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Today - Basics of Digital Image Processing

e Linear Filtering
» Gaussian Filtering
Multi Scale Image Representation

» Gaussian Pyramid, Laplacian Pyramid

* Edge Detection

» ‘Recognition using Line Drawings’

» Image derivatives (1st and 2nd order)

* Hough Transform

» Finding parametrized curves, generalized Hough transform

* Object Instance ldentification using Color Histograms

 (Several slides are taken from Michael Black @ Brown)
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Computer Vision and its Components

e computer vision: ‘reverse’ the imaging process
» 2D (2-dimensional) digital image processing
» ‘pattern recognition’ / 3D image analysis
» image understanding
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Image Filtering: 2D Signals and Convolution

e Image Filtering

» to reduce noise,

» to fill-in missing values/information

» to extract image features (e.g.edges/corners), etc

e Simplest case:

» linear filtering: replace each pixel by a linear combination of its neighbors

2D convolution (discrete): fim.nl =T@g=2 Im—kn—Iglkl

» discrete Image: I[m,n] ol

» filter ‘kernel:  g[k,I] / [mv “] I ['If ; l] g[k ; l]

» ‘filtered’ image: f[m,n] 81512 —1]0]1
18 = |7/5|3|®|—-1|0|1

can be expressed as matrix multiplication! 9141 —1]0 |1
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Linear Systems

e Basic Properties:
» homogeneity T[a X] =a T[X]
» additivity TX, +X,] = TX]+ T[X)]
» superposition T[aX, + bX,] =a T[X,]+ b T[X,]

» linear systems <=> superposition

e examples:
» maitrix operations (additions, multiplication)

» convolutions
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Filtering to Reduce Noise

e “Noise” is what we're not interested In

» low-level noise: light fluctuations, sensor noise, quantization effects,
finite precision, ...

» complex noise (not today): shadows, extraneous objects.

 Assumption:

» the pixel’s neighborhood contains information about its intensity
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Model: Additive Noise

e |mage | = Signal S + Noise N:

S + N = 1

Neighborhood for
averaging.

| +/V\/w«/)[~/: |

Nearby points tell more about the
signal than distant ones.
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Model: Additive Noise

e |mage | = Signal S + Noise N

» l.e. noise does not depend on the signal

e we consider:
» | intensity of i'th pixel
» L=s +nwithE(n)=0
- s, deterministic
- n,n;independent for i = |

- n,n; ii.d. (independent, identically distributed)

e therefore:
» intuition: averaging noise reduces its effect

» Dbetter: smoothing as inference about the signal
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Average Filter

e Average Filter

» replaces each pixel with an average of its neighborhood
» Mask with positive entries that sum to 1

e if all weights are equal, it is called a BOX filter

OO | O =
OO O =
O | O | O |
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Gaussian Averaging (An Isotropic Gaussian)

e Rotationally symmetric

e \Weights nearby pixels more than
distant ones

» this makes sense as ‘probabilistic’
inference

* the pictures show a smoothing
kernel proportional to

(2.1) s
X — €X —
g(z,y p =
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Smoothing with a Gaussian

e [Effects of smoothing:

» each column shows realizations of an image of Gaussian noise
» each row shows smoothing with Gaussians of different width

noise increase

0=0.05
smoothing T4
. _...'lg_! no )
ncrease e smoothing
o=1 pixel
A\ 4
G=2 pixels
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Smoothing with a Gaussian

e Example:

Original Ima

"'.’ )

ge Gaussian-filtered Box-filtered

s

Ponce & Forsyth
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Efficient Implementation

e Both, the BOX filter and the Gaussian filter are separable:
» first convolve each row with a 1D filter

» then convolve each column with a 1D filter

(fe ® fy) @1 = fo® (fy ®1)

» remember:

