

High Level Computer Vision - May 3, 2017

Object Identification Interest Point Detection & Description

Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de

Overview Today

- Object Identification by Point Correspondences
 - general procedure for recognition, stereo, image stitching, ...
- Interest Point Detection & Descriptor
 - local interest point detection
 - scale-invariant interest point detection
 - local image descriptor
- Scaling to Large Numbers of Images and Objects
 - inverted file
 - visual vocabulary

Object Recognition (reminder)

- Different Types of Recognition Problems:
 - Object Identification
 - recognize your apple, your cup, your dog
 - sometimes called:"instance recognition"
 - Object Classification
 - recognize any apple, any cup, any dog
 - also called: generic object recognition, object categorization, ...
 - typical definition:
 'basic level category'

Recognition by "Correspondence" (=Matching)

- General Idea of using Interest Point Detection:
 - Recognition by finding Correspondence between Interest Points

Local Interest Point Detection

- Applications of Local Interest Point Detection
 - recognition by correspondence
 - point correspondence for (sparse) stereo matching
 - (sparse) optical flow point correspondence
 - ...
- Multiple Goals (somewhat contradicting)
 - Discriminance: find points that are discriminant enough to find corresponding points in other images
 - Invariance to Transformations: find same set of interest-points regardless of geometric and photometric transformations
 - geometric transformations: translation, scale, rotation, affine, projective
 - photometric transformations: light changes (intensity, color, direction)

Geometric Transformations

- Example of different geometric transformations:
 - (1) original
 - ▶ (2) similarity transformation (translation, image plane rotation, scaling)
 - (3) projective transformation

Planar image transformations

- Transformation of planar scenes
 - Fully defined by a 3x3 matrix (in homogeneous coordinates)

Invariants Transformation	length	angle	length - ratio	parallelism	straight lines
Euclidean (rotation, translation = 3 DoF)	yes	yes	yes	yes	yes
Similarity (rotation, translation, scale = 4 DoF)	no	yes	yes	yes	yes
Affine (similarity+non-uniform scale,sheer =6DoF)	no	no	no	yes	yes
Projective (8 DoF)	no	no	no	no	yes

Point Correspondence for Object Instance Recognition: General Approach

- Interest Point **Detection**:
 Find a set of distinctive key-points
- 2. Extract and **normalize** the region content
- 3. Compute local descriptor from the normalized region
- 4. Match local descriptors
- (5. Estimate global transformation)

Recognition of Specific Objects, Scenes

Schmid and Mohr 1997

Sivic and Zisserman, 2003

Rothganger et al. 2003

Lowe 2002

General Procedure for Point Correspondence

- 5-Step Procedure
 - Interest Point Detection
 - 2. Extract and Normalize Region around Interest Point
 - 3. Compute Local Descriptor
 - 4. Match Local Descriptor
 - 5. Estimate Global Transformation
 - to align images (e.g. image stitching)
 - to verify point correspondence globally (e.g. object recognition)

1. Interest Point Detection Common Requirements

- Problem 1:
 - Detect the same point independently in both images

No chance to match!

We need a repeatable detector!

Slide credit: Darya Frolova, Denis Simakov

1. Interest Point Detection Many Existing Detectors Available

- Hessian & Harris [Beaudet '78], [Harris '88]
- Laplacian, DoG [Lindeberg '98], [Lowe '99]
- Harris-/Hessian-Laplace [Mikolajczyk & Schmid '01]
- Harris-/Hessian-Affine [Mikolajczyk & Schmid '04]
- EBR and IBR [Tuytelaars & Van Gool '04]
- MSER [Matas '02]
- Salient Regions [Kadir & Brady '01]
- Others...
- Those detectors have become a basic building block for many recent applications in Computer Vision.

1. Interest Point Detection Common Requirements

- Problem 1:
 - Detect the same point independently in both images
- Problem 2:
 - For each point correctly recognize the corresponding one

We need a **reliable** detector to find **distinctive** points/regions!

Slide credit: Darya Frolova, Denis Simakov

1. Interest Point Detection Requirements

- Region extraction needs to be repeatable and accurate
 - Invariant to translation, rotation, scale changes
 - ➤ Robust or covariant to out-of-plane (≈affine) transformations
 - Robust to lighting variations, noise, blur, quantization
- Locality: Features are local, therefore robust to occlusion and clutter.
- Quantity: We need a sufficient number of regions to cover the object.
- Distinctiveness: The regions should contain "interesting" structure.
- Efficiency: Close to real-time performance.

General Procedure for Point Correspondence

- 5-Step Procedure
 - Interest Point Detection
 - 2. Extract and Normalize Region around Interest Point
 - 3. Compute Local Descriptor
 - 4. Match Local Descriptor
 - 5. Estimate Global Transformation
 - to align images (e.g. image stitching)
 - to verify point correspondence globally (e.g. object recognition)

Invariance vs. Covariance - or Two Ways to Obtain Invariance

Slide credit: Svetlana Lazebnik, David Lowe

- Invariance:
 - features(transform(image)) = features(image)
- Covariance:
 - features(transform(image)) = transform(features(image))

Covariant detection ⇒ invariant description

2. Extract and Normalize Region around Interest Point Rotation Invariant Descriptors

- Find local orientation
 - Dominant direction of gradient for the image patch

- Rotate patch according to this angle
 - This puts the patches into a canonical orientation.

