysteresis: use 2 thresholds
 - high threshold to start edge curve (maximum value of gradient should be sufficiently large)
 - low threshold to continue them (in order to bridge "gaps" with lower magnitude)
 - (really only makes sense in 2D...)

Extension to 2D Edge Detection: Partial Derivatives

- partial derivatives
 - in x direction:

• in y direction:

$$\frac{d}{dx}I(x,y) = I_x \approx I \otimes D_x \qquad \frac{d}{dy}I(x,y) = I_y \approx I \otimes D_y$$

• often approximated with simple filters (finite differences):

Finite Differences

Finite Differences responding to noise

- increasing noise level (from left to right)
 - noise: zero mean additive Gaussian noise

Again: Derivatives and Smoothing

• derivative in x-direction: $D_x \otimes (G \otimes I) = (D_x \otimes G) \otimes I$

What is the gradient ?

What is the gradient ?

$$\left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right) = \left(k_x, k_y\right)$$

- gradient direction is perpendicular to edge
- gradient magnitude measures edge strength

2D Edge Detection

- calculate derivative
 - use the **magnitude** of the gradient
 - the gradient is:

$$\nabla I = \left(I_x, I_y\right) = \left(\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\right)$$

• the magnitude of the gradient is:

$$\left\|\nabla I\right\| = \sqrt{I_x^2 + I_y^2}$$

• the direction of the gradient is:

$$\theta = \arctan\left(I_{y}, I_{x}\right)$$

2D Edge Detection

- the scale of the smoothing filter affects derivative estimates, and also the semantics of the edges recovered
 - note: strong edges persist across scales

2D Edge Detection

- there are 3 major issues:
 - the gradient magnitude at different scales is different; which should we choose?
 - the gradient magnitude is large along a thick trail; how do we identify the significant points?
 - how do we link the relevant points up into curves?

'Optimal' Edge Detection: Canny

- Assume:
 - linear filtering
 - additive i.i.d. Gaussian noise
- Edge Detection should have:
 - good detection: filter response to edge, not noise
 - good localization: detected edge near true edge
 - single response: one per edge
- then: optimal detector is approximately derivative of Gaussian
- detection/localization tradeoff:
 - more smoothing improves detection
 - and hurts localization

The Canny edge detector

original image (Lena)

thinning (non-maximum suppression

norm (=magnitude) of the gradient

thresholding

Non-maximum suppression

- Check if pixel is local maximum along gradient direction
 - choose the largest gradient magnitude along the gradient direction
 - requires checking interpolated pixels p and r

Butterfly Example (Ponce & Forsyth)

line drawing vs. edge detection

University of South Florida

Match "model" to measurements?

Edges & Derivatives...

- recall:
 - the zero-crossings of the second derivative tell us the location of edges

Compute 2nd order derivatives

• 1st derivative:

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x)$$

• 2nd derivative:

$$\frac{d^2}{dx^2}f(x) = \lim_{h \to 0} \frac{\frac{d}{dx}f(x+h) - \frac{d}{dx}f(x)}{h} \approx \frac{d}{dx}f(x+1) - \frac{d}{dx}f(x)$$
$$\approx f(x+2) - 2f(x+1) + f(x)$$

• mask for

Ist derivative:

-1 | 1

2nd derivative:

$$\begin{array}{|c|c|c|}\hline 1 & -2 & 1 \\ \hline \end{array}$$

The Laplacian

• The Laplacian:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

• just another linear filter:

$$\nabla^2 (G \otimes f) = \nabla^2 G \otimes f$$

Second Derivative of Gaussian

• in 1D: • in 2D ('mexican hat'):

1D edge detection

using Laplacian

Approximating the Laplacian

• Difference of Gaussians (DoG) at different scales:

The Laplacian Pyramid

$L_i = G_i - \operatorname{expand}(G_{i+1})$

Edge Detection with Laplacian

• sigma = 4

• sigma = 2

Edge Detection Today

- Still topic of active research after 40 years
- Today dominated by learningbased methods
- Quantitative Evaluation eg. on Berkeley Segmentation Data Set
 - ▶ 500 images
 - ▶ 5 Annotations per image

- References
 - P. Arbelaez, M. Maire, C. Fowlkes and J. Malik: Contour Detection and Hierarchical Image Segmentation; IEEE TPAMI, 2011
 - P.Dollar, C. Lawrence Zitnick: Fast Edge Detection using Structured Forests; International Conference on Computer Vision 2013; to appear in IEEE TPAMI 2015