- convolution is linear - associative and commutative

e Example: separable BOX filter

g
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Example: Separable Gaussian

e (Gaussian in x-direction

e (Gaussian in y-direction

o) = —o—exp (-2 )

e (aussian in both directions

9(2,) = s~ exp (—

2w o

a:2+y2

202

)
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Multi-Scale Image Representation

e |n this class:

» Gaussian Pyramids
» Laplacian Pyramids -> later

* Example of a Gaussian Pyramid

High resolution > Low resolution
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Motivation: Search across Scales

*‘A:k*t *
Loxf (el ._search Il
W Lx 3%

ﬁ@ _i% . search =

i < PN
i:} ? {g} ~search -

Iran1 & Basri
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Computation of Gaussian Pyramid

Low resolution m G4 = (G3 ™ gaussian) .

A

down-sampl

High resolution

Irani & Basri
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Gaussian Pyramid

_

Iﬂi

e Questions of interest:

» which information is
preserved over ‘scales’

» which information is lost
over ‘scales’

F" '-r

. 18
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Fourier Transform in Pictures

e a *very” little about Fourier transform to talk about spatial
frequencies...

I\ /T _

- A /f:§\§:7/4:1§ //*\\\\u////~\\
5 NN /er\\Jﬁ\//\Vﬁ\
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+ 1 sin(3x)

+ ...
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Another Example

\\

» inthe big images is
a hair (on the
zebra's nose)

» in smaller images, a
stripe

» inthe smallest
image, the animal’s

4 Ponce & Forsyth
nose SV

Ponce
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Today - Basics of Digital Image Processing

e Linear Filtering
» Gaussian Filtering
Multi Scale Image Representation

» Gaussian Pyramid, Laplacian Pyramid

* Edge Detection

» ‘Recognition using Line Drawings’

» Image derivatives (1st and 2nd order)

* Hough Transform

» Finding parametrized curves, generalized Hough transform

* Object Instance ldentification using Color Histograms

 (Several slides are taken from Michael Black @ Brown)
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-
Image Edges:
What are edges? Where do they come from?

* Edges are changes in pixel
brightness
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-
Image Edges:
What are edges? Where do they come from?

* Edges are changes in pixel
brightness

» Foreground/Background
Boundaries

» Object-Object-Boundaries
» Shadow Edges

» Changes in Albedo or
Texture

» Changes in Surface Normals
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-
Line Drawings:
Good Starting Point for Recognition?
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Example of Recognition & Localization

e David Lowe

3D Model

113 _,//
match” é p

Parameters: 3D position
and orientation
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Example of Recognition & Localization

e David Lowe

» 1. *filter’ image to find brightness changes

» 2. fit’ lines to the raw measurements

’| \ //g\i'n’(\“— N ‘\\‘s
~ 4 //,;\\\4 ‘\ /
o v /,\ _B / -
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Example of Recognition & Localization

e David Lowe

» 3. ‘project’ model into the image and ‘match’ to lines
(solving for 3D pose)

| AT G A 3
J/ [ //// '\\\/ ‘\\ \
;‘/ i/& / :\\ - Ll /
e e

o

J

3D Model

“match” /Z ;

Parameters: 3D position
and orientation
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Class of Models

e Common ldea & Approach (in the 1980’s)

» matching of models (wire-frame/geons/generalized cylinders...)
to edges and lines

el = = &.

hocee human
' i e
Biederman’s Geons b Mm & Nishihara

* so the ‘only’ remaining problem to solve is:

» reliably extract lines & edges that can be matched to these models...
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Actual 1D profile

e Barbara Image:
» line 250: -

» entire image

200

il \W - \ (Hm \
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smoothed -
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Gaussian: | | N .
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What are ‘edges’ (1D)
e |dealized Edge Types:

step

ramp

line or bar ﬂ

roof

 Goals of Edge Detection:

» good detection: filter responds
to edge, not to noise E

» good localization: detected

) True edge
edge near true edge
: O O
» single response: O - Dg
one per edge = -
O

d)Poor robustness to noise b) Poor localization ¢) Too many responses
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Edges

e Edges:
» correspond to fast changes
» where the magnitude of the derivative is large