Slide credit: Svetlana Lazebnik, Matthew Brown

2. Extract and Normalize Region around Interest Point Orientation Normalization: Computation

Compute orientation histogram

[Lowe, SIFT, 1999]

- Select dominant orientation
- Normalize: rotate to fixed orientation

Slide adapted from David Lowe

2. Extract and Normalize Region around Interest Point The Need for Invariance

- Up to now, we had invariance to
 - Translation, Scale, Rotation
- Not sufficient to match regions under viewpoint changes
 - For this, we need also affine adaptation

Slide credit: Tinne Tuytelaars

2. Extract and Normalize Region around Interest Point Iterative Affine Adaptation

- 1. Detect keypoints, e.g. multi-scale Harris
- 2. Automatically select the scales
- 3. Adapt affine shape based on second order moment matrix
- 4. Refine point location

K. Mikolajczyk and C. Schmid, <u>Scale and affine invariant interest point detectors</u>, IJCV 60(1):63-86, 2004.

2. Extract and Normalize Region around Interest Point Affine Normalization/Deskewing

Steps

- Rotate the ellipse's main axis to horizontal
- Scale the x axis, such that it forms a circle

Slide credit: Tinne Tuytelaars

2. Extract and Normalize Region around Interest Point Summary: Affine-Inv. Feature Extraction

Slide credit: Svetlana Lazebnik

General Procedure for Point Correspondence

- 5-Step Procedure
 - Interest Point Detection
 - 2. Extract and Normalize Region around Interest Point
 - 3. Compute Local Descriptor
 - 4. Match Local Descriptor
 - 5. Estimate Global Transformation
 - to align images (e.g. image stitching)
 - to verify point correspondence globally (e.g. object recognition)

Local Descriptors

- Let's assume we know how to detect points
- Next question: How to describe them for matching?

Point descriptor should be:

- 1. Invariant
- 2. Distinctive

Slide credit: Kristen Grauman

Feature Descriptors: SIFT

- Scale Invariant Feature Transform
- Descriptor computation:
 - Divide patch into 4x4 sub-patches: 16 cells
 - Compute histogram of gradient orientations (8 reference angles) for all pixels inside each sub-patch
 - Resulting descriptor: 4x4x8 = 128 dimensions

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Slide credit: Svetlana Lazebnik

General Procedure for Point Correspondence

- 5-Step Procedure
 - Interest Point Detection
 - 2. Extract and Normalize Region around Interest Point
 - 3. Compute Local Descriptor
 - 4. Match Local Descriptor
 - 5. Estimate Global Transformation
 - to align images (e.g. image stitching)
 - to verify point correspondence globally (e.g. object recognition)

Feature Matching

- Generating putative matches:
 - For each patch in one image, find a short list of patches in the other image that could match it based solely on appearance.
- Options
 - Exhaustive search
 - For each feature in one image, compute the distance to all features in the other image and find the "closest" ones (threshold or fixed number of top matches).
 - Fast approximate nearest neighbor search
 - Hierarchical spatial data structures (kd-trees, vocabulary trees)
 - Hashing

Feature Space Outlier Rejection

- How can we tell which putative matches are reliable?
- Heuristic: compare distance of nearest neighbor to that of second nearest neighbor (of another object)
 - Ratio will be high for features that are not distinctive
 - Threshold of 0.8 provides good separation

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

General Procedure for Point Correspondence

- 5-Step Procedure
 - Interest Point Detection
 - 2. Extract and Normalize Region around Interest Point
 - 3. Compute Local Descriptor
 - 4. Match Local Descriptor
 - Estimate Global Transformation
 - to align images (e.g. image stitching)
 - to verify point correspondence globally (e.g. object recognition)

Recognition with Local Features

- Image content is transformed into local features that are invariant to translation, rotation, and scale
- Goal: Verify if they belong to a consistent configuration

Local Features, e.g. SIFT

Slide credit: David Lowe

Warping vs. Alignment

Warping: Given a source image and a transformation T, what does the transformed output look like?

Alignment: Given two images with corresponding points, what is the transformation T between them?

Parametric (Global) Warping

- p' = (x',y')
- Transformation T is a coordinate-changing machine: p' = T(p)
- What does it mean that T is global?
 - It's the same for any point p
 - It can be described by just a few numbers (parameters)
- Let's represent T as a matrix: p' = Mp,

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

What Can be Represented by a 2×2 Matrix?

2D Scaling?

$$x' = S_x * x$$
$$y' = S_y * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• 2D Rotation around (0,0)?

$$x' = \cos\theta * x - \sin\theta * y$$
$$y' = \sin\theta * x + \cos\theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• 2D Shearing?

$$x' = x + sh_x * y$$
$$y' = sh_v * x + y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & sh_x \\ sh_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

What Can be Represented by a 2×2 Matrix?