Today - Basics of Digital Image Processing

- Linear Filtering
 - Gaussian Filtering
- Multi Scale Image Representation
 - Gaussian Pyramid, Laplacian Pyramid
- Edge Detection
 - 'Recognition using Line Drawings'
 - Image derivatives (1st and 2nd order)
- Hough Transform
 - Finding parametrized curves, generalized Hough transform
- Object Instance Identification using Color Histograms
- (Several slides are taken from Michael Black @ Brown)

Discussion

- edge detection + contour extraction
 - edges are defined as discontinuities in the image
 - we can assemble them, to obtain corresponding object contours
 - but contours do not necessarily correspond to object boundaries
- problem:
 - there is basically no knowledge used how object contours look like
 - obviously humans use such knowledge to segment objects
 - in principle: if we knew which object is in the image it would be much simpler to segment the object

- detection of straight lines
 - use the 'knowledge' that many contours belong to straight lines
- representation of a line: y = a x + b
 - > 2 parameters: a and b determine all points of a line
 - this corresponds to a transformation: (a,b) -> (x,y)
 - y = a x + b
 - inverse interpretation: transformation of (x,y) -> (a,b)
 - b = (-x)a + y
 - usage: points for which the magnitude of the first derivate is large lie potentially on a line

- for a particular point (x,y) determine all lines which go through this point:
 - the parameters of all those lines are given by: b = (-x)a + y
 - I.e. those lines are given by a line in the parameter space (a,b)

- implementation:
 - the parameter space (a,b) has to be discretized
 - for each candidate (x,y) for a line, store the line
 b = (-a) x + y
 - in principle each candidate (x,y) votes for the discretized parameters
 - the maxima in the parameter space (a,b) correspond to lines in the image
- problem of this particular parameterization
 - the parameter 'a' can become infinite (for vertical lines)
 - problematic for the discretization

• choose another parameterization:

- for this parameterization the domain is limited:
 - ho is limited by the size of the image
 - and $\theta \in [0,2\pi]$

Examples

• Houghtransform for a square (left) and a circle (right)

Examples

Hough Transform

- the same idea can be used for other parameterized contours
 - Example:
 - circle: $(x-a)^2 + (y-b)^2 = r^2$
 - 3 parameters: center point (a, b) and radius r
- Limitation:
 - the parameter space should not become too large
 - not all contours can be parameterized
Generalized Hough Transform

- Generalization for an arbitrary contour
 - choose reference point for the contour (e.g. centre)
 - for each point on the contour remember where it is located w.r.t. to the reference point
 - e.g. if the center is the reference point: remember radius r and angle relative to the tangent of the contour
 - recognition: whenever you find a contour point, calculate the tangent angle and 'vote' for all possible reference points

Today - Basics of Digital Image Processing

- Linear Filtering
 - Gaussian Filtering
- Multi Scale Image Representation
 - Gaussian Pyramid, Laplacian Pyramid
- Edge Detection
 - 'Recognition using Line Drawings'
 - Image derivatives (1st and 2nd order)
- Hough Transform
 - Finding parametrized curves, generalized Hough transform
- Object Instance Identification using Color Histograms
- (Several slides are taken from Michael Black @ Brown)

Object Recognition (reminder)

- Different Types of Recognition Problems:
 - Object Identification
 - recognize your apple, your cup, your dog
 - sometimes called: "instance recognition"
 - Object Classification
 - recognize any apple, any cup, any dog
 - also called:
 generic object recognition,
 object categorization, ...
 - typical definition:
 'basic level category'

Object Identification

- Example Database for Object Identification:
 - COIL-100 Columbia Object Image Library
 - contains 100 different objects, some form the same object class (e.g. cars,cups)

Challenges = Modes of Variation

- Viewpoint changes
 - Translation
 - Image-plane rotation
 - Scale changes
 - Out-of-plane rotation
- Illumination
- Clutter
- Occlusion
- Noise

Appearance-Based Identification / Recognition

- Basic assumption
 - Objects can be represented by a collection of images ("appearances").
 - For recognition, it is sufficient to just compare the 2D appearances.
 - No 3D model is needed.

 \Rightarrow Fundamental paradigm shift in the 90's

Global Representation

- Idea
 - Represent each view (of an object) by a global descriptor.