10
10- )
_ 2
;: eull 5
. 0 FY|
“image” of 2 >
o 3 b
step-edges @
- -a]-
:;- al

100 . . e e J a L " e
0 2 70 a0 € 100 10 20 0 a0 a)
smoothing
100 120
i
o o B an
single line of

“ima ge ”» : > ]
0+ 2
w 2

%0 @ @ W m w0 w W W %% @™ ®m w = & W @ @ m

| p B [ ppplanckinsiut High | evel Computer Vision - April 26, 2017 31



Edges & Derivatives...
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Compute Derivatives

Ly = 1im T ZIE) o p ) - )

% h—0 h

 we can implement this as a linear filter:

» direct:

—1 |1

» or symmetric:

—-1]0]1
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Edge-Detection

4
4
4

based on 1st derivative:
smooth with Gaussian
calculate derivative
finds its maxima

Sigma = 50

Signal

I
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Edge-Detection

. Qirmnlificatinn: d d
Simplification: %(g®f)= —gl®f

» remember: dx
derivative as well as convolution are linear operations

Sigma = 50

» saves one operation

.................................................

~~
Signal

1 1 | 1 | 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Kernel

1 1 1 1 1 1 | 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Convolution

I I I 1 I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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1D Barbara signal

e Barbara Image:

o » line 250 -
» entire image

(smoothed):
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1D Barbara signal:

note the amplification of small variations

e Barbara Image:
» line 250

» entire image (smoothed):

» 1st
derivative

S0 700 =0 2000 ) 300 3U 400 450 =0
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Implementing 1D edge detection

e algorithmically:

» find peak in the 1st derivative

» but
- should be a local maxima

- should be ‘sufficiently’ large

» hysteresis: use 2 thresholds

- high threshold to start edge curve (maximum value of
gradient should be sufficiently large)

- low threshold to continue them (in order to bridge
“gaps” with lower magnitude)

- (really only makes sense in 2D...)
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- 0000000000000
Extension to 2D Edge Detection:
Partial Derivatives

e partial derivatives

» in x direction: » iny direction:

d d

» often approximated with simple filters (finite differences):

[-1]o]1 [ =1]-1
Dy=g[ ~1]0]1 Dy=2[ 000
—1]07]" 1 [ 1] 1
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Finite Differences

VA

.

Isthis 7 or [,

Is the sign right?
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Finite Differences responding to noise

e increasing noise level (from left to right)

» noise: zero mean additive Gaussian noise

.‘“ ’.-
¥ (.‘ ’

i "” 1/1’ J‘-v i
/ : ] B 'i
/ ’n A . I ! { a
T
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Again: Derivatives and Smoothing

e derivative in x-direction: D,®(Gel)= (D, G)®I

» in1D: .

» in 2D:

il AN
’ 75N
; i I;I,":’:‘:‘\\\”“o‘.-
A NN
T G
_ ) ey XX
e A LSS
O NERTER RSOSSN
e ata e 0ptatete?y ! ee e Soss,
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What is the gradient ?

no change (ol oI\
[ 5xay) ~ (&)
(oI aI\
l\ 0x ’ay/l B (O’k)

no change

iil p B | poplanckinsiet High | evel Computer Vision - April 26, 2017 44



What is the gradient ?

(ol oI\
C?\r;]:;le l\ ox ayJ ~ (kx’ky)

e gradient direction is
perpendicular to edge

e gradient magnitude measures
edge strength
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2D Edge Detection

e calculate derivative

» use the magnitude of the gradient
» the gradientis: ;
ol ol |
VI = ([x Y ) — { , \
y
| ax "oy 9
» the magnitude of the gradient is: II >

VI =1, +1

» the direction of the gradient is:

0 = arctan(]y,[x)
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2D Edge Detection

e the scale of the smoothing filter affects derivative estimates, and
also the semantics of the edges recovered

» note: strong edges persist across scales

1 pixel 3 pixels 7 pixels

iil " J | poxplanckinstiet High | evel Computer Vision - April 26, 2017 47



2D Edge Detection

e there are 3 major issues:

» the gradient magnitude at different scales is different; which should we choose?