2D Mirror about y axis?

$$x' = -x$$

$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

• 2D Mirror over (0,0)?

$$x' = -x$$

$$y' = -y$$

2D Translation?

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x' = x + t_x$$

$$y' = y + t_y$$

NO!

2D Linear Transforms

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Only linear 2D transformations can be represented with a 2x2 matrix.
- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror

Homogeneous Coordinates

• Q: How can we represent translation as a 3x3 matrix using homogeneous coordinates?

$$x' = x + t_x$$
$$y' = y + t_y$$

$$y' = y + t_y$$

A: Using the rightmost column:

Translation =
$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Basic 2D Transformations in homogeneous coordinates

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translation

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_x & 0 & 0 \\ 0 & \mathbf{s}_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Shearing

Slide credit: Alexej Efros

37

2D Affine Transformations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations
- Parallel lines remain parallel

Slide credit: Alexej Efros

Projective Transformations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Projective transformations:
 - Affine transformations, and
 - Projective warps
- Parallel lines do not necessarily remain parallel

Overview Today

- Object Identification by Point Correspondences
 - general procedure for recognition, stereo, image stitching, ...
- Interest Point Detection & Descriptor
 - local interest point detection
 - scale-invariant interest point detection
 - local image descriptor
- Scaling to Large Numbers of Images and Objects
 - inverted file
 - visual vocabulary

Overview Interest Point Detection

- Local Interest Point Detection
 - contour based methods
 - intensity based methods
 - Examples: Harris, Hessian
- Scale-Invariant Interest Point Detection
 - matching images of different scales
 - automatic scale selection
 - scale invariant methods for feature extraction
 - Example: Harris-Laplace

Why LOCAL interest points?

- Global fail in
 - Image transformations
 - e.g. scale change
 - Occlusions and background clutter
 - i.e. segmentation is difficult
 - Color
 - changes in non-uniform lighting
 - Geometric
 - contour based (fail if no shape)

Interest point detectors Contour based methods

- Detecting curvature change
 - Detecting edges
 - Detecting sudden edge orientation change

- Detecting intersections of line segments
 - Detecting edges
 - Fitting line segments to the edges i.e., Hough transform
 - Finding intersections

Local Interest Points Intensity Based Methods

- Interest points
 - Two dimensional signal change
 - More complex local structures

Autocorrelation function

 $min(a^2,b^2,c^2,d^2) > T$

 Autocorrelation function (in this case not product, but sum of squared differences SSD)

 $min(a^2,b^2,c^2,d^2) > T$

 $min(a^2,b^2,c^2,d^2) > T$

More general: auto correlation function:

$$E_{ ext{AC}}(\Delta m{u}) = \sum_i w(m{x}_i) [I_0(m{x}_i + \Delta m{u}) - I_0(m{x}_i)]^2$$
 offset weighting

Taylor series expansion of image function:

$$I_0(\boldsymbol{x}_i + \Delta \boldsymbol{u}) \approx I_0(\boldsymbol{x}_i) + \nabla I_0(\boldsymbol{x}_i) \cdot \Delta \boldsymbol{u} \quad \nabla I_0(\boldsymbol{x}_i) = (\frac{\partial I_0}{\partial x}, \frac{\partial I_0}{\partial y})(\boldsymbol{x}_i)$$

Approximation of auto correlation function:

$$\begin{split} E_{\mathrm{AC}}(\Delta \boldsymbol{u}) &= \sum_{i} w(\boldsymbol{x}_{i})[I_{0}(\boldsymbol{x}_{i} + \Delta \boldsymbol{u}) - I_{0}(\boldsymbol{x}_{i})]^{2} \\ &\approx \sum_{i} w(\boldsymbol{x}_{i})[I_{0}(\boldsymbol{x}_{i}) + \nabla I_{0}(\boldsymbol{x}_{i}) \cdot \Delta \boldsymbol{u} - I_{0}(\boldsymbol{x}_{i})]^{2} \\ &= \sum_{i} w(\boldsymbol{x}_{i})[\nabla I_{0}(\boldsymbol{x}_{i}) \cdot \Delta \boldsymbol{u}]^{2} \qquad \boldsymbol{A} = \boldsymbol{w} * \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix} \\ &= \Delta \boldsymbol{u}^{T} \boldsymbol{A} \Delta \boldsymbol{u}, \quad \text{in each direction now!} \end{split}$$

Calculation of Image Derivatives

1st derivative:

$$\frac{d}{dx}(g\otimes f) = \left(\frac{d}{dx}g\right)\otimes f$$

convolution with 1st derivative of a Gaussian:

 Second moment matrix autocorrelation matrix

 Second moment matrix autocorrelation matrix

Image row of pixels

Eigenvalues-reminder

Singular value decomposition

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{bmatrix} \begin{bmatrix} d_1 & 0 \\ 0 & d_2 \end{bmatrix} \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix}^T$$

$$= U \cdot D \cdot V^T$$
 eigenvectors
$$\begin{bmatrix} v_{11} \\ v_{21} \end{bmatrix} \begin{bmatrix} v_{12} \\ v_{22} \end{bmatrix} \qquad \begin{array}{c} U \cdot U^T = V \cdot V^T = I \\ U^T = U^{-1} & V^T = V^{-1} \end{array}$$

eigenvalues
$$d_1, d_2 \geq 0$$

$$det(A) = ad - cb = d_1d_2$$

Eigenvector, eigenvalue

- Harris Corner Detector
 - ▶ looks at eigenvalues d₁ and d₂ of second moment matrix A
 - if d₁ and d₂ are small -> no feature of interest around (x,y)
 - if d₁ small and d₂ is some large value -> then an edge is found at (x,y)
 - if d₁ and d₂ are both large values -> then a corner is found at (x,y)
- criteria:

$$cornerness = d_1 d_2 - \alpha (d_1 + d_2)^2$$

 $cornerness = det(A) - \alpha (trace(A))^2$

no need to compute eigenvalues: det and trace

 Second moment matrix autocorrelation matrix

$$\mu(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

1. Image derivatives $I_x(\sigma_D)$, $I_y(\sigma_D)$

2. Square of derivatives

 Second moment matrix autocorrelation matrix

$$\mu(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

1. Image derivatives

2. Square of derivatives

3. Gaussian filter $g(\sigma_l)$

 Second moment matrix autocorrelation matrix

$$\mu(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

1. Image derivatives

2. Square of derivatives

3. Gaussian filter $g(\sigma_l)$

4. Cornerness function - both eigenvalues are strong

$$har = \det[\mu(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}^{2}(\mu(\sigma_{I}, \sigma_{D}))] = g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Non-maxima suppression

Interest point detectors Intensity based methods [Beaudet'78]

Hessian determinant

$$Hessian(I) = \begin{bmatrix} I_{xx} & I_{xy} \\ I_{xy} & I_{yy} \end{bmatrix}$$

$$\det(Hessian(I)) = I_{xx}I_{yy} - I_{xy}^2$$

In Matlab:
$$I_{xx} \cdot *I_{yy} - (I_{xy})^2$$

Interest point detectors Intensity based methods [Beaudet'78]

Discussion

- Interest-point Detection so far:
 - using Harris or Hessian-detector
 - finds discriminant points
 (Harris detector was the "de-facto" standard for a long time)
 - used for recognition, correspondence for stereo, sparse optical flow/motion, etc.
- But: remember goals of interest point detection:
 - discriminance vs. invariance to transformation
 - Harris & Hessian find discriminant points but they are **not** invariant to scale, affine and projective transformations

Overview Interest Point Detection

- Local Interest Point Detection
 - parametric model based methods
 - contour based methods
 - intensity based methods
 - Examples: Harris, Hessian
- Scale-Invariant Interest Point Detection
 - matching images of different scales
 - automatic scale selection
 - scale invariant methods for feature extraction
 - Example: Harris-Laplace

Matching images of different scales

Detecting interest points

Extracting patches

Computing descriptors

- Comparing descriptors
 - ▶ Impossible to match different histograms due to different patch content

- Comparing descriptors
 - ▶ The patch should contain the same image how to find the correct size?

Comparing descriptors while varying the patch size

Comparing descriptors while varying the patch size

Similarity transformation Matching patches

Comparing descriptors while varying the patch size

Similarity transformation Matching patches

Comparing descriptors while varying the patch size

Similarity transformation Matching patches

- Comparing descriptors while varying the patch size
 - Computationally inefficient/prohibitive
 - Inefficient but possible for matching
 - Prohibitive for retrieval in large databases
 - Prohibitive for recognition

Similarity measure

=

$$d(f_A, f_B)$$

Similarity transformation Scale invariant detector

- Detector finds location and scale of interest points
 - In both images: **independent** automatic scale detection
 - by finding "characteristic" scale of an interest point

$$I_{i_1...i_m}(x,\sigma) = I_{i_1...i_m}(x',\sigma')$$

The same derivative responses if the patch contains the same image up to scale factor

$$f(I_{i_1...i_m}(x,\sigma)) = f(I_{i_1...i_m}(x',\sigma'))$$

The same operator responses if the patch contains the same image up to scale factor

How to find corresponding patch sizes?