- For recognizing objects, just match the (global) descriptors.
- Modes of variation can be taken care of by:
 - built into the descriptor
 - e.g. a descriptor can be made invariant to image-plane rotations, translation
 - incorporate in the training data or the recognition process.
 - e.g. viewpoint changes, scale changes, out-of-plane rotation
 - robustness of descriptor or recognition process (descriptor matching)
 - e.g. illumination, noise, clutter, partial occlusion

Case Study: Use Color for Recognition

- Color:
 - Color stays constant under geometric transformations
 - Local feature
 - Color is defined for each pixel
 - Robust to partial occlusion
- Idea
 - Directly use object colors for identification / recognition
 - Better: use statistics of object colors

Color Histograms

- Color statistics
 - Given: tri-stimulus R,G,B for each pixel
 - Compute 3D histogram
 - H(R,G,B) = #(pixels with color (R,G,B))

[Swain & Ballard, 1991]

Color Histograms

- Robust representation
 - presence of occlusion, rotation

Color

- One component of the 3D color space is intensity
 - If a color vector is multiplied by a scalar, the intensity changes, but not the color itself.
 - > This means colors can be normalized by the intensity.
 - Intensity is given by: I = R + G + B:
 - "Chromatic representation"

$$r = \frac{R}{R + G + B}$$
$$g = \frac{G}{R + G + B}$$
$$b = \frac{B}{R + G + B}$$

Color

- Observation:
 - Since r + g + b = 1, only 2 parameters are necessary
 - E.g. one can use r and g
 - and obtains b = 1 r g

Recognition using Histograms

- Histogram comparison
 - Database of known objects
 - Test image of unknown object

Recognition using Histograms

• Database with multiple training views per object

- Comparison measures
 - Intersection

$$\cap(Q,V) = \sum_{i} \min(q_i, v_i)$$

- Motivation
 - Measures the common part of both histograms
 - Range: [0,1]
 - For unnormalized histograms, use the following formula

$$\bigcap(Q,V) = \frac{1}{2} \left(\frac{\sum_{i} \min(q_i, v_i)}{\sum_{i} q_i} + \frac{\sum_{i} \min(q_i, v_i)}{\sum_{i} v_i} \right)$$

- Comparison Measures
 - Euclidean Distance

$$d(Q,V) = \sum_{i} (q_i - v_i)^2$$

- Motivation
 - Focuses on the differences between the histograms
 - Range: [0,∞]
 - All cells are weighted equally.
 - Not very discriminant

- Comparison Measures
 - Chi-square

$$\chi^{2}(Q, V) = \sum_{i} \frac{(q_{i} - v_{i})^{2}}{q_{i} + v_{i}}$$

- Motivation
 - Statistical background:
 - Test if two distributions are different
 - Possible to compute a significance score
 - Range: [0,∞]
 - Cells are not weighted equally!
 - therefore more discriminant
 - may have problems with outliers (therefore assume that each cell contains at least a minimum of samples)

- Which measure is best?
 - Depends on the application...
 - Both Intersection and χ^2 give good performance.
 - Intersection is a bit more robust.
 - χ^2 is a bit more discriminative.
 - Euclidean distance is not robust enough.
 - There exist many other measures
 - e.g. statistical tests: Kolmogorov-Smirnov
 - e.g. information theoretic: Kullback-Leiber divergence, Jeffrey divergence, ...

Recognition using Histograms

- Simple algorithm
 - 1. Build a set of histograms $H = \{M_1, M_2, M_3, ...\}$ for each known object
 - more exactly, for each view of each object
 - 2. Build a histogram T for the test image.
 - 3. Compare T to each $M_k \in H$
 - using a suitable comparison measure
 - 4. Select the object with the best matching score
 - or reject the test image if no object is similar enough.

"Nearest-Neighbor" strategy

Color Histograms

- Recognition (here object identification)
 - Works surprisingly well
 - In the first paper (1991), 66 objects could be recognized almost without errors

[Swain & Ballard, 1991]

Discussion: Color Histograms

- Advantages
 - Invariant to object translations
 - Invariant to image rotations
 - Slowly changing for out-of-plane rotations
 - No perfect segmentation necessary
 - Histograms change gradually when part of the object is occluded
 - Possible to recognize deformable objects
 - e.g. pullover
- Problems
 - The pixel colors change with the illumination ("color constancy problem")
 - Intensity
 - Spectral composition (illumination color)
 - Not all objects can be identified by their color distribution.