» the gradient magnitude is large along a thick trail; how do we identify the significant
points?

» how do we link the relevant points up into curves?
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‘Optimal’ Edge Detection: Canny

e Assume:
» linear filtering
» additive i.i.d. Gaussian noise

* Edge Detection should have:
» good detection: filter response to edge, not noise
» good localization: detected edge near true edge
» single response: one per edge

* then: optimal detector is approximately derivative of Gaussian

e detection/localization tradeofft:
» more smoothing improves detection

» and hurts localization
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The Canny edge detector

norm
(=magnitude) of
the gradient

original image
(Lena)

thinning
(non-maximum
suppression

thresholding
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Non-maximum suppression

® ® o o
P
® @
_ q
Gradient /
® O o ®
r
o ® ®

e Check if pixel is local maximum along gradient direction

» choose the largest gradient magnitude along the gradient direction

» requires checking interpolated pixels p and r

' ' I I max planck institut
informatik
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v
I
"Fj. v

fine scale
high
threshold

' coarse
scale,
;,~—— high
threshold
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line drawing vs. edge detection
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“ [
¥ ]

niversity of South Florida

|

Match “model” to
measurements?

' l I I I max planck institut
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Edges & Derivatives...

e recall:

» the zero-crossings of the second derivative

tell us the location of edges

| [II. _ ° ‘
- I 4 \ ;'

1st derivative o
Maxima of first
=l / del ivativ e

10+

- l | < . N ;
| | ‘Zero crossings” —| | \ |
| | of second |[ |
= | | .. f
- Jo derivative ! !
a o 20 k) a0 50 Bl /0 a0 S0 100 . 0 0 2;3 T d;] E;J E;J ;h 8;] 20
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Compute 2nd order derivatives

e 1st derivative:

d
%f(a:)

flz+h)— f(=)

I
hl—% h

e 2nd derivative:

flz+1) = f(z)

d
Nﬁf

d? g f@tn) - L f(x)
a2 (@) = i h
~ flz+2)-2f(z+1)+ f(z)
e mask for
» 1st derivative: 2nd derivative:
—1 1 1] -211

(@+1)~ (@)

' l I I max planck institut
informatik
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The Laplacian

e The Laplacian:

N
f_ >t 2
0x oy

» just another linear filter:

VI(G®f)= VG® f
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Second Derivative of Gaussian

5
4
3
2
1}k
0
1
2
3

K 1 1 1 1 1 1
0 2 40 60 a0 100 120 140 160 180 z00

in 1D:

»10°

e in 2D (‘mexican hat’):

I l l I max planck institut
informatik

High Level Computer Vision - April 26, 2017

58



1D edge detection

e using Laplacian

Sigma = 50

f = e
= T SRS SRRSO OUUURUN: SORURUOR- PO UOPP S PURRRPSSRRP
=
R T S T
0 200 400 600 800 1000 1200 1400 1600 1800 2000
2 T T T T T T T T T
Laplac-lan Of Gauss-lan d ......... _
Operator daj2 g
| | l | | l | | I
0 200 400 600 800 1000 1200 1400 1600 1800 2000
T T T T
2 5 ?
o :
d 3 z
g ® f go_ ........ (o ]
o .
dx? ° | | |
1 1 | I I | I I |
0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Approximating the Laplacian

Difference of Gaussians (DoG) at different scales:

0.04 0.2 -
I'I ] II
0035 | [
|I | 0.015 - [
003+ | | |
|
. 007
0025 - - ||
0.02+ |'I ) 0005 - [
;o\ -
! |
0015 b \
/| '|.."' ‘ N | l' e
0.01} /] \ \ |
) \ N, '«.. | I
F R 0.005 N
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The Laplacian Pyramid
L =G, —expand(G, )

Gaussian Pyramid Gi — LI + expand(G-

i+1

) Laplacian Pyramid

>

L,=G,

.Lz
=0 1

Iran1 & Basrni



Edge Detection with Laplacian

e sigma=4 e sigma=2

500
It 500
400
400 H
300
300H
200 sonH
100 100
oF oH
|4 p)
. . . | 100 ! ! ! ! ! 1 ! ! !
1c0 ! . = - -
0 100 200 300 400 500 500 0 S0 o 150 200 250 300 =50 400 450 500
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Edge Detection Today

e Still topic of active research after 1
40 years

* Today dominated by learning-
based methods

 Quantitative Evaluation eg. on
Berkeley Segmentation Data Set

» 500 images

Precision
o
(6]

o
i
T

| @ [F=0.80] Human
e [F = 0.74] SE

= [F = 0.74] SCG - Ren, Bo (2012)
0.2} === [F = 0.73] Sketch Tokens - Lim, Zitnick, Dollar (2013)
e [ = 0.73] gPb-owt-ucm - Arbelaez, et al. (2010)

.X!;é\\’fi‘" o - '(N : . | [ s [F = 0.64] Mean Shift — Comaniciu, Meer (2002)
AR 4 i Nz ™ . N 01H [F = 0.64] Normalized Cuts — Cour, Benezit, Shi (2005)
A~ 2 s
R [ 7 A = [F = 0.61] Felzenszwalb, Huttenlocher (2004)
Lo - ) Cor —— [F = 0.60] Canny
- % ‘¢ o 4 -4 o N 0 T I I I I 1 1 1 i
iR "IN A ol N g 0 01 02 03 04 05 06 07 08 09 1
g o7 T ) ST < I s Recall

e References

 P. Arbelaez, M. Maire, C. Fowlkes and J. Malik: Contour Detection and Hierarchical Image
Segmentation; IEEE TPAMI, 2011

 P.Dollar, C. Lawrence Zitnick: Fast Edge Detection using Structured Forests; International
Conference on Computer Vision 2013; to appear in IEEE TPAMI 2015
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Today - Basics of Digital Image Processing

e Linear Filtering
» Gaussian Filtering
Multi Scale Image Representation

» Gaussian Pyramid, Laplacian Pyramid

* Edge Detection

» ‘Recognition using Line Drawings’

» Image derivatives (1st and 2nd order)

e Hough Transform

» Finding parametrized curves, generalized Hough transform

* Object Instance ldentification using Color Histograms

 (Several slides are taken from Michael Black @ Brown)
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Discussion

e edge detection + contour extraction
» edges are defined as discontinuities in the image
» we can assemble them, to obtain corresponding object contours
» but contours do not necessarily correspond to object boundaries

e problem:
» there is basically no knowledge used how object contours look like
» obviously humans use such knowledge to segment objects

» in principle: if we knew which object is in the image it would be much simpler to
segment the object
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Hough Transformation

e detection of straight lines

» use the ‘knowledge’ that many contours belong to straight lines

* representationofaline:y=ax+b
» 2 parameters: a and b - determine all points of a line
» this corresponds to a transformation: (a,b) -> (x,y)
- y=ax+b
» inverse interpretation: transformation of (x,y) -> (a,b)
- b=(x)a+y

» usage: points for which the magnitude of the first derivate is large lie potentially on
aline
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Hough Transformation

e for a particular point (x,y) determine all lines
which go through this point:

» the parameters of
all those lines are
given by: b = (-x)a + vy

» l.e.those lines are given by a
line in the parameter space (a,b)

parameter space

Byfl e S LG adiit Y 1 ;

| : K Y

I’A .......... 1 A

0 —a 0 >
0 I 2 3 T 3 &
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Hough Transformation

e Implementation:

» the parameter space (a,b) has to be discretized

» for each candidate (x,y) for a line, store the line
b=(-a)x+y

» in principle each candidate (x,y) votes for the discretized parameters
» the maxima in the parameter space (a,b) correspond to lines in the image

e problem of this particular parameterization
» the parameter ‘a’ can become infinite (for vertical lines)
» problematic for the discretization
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Hough Transformation

e choose another parameterization:

x cos(f) +ysin(f) = p

» for this parameterization the domain is limited:

- [0 is limited by the size of the image

- and § € 0,27
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Examples

e Houghtransform for a square (left) and a circle (right)

p p

7 ¢
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Examples
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Hough Transform

e the same idea can be used for other parameterized contours

» Example:
- circle: (x-a)? + (y-b)? =1r?
- 3 parameters: center point (a, b) and radius r

e Limitation:
» the parameter space should not become too large
» not all contours can be parameterized
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Generalized Hough Transform

e Generalization for an arbitrary contour

» choose reference point for the contour (e.g. centre)

» for each point on the contour remember where it is located w.r.t. to the reference
point

» e.qg.ifthe centeris the
reference point: remember
radius r and angle relative
to the tangent of the contour

» recognition: whenever you find
a contour point, calculate the
tangent angle and ‘vote’ for all
possible reference points
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Today - Basics of Digital Image Processing

e Linear Filtering
» Gaussian Filtering
Multi Scale Image Representation

» Gaussian Pyramid, Laplacian Pyramid

* Edge Detection

» ‘Recognition using Line Drawings’

» Image derivatives (1st and 2nd order)

* Hough Transform

» Finding parametrized curves, generalized Hough transform

* Object Instance ldentification using Color Histograms

 (Several slides are taken from Michael Black @ Brown)
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Object Recognition (reminder)

o Different Types of Recognition Problems:
» Object Identification

- recognize your apple,

your cup, your dog (& ﬁ . . ® &N S ” *
- sometimes called:

“instance recognit.ion” . . ‘ ‘ ‘ ‘ ‘ ‘ . ‘

» Object Classification <13 T R 0 el N Y o v
- recognize any apple, :
any cup, any dog

o 9 0 P 9. Yy (3815
= T Y el M 2Rt W R

object categorization, ... p W .D B) .9 ® W =

- also called:
generic object recognition,

- typical definition:
‘basic level category’

< - ;@ = T B0 A Py e
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Object Identification

e Example Database for Object Identification:
» COIL-100 - Columbia Object Image Library

» contains 100 different objects, some form the same object class
(e.g. cars,cups)
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Challenges = Modes of Variation

Viewpoint changes

v Vv v Vv

Translation
Image-plane rotation
Scale changes
Out-of-plane rotation

[llumination
Clutter
Occlusion
Noise

/e -3
@il ,,//\\
. S = \
3D object ¢ o
l\\\ X J /f‘

;
t ) ?
tX
2D image
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Appearance-Based Identification / Recognition

e Basic assumption

» Objects can be represented Jp\
by a collection of images % éﬁl
“ ” : ‘(’;.—/;/\\
(“appearances”). 3D object p T ;\
» For recognition, it is i =N
sufficient to just compare \ 2

the 2D appearances.
» No 3D model is needed.

= Fundamental paradigm shift in the 90’s
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Global Representation

e |dea
» Represent each view (of an object) by a global descriptor.

» For recognizing objects, just match the (global) descriptors.