 $\operatorname{Laplacian} = \operatorname{trace}(\mathcal{H})$

$$f(I_{i_1...i_m}(x,\sigma)) = L_{xx} + L_{yy}$$

$$f(I_{i_1...i_m}(x,\sigma)) = L_{xx} + L_{yy}$$

$$f(I_{i_1...i_m}(x,\sigma)) = L_{xx}L_{yy} - L_{xy}^2$$

$$f(I_{i_1...i_m}(x,\sigma)) = L_x^2 + L_y^2$$

17 :

$$f(I_{i_1...i_m}(x,\sigma)) = L_{xx} + L_{yy}$$

$$f(I_{i_1...i_m}(x,\sigma)) = L_{xx}L_{yy} - L_{xy}^2$$

$$f(I_{i_1...i_m}(x,\sigma)) = L_x^2 + L_y^2$$

$$f(I_{i_1...i_m}(x,\sigma)) = \det(\mu) - \alpha \operatorname{trace}^2(\mu)$$

11.1

284////////// 5.17

scale

17.1

2.0

scale

$$f(I_{i_1...i_m}(x,\sigma)) = L_{xx} + L_{yy}$$

1. Interest Point Detection Characteristic Scale

 We define the characteristic scale as the scale that produces peak of Laplacian response

T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> *International Journal of Computer Vision* 30 (2): pp 77--116.

Slide credit: Svetlana Lazebnik

 Local maxima in scale space of Laplacian of Gaussian LoG

$$L_{xx}(\sigma) + L_{yy}(\sigma)$$

 Local maxima in scale space of Laplacian of Gaussian LoG

$$L_{xx}(\sigma) + L_{yy}(\sigma)$$

 Local maxima in scale space of Laplacian of Gaussian LoG

$$L_{xx}(\sigma) + L_{yy}(\sigma)$$

$$\sigma^{2}$$

$$\sigma$$

Local maxima in scale space of Laplacian of Gaussian LoG

Local maxima in scale space of Laplacian of Gaussian LoG

$$L_{xx}(\sigma) + L_{yy}(\sigma) \qquad \sigma^{3}$$

$$\sigma^{2}$$

Local maxima in scale space of Laplacian of Gaussian LoG

$$L_{xx}(\sigma) + L_{yy}(\sigma) \qquad \sigma^{3}$$

$$\sigma^{2}$$

Local maxima in scale space of Laplacian of Gaussian LoG

$$L_{xx}(\sigma) + L_{yy}(\sigma) \qquad \sigma^{3}$$

$$\sigma^{2}$$

 Detecting multiscale Harris points

 Detecting multiscale Harris points

$$\mu(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

$$har = \det[\mu(\sigma_I, \sigma_D)] - \alpha[\operatorname{trace}(\mu(\sigma_I, \sigma_D))]$$
$$\sigma_I = 1.6 \cdot \sigma_D$$

Computing Harris function

 Detecting multiscale Harris points

Computing Harris function

Detecting multiscale Harris points – thousands of interest points

$$\sigma_I$$
, σ_D) - σ_I - σ_D

Computing Harris function

Detecting multiscale
 Harris points –
 thousands of interest points

Computing Harris function

Detecting local maxima

Detecting multiscale
 Harris points –
 thousands of interest points

Detecting multiscale
 Harris points –
 thousands of interest points

- Detecting multiscale Harris points
- Selecting points which maximize the Laplacian
 - Automatic scale selection
 - Given a point (x, y, σ_n)
 - If $(L_{xx}(\sigma_n)+L_{yy}(\sigma_n))>(L_{xx}(\sigma_{n-1})+L_{yy}(\sigma_{n-1}))$ and $(L_{xx}(\sigma_n)+L_{yy}(\sigma_n))>(L_{xx}(\sigma_{n+1})+L_{yy}(\sigma_{n+1})) \text{ keep the point,}$ otherwise reject

Harris points

What is a second of the secon

Harris-Laplace points

Scale invariant detectors Harris-Laplace

- Detecting multiscale Harris points
- Selecting Harris points which maximize the Laplacian
- Automatic scale selection

Harris-Laplace points

Local Descriptors / Features

- Important properties of local descriptors
 - Distinctiveness, invariance, robustness, dimensionality, etc...
- Local descriptors
 - Differential invariants, steerable filters, complex filters
 - ▶ PCA,
 - Moment invariants,
 - Shape context,
 - Gradient orientation histogram
- Evaluation criteria

- Detector finds location, scale and shape of interest regions
- Local descriptors are computed for interest regions

- Important properties of local descriptors
 - Distinctiveness
 - Visually similar regions should have similar descriptors
 - Different regions should have different descriptors

Similarity measure

Similarity measure

- Important properties of local descriptors
 - Distinctiveness
 - Visually similar regions should have similar descriptors
 - Different regions should have different descriptors
 - Invariance
 - Visually similar regions should have similar descriptors despite the transformation (geometric, photometric) i.e., rotation, brightness

Two ways to obtain invariance

- Important properties of local descriptors
 - Distinctiveness
 - Visually similar regions should have similar descriptors
 - Different regions should have different descriptors
 - Invariance
 - Visually similar regions should have similar descriptors despite the transformation (geometric, photometric) i.e., rotation, brightness

Two ways to obtain invariance

- Important properties of local descriptors
 - Distinctiveness
 - Visually similar regions should have similar descriptors
 - Different regions should have different descriptors
 - Invariance
 - Visually similar regions should have similar descriptors despite the transformation (geometric, photometric) i.e., rotation, brightness

Two ways to obtain invariance

2. Geometric normalization

- Important properties of local descriptors
 - Distinctiveness
 - Visually similar regions should have similar descriptors
 - Different regions should have different descriptors
 - Invariance
 - Visually similar regions should have similar descriptors despite the transformation (geometric, photometric) i.e., rotation, brightness

Two ways to obtain invariance

=

2. Geometric normalization + photometric normalization

- Important properties of local descriptors
 - Distinctiveness
 - Visually similar regions should have similar descriptors
 - Different regions should have different descriptors
 - Invariance
 - Visually similar regions should have similar descriptors despite the transformation (geometric, photometric) i.e., rotation, brightness

Two ways to obtain invariance

=

=

Geometric normalization + photometric normalization + computing descriptors

- Important properties of local descriptors
 - Distinctiveness
 - Visually similar regions should have similar descriptors
 - Different regions should have different descriptors
 - Invariance
 - Visually similar regions should have similar descriptors despite the transformation (geometric, photometric)
 i.e., rotation, brightness
 - Robustness
 - Visually similar regions should have similar descriptors despite the noise (geometric, photometric)

- Important properties of local descriptors
 - Distinctiveness
 - Visually similar regions should have similar descriptors
 - Different regions should have different descriptors
 - Invariance
 - Visually similar regions should have similar descriptors despite the transformation (geometric, photometric) i.e., rotation, brightness
 - Robustness
 - Visually similar regions should have similar descriptors despite the noise (geometric, photometric)
 - Dimensionality
 - Descriptors should be low dimensional i.e., small number of histogram bins.
 - Efficiency (large databases)
 - Generalization property

Local Descriptors / Features

- Important properties of local descriptors
 - Distinctiveness, invariance, robustness, dimensionality, etc...
- Local descriptors
 - Differential invariants, steerable filters, complex filters
 - PCA,
 - Moment invariants,
 - Shape context,
 - Gradient orientation histogram
- Evaluation criteria

SIFT - Scale Invariant Feature Transform [Lowe]

- Interest Points:
 - Difference of Gaussians
- Feature Descriptor:
 - local histogram of 4x4 local orientation histograms (each over 16x16 pixels),
 - 8 orientations x 4 x 4 = 128 dimensions
 - example: 2x2 local orientation histogram (each of 4x4 pixels):

- Gradient location-orientation histogram (GLOH)
 - Invariant only when computed on normalized patches

Evaluation & Comparison

- Sample Images
 - (Mikolajczyk & Schmid, PAMI o5)
 - ▶ (a,b) rotation
 - (c,d) zoom & rotation
 - (e,f) viewpoint
 - (g) blur
 - (i) JPEG
 - (j) light change

High Le

(j)

Sample Results for viewpoint changes (e)

- Interest Points: Hes-Affine
- Image Descriptors: varied...
- Nearest Neighbor Matching
 - best:
 - GLOH
 - SIFT
 - second:
 - Shape Context
 - cross correlation
 - PCA-SIFT
 - not so good:
 - steerable filters
 - spin
 - gradient moments
 - differential invariants

similar results for other test images (scale, blur, ...)

Local Interest Points and Features

- So far talked about:
 - local interest points (Harris, Hessian)
 - local scale selection (e.g. Laplacian)
 - local features (e.g. SIFT, Shape Context)
- Application: find corresponding points
 - recognition by point correspondence
 - point correspondence for (sparse) stereo matching
 - point correspondence for (sparse) optical flow
 - point correspondence for image matching
 - ...

Wide-Baseline Stereo

Application of Point Correspondence: Image Matching

by **Diva Sian**

by swashford

Harder Case

by <u>Diva Sian</u>

by <u>scgbt</u>

Harder Still?

NASA Mars Rover images

Answer Below (Look for tiny colored squares)

NASA Mars Rover images with SIFT feature matches (Figure by Noah Snavely)

- Procedure:
 - Detect feature points in both images (step 1 & 2)

Procedure:

- Detect feature points in both images (step 1 & 2)
- Find corresponding pairs (step 3 & 4)

Procedure:

- Detect feature points in both images (step 1 & 2)
- Find corresponding pairs (step 3 & 4)
- Use these pairs to align the images (step 5)

Procedure:

- Detect feature points in both images (step 1 &2)
- Find corresponding pairs (step 3 & 4)
- Use these pairs to align the images (step 5)

Panorama Stitching

[Brown, Szeliski, and Winder, 2005]

(a) Matier data set (7 images)

(b) Matier final stitch

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Overview Today

- Object Identification by Point Correspondences
 - general procedure for recognition, stereo, image stitching, ...
- Interest Point Detection & Descriptor
 - local interest point detection
 - scale-invariant interest point detection
 - local image descriptor
- Scaling to Large Numbers of Images and Objects
 - inverted file
 - visual vocabulary

Application: Mobile Visual Search

Google Goggles in Action

Click the icons below to see the different ways Google Goggles can be used.

Take photos of objects as queries for visual search

Large-Scale Image Matching Problem

Database with thousands (millions) of images

How can we perform this matching step efficiently?