» Modes of variation can be taken care of by:
- Dbuilt into the descriptor
e e.g. a descriptor can be made invariant to image-plane rotations, translation
- incorporate in the training data or the recognition process.
* e.g. viewpoint changes, scale changes, out-of-plane rotation
- robustness of descriptor or recognition process (descriptor matching)

e e.g. illumination, noise, clutter, partial occlusion
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Case Study:
Use Color for Recognition

e Color:
» Color stays constant under geometric transformations
» Local feature

- Color is defined for each pixel

- Robust to partial occlusion

* Idea
» Directly use object colors for identification / recognition
» Better: use statistics of object colors
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Color Histograms

e Color statistics
» Given: tri-stimulus R,G,B for each pixel

» Compute 3D histogram
- H(R,G,B) = #(pixels with color (R,G,B))

[Swain & Ballard, 1991]
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Color Histograms

e Robust representation
» presence of occlusion, rotation
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[Swain & Ballard, 1991]
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Color

e One component of the 3D color space is intensity

» If a color vector is multiplied by a scalar, the intensity changes, but not
the color itself.

» This means colors can be normalized by the intensity.
- Intensity is given by: =R+ G + B:
» ,Chromatic representation”

B R
"TRYG+B
B G
I RYG+B

- B
- R+G+B
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Color

e Observation:
» Sincer+ g+ b=1,only 2 parameters are necessary

» E.g.onecanuserandg r+g+b=1
» andobtainsb=1-r-g =b=1—-7r—g
G| ~~ R+G+B=1
0
1 R
B
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Recognition using Histograms

e Histogram comparison
» Database of known objects known objects
» Testimage of unknown object

A

«f
.

vl,.,.;*;

(o a7 ="

test image
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Recognition using Histograms

e Database with multiple training views per object

test image
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Histogram Comparison

e Comparison measures "
» Intersection

NQ,V) = Z min(q;, v;)

/

* Motivation
» Measures the common part of both histograms

» Range: [0,1]
» For unnormalized histograms, use the following formula

> .min(g;,v;) Y. min(g;,v;) )
| s |
i i D ;i Vi

N(Q,V) = % (
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Histogram Comparison

e Comparison Measures .
» Euclidean Distance

AQ.V) =Y (g — i)

/

* Motivation

Focuses on the differences between the histograms
Range: [0,=]

All cells are weighted equally.

v v Vv Vv

Not very discriminant

| p B | poplanckinsiet High | evel Computer Vision - April 26, 2017

88



Histogram Comparison

e Comparison Measures
» Chi-square

5
2 (qi — Vi)
X (Q,V) § ——

(}

* Motivauon
» Statistical background:

- Test if two distributions are different

- Possible to compute a significance score
» Range: [0,«]
» Cells are not weighted equally!

- therefore more discriminant

- may have problems with outliers (therefore assume that each cell
contains at least a minimum of samples)
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Histogram Comparison

e Which measure is best?

» Depends on the application...

» Both Intersection and y? give good performance.
- Intersection is a bit more robust.
- 7 is a bit more discriminative.
- Euclidean distance is not robust enough.

» There exist many other measures
- e.g. statistical tests: Kolmogorov-Smirnov

- e.g. information theoretic: Kullback-Leiber divergence, Jeffrey divergence, ...
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Recognition using Histograms

e Simple algorithm
1. Build a set of histograms H = {M1, M2, M3, ...} for each known object
- more exactly, for each view of each object
2. Build a histogram T for the test image.
3. Compare T to each MkeH
- using a suitable comparison measure

4. Select the object with the best matching score

- or reject the test image if no object is similar enough.

“Nearest-Neighbor” strategy
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Color Histograms

e Recognition (here object identification)
» Works surprisingly well

» In the first paper (1991), 66 objects could be recognized almost
without errors

[Swain & Ballard, 1991]
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Discussion: Color Histograms

e Advantages
» Invariant to object translations
» Invariant to image rotations
» Slowly changing for out-of-plane rotations
» No perfect segmentation necessary
» Histograms change gradually when part of the object is occluded

» Possible to recognize deformable objects

- e.g. pullover

e Problems

» The pixel colors change with the illumination
(,color constancy problem®)

- Intensity

- Spectral composition (illumination color)

» Not all objects can be identified by their color distribution.
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