Indexing Local Features

 Each patch / region has a descriptor, which is a point in some highdimensional feature space (e.g., SIFT)

Figure credit: A. Zisserman

Indexing Local Features

 When we see close points in feature space, we have similar descriptors, which indicates similar local content.

- This is of interest for many applications
 - E.g. Image matching,
 - E.g. Retrieving images of similar objects,
 - ▶ E.g. Object recognition, categorization, 3d Reconstruction,...

Figure credit: A. Zisserman

Indexing Local Features: Inverted File Index

- For text documents, an efficient way to find all pages on which a word occurs is to use an index...
- We want to find all images in which a feature occurs.
- To use this idea, we'll need to map our features to "visual words".

slide credit: K. Grauman, B. Leibe

Index "Along I-75," From Detroit to Butterfly Center, McGuire; 134 Driving Lanes; 85 Florida: inside back cover CAA (see AAA) Duval County; 163 "Drive I-95," From Boston to CCC, The: 111,113,115,135,142 Eau Gallie: 175 Florida: inside back cover Ca d'Zan: 147 Edison, Thomas: 152 1929 Spanish Trail Roadway; Caloosahatchee River: 152 Eglin AFB: 116-118 Eight Reale: 176 101-102,104 Name; 150 511 Traffic Information; 83 Canaveral Natni Seashore: 173 Ellenton; 144-145 Cannon Creek Airpark; 130 Emanuel Point Wreck; 120 A1A (Barrier Isi) - I-95 Access; 86 AAA (and CAA); 83 Canopy Road; 106,169 Emergency Caliboxes; 83 AAA National Office; 88 Cape Canaveral; 174 Epiphytes; 142,148,157,159 Abbreviations, Castillo San Marcos; 169 Escambia Bay; 119 Colored 25 mile Maps; cover Cave Diving; 131 Bridge (I-10); 119 Exit Services; 196 Cayo Costa, Name; 150 County; 120 Travelogue; 85 Celebration: 93 Estero: 153 Africa: 177 Charlotte County; 149 Everglade, 90, 95, 139-140, 154-160 Agricultural Inspection Stns; 126 Charlotte Harbor; 150 Draining of; 156,181 Ah-Tah-Thi-Ki Museum: 160 Chautaugua: 116 Wildlife MA; 160 Air Conditioning, First; 112 Wonder Gardens; 154 Chipley; 114 Alabama: 124 Name: 115 Falling Waters SP: 115 Alachua: 132 Choctawatchee, Name; 115 Fantasy of Flight; 95 County; 131 Circus Museum, Ringling; 147 Fayer Dykes SP; 171 Citrus; 88,97,130,136,140,180 Alafia River; 143 Fires, Forest; 166 CityPlace, W Palm Beach; 180 Alapaha, Name; 126 Fires, Prescribed; 148 Alfred B Maclay Gardens; 106 City Maps. Fisherman's Village; 151 Alligator Alley; 154-155 Ft Lauderdale Expwys; 194-195 Flagler County; 171 Alligator Farm, St Augustine; 169 Jacksonville: 163 Flagler, Henry; 97,165,167,171 Alligator Hole (definition); 157 Kissimmee Expwys; 192-193 Florida Aquarium; 186 Alligator, Buddy; 155 Miami Expressways; 194-195 Florida. Alligators; 100,135,138,147,156 Orlando Expressways; 192-193 12,000 years ago; 187 Anastasia Island; 170 Pensacola; 26 Cavern SP; 114 Tallahassee; 191 Map of all Expressways; 2-3 Anhaica: 108-109,146 Mus of Natural History; 134 Apalachicola River; 112 Tampa-St. Petersburg: 63 Appleton Mus of Art; 136 St. Augsutine; 191 National Cemetery ; 141 Aquifer; 102 Civil War: 100.108.127.138.141 Part of Africa; 177 Arabian Nights; 94 Clearwater Marine Aquarium; 187 Platform; 187 Art Museum, Ringling; 147 Collier County; 154 Sheriff's Boys Camp; 126 Aruba Beach Cafe; 183 Collier, Barron; 152 Sports Hall of Fame; 130 142 Aucilla River Project; 106 Colonial Spanish Quarters; 168 Sun 'n Fun Museum: 97 Babcock-Web WMA; 151 Columbia County; 101,128 Supreme Court; 107

Visual Words: Main Idea

• Extract some local features from a number of images ...

Visual Words: Main Idea

• Extract some local features from a number of images ...

• Extract some local features from a number of images ...

B. Leibe

Indexing with Visual Words

Map high-dimensional descriptors to tokens/words by quantizing the feature space

Quantize via clustering, let cluster centers be the prototype "words"

Slide credit: Kristen Grauman

Indexing with Visual Words

Map high-dimensional descriptors to tokens/words by quantizing the feature space

Determine which word to assign to each new image region by finding the closest cluster center.

Slide credit: Kristen Grauman

Visual Words

 Example: each group of patches belongs to the same visual word

Figure from Sivic & Zisserman, ICCV 2003

Visual Words

 More recently used for describing scenes and objects for the sake of indexing or classification.

> Sivic & Zisserman 2003; Csurka, Bray, Dance, & Fan 2004; many others.

Slide credit: Kristen Grauman

Inverted File for Images of Visual Words

frame #10

When will this give us a significant gain in efficiency?

Slide credit: Kristen Grauman Image credit: A. Zisserman

Visual Vocabulary Formation

Design choices:

- Sampling strategy: where to extract features?
- Clustering / quantization algorithm
- Unsupervised vs. supervised
- What corpus provides features (universal vocabulary?)
- Vocabulary size, number of words

Sampling Strategies

Sparse, at interest points

Multiple interest operators

Dense, uniformly

Randomly

- To find specific, textured objects, sparse sampling from interest points often more reliable.
- Multiple complementary interest operators offer more image coverage.
- For object categorization, dense sampling offers better coverage.

[See Nowak, Jurie & Triggs, ECCV 2006]

Clustering / Quantization Methods

- k-means (typical choice), agglomerative clustering, mean-shift,...
- Hierarchical clustering: allows faster insertion / word assignment while still allowing large vocabularies
 - Vocabulary tree [Nister & Stewenius, CVPR 2006]

Example: Recognition with Vocabulary Tree

• Tree construction:

Example: Recognition with Vocabulary Tree

• Tree construction:

• Training: Filling the tree

[Nister & Stewenius, CVPR'06]

• Training: Filling the tree

[Nister & Stewenius, CVPR'06]

[Nister & Stewenius, CVPR'06]

Vocabulary Tree: Performance

- Evaluated on large databases
 - Indexing with up to 1M images
- Online recognition for database of 50,000 CD covers
 - Retrieval in ~1s
- Experimental finding that large vocabularies can be beneficial for recognition

[Nister & Stewenius, CVPR'06]

Vocabulary Size

- Larger vocabularies can be advantageous...
- But what happens when the vocabulary gets too large?
 - Efficiency?
 - Robustness?

tf-idf Weighting

- Term frequency inverse document frequency
- Describe frame by frequency of each word within it, downweight words that appear often in the database
- (Standard weighting for text retrieval)

Slide credit: Kristen Grauman

Applications

- Applications
 - Content based image/video retrieval
 - Specific object recognition
 - Mobile visual search
 - Mobile augmented reality

Application for Content Based Image Retrieval

What if query of interest is a portion of a frame?

Visually defined query

"Groundhog Day" [Rammis, 1993]

Slide credit: Andrew Zisserman

[Sivic & Zisserman, ICCV'03]

Video Google System

- 1. Collect all words within query region
- 2. Inverted file index to find relevant frames
- 3. Compare word counts
- 4. Spatial verification

Sivic & Zisserman, ICCV 2003

Demo online at :
 http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html

Slide credit: Kristen Grauman

Query region

Example Results

Query

Slide credit: Andrew Zisserman

Collecting Words Within a Query Region

• Example: Friends

Query region:
pull out only the SIFT
descriptors whose
positions are within the
polygon

Example Results

Query

raw nn 1sim=0.56697

raw nn 2sim=0.56163

raw nn 5sim=0.54917

More Results

Query

Retrieved shots

Slide credit: Kristen Grauman

More Results

Query

Retrieved shots

Slide credit: Kristen Grauman

Applications: Specific Object Recognition

THEFT

 Commercial services:

Works well for mostly planar objects:

- Movie posters,
- Book covers,
- CD/DVD covers.
- Video games,

kooaba

1- POINT YOUR MOBILE PHONE CAMERA TO THE MOVIE POSTER.

2. SNAP A PICTURE AND SEND

079 394 57 00 FOR ORANGE CUSTOMERS)

MMS TO 84000

EMAIL TO

3- FIND ALL RELEVANT INFOR-MATION ABOUT THE MOVIE ON YOUR MOBILE PHONE

IN SWITZERLAND: BARDEM BROLIN MMS TO 5555 (OR

IN GERMANY:

EVERYWHERE: M@KOOABA-COM

Show another poster Movie data provided by:

THERE ARE NO CLEAN GETAWAYS

(~20M images indexed)

References and Further Reading

- David Lowe's SIFT paper
 - D. Lowe, Distinctive image features from scale-invariant keypoints, IJCV 60(2), pp. 91-110, 2004
- Details about the inverse file idea (e.g. video google)
 - J. Sivic, A. Zisserman, Video Google: A Text Retrieval Approach to Object Matching in Videos, ICCV'03, 2003.
 - D. Nistér and H. Stewénius, Scalable Recognition with a Vocabulary Tree, accepted for oral presentation at CVPR 2006.
- Good survey paper on Int. Pt. detectors and descriptors
 - T. Tuytelaars, K. Mikolajczyk, Local Invariant Feature Detectors: A Survey, Foundations and Trends in Computer Graphics and Vision, Vol. 3, No. 3, pp 177-280, 2008.