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Overview Today

• Object Identification by Point Correspondences 
‣ general procedure for recognition, stereo, image stitching, ... 

• Interest Point Detection & Descriptor 
‣ local interest point detection 

‣ scale-invariant interest point detection 

‣ local image descriptor 

• Scaling to Large Numbers of Images and Objects 
‣ inverted file 

‣ visual vocabulary
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Object Recognition (reminder)

• Different Types of Recognition Problems: 
‣ Object Identification 

- recognize your apple,  
your cup, your dog 

- sometimes called:  
“instance recognition” 

‣ Object Classification 
- recognize any apple,  

any cup, any dog 

- also called:  
generic object recognition,  
object categorization, … 

- typical definition:  
‘basic level category’
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Recognition by "Correspondence" (=Matching)

• General Idea of using Interest Point Detection:  
‣ Recognition by finding Correspondence between Interest Points
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Local Interest Point Detection

• Applications of Local Interest Point Detection 
‣ recognition by correspondence  

‣ point correspondence for (sparse) stereo matching 

‣ (sparse) optical flow - point correspondence 

‣ ... 

• Multiple Goals (somewhat contradicting) 
‣ Discriminance: find points that are discriminant enough to find corresponding 

points in other images 

‣ Invariance to Transformations: find same set of interest-points regardless of 
geometric and photometric transformations 
- geometric transformations: translation, scale, rotation, affine, projective 

- photometric transformations: light changes (intensity, color, direction)

5



High Level Computer Vision - May 3, 2o17 6

Geometric Transformations

• Example of different geometric transformations: 
‣ (1) original 

‣ (2) similarity transformation (translation, image plane rotation, scaling) 

‣ (3) projective transformation

(1) (2) (3)
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• Transformation of planar scenes 
‣ Fully defined by a  

3x3 matrix 
(in homogeneous  
coordinates)
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Planar image transformations

                                                 Invariants 
 

Transformation
length angle

length -
ratio

parallelism
straight 

lines

Euclidean (rotation, translation = 3 DoF) yes yes yes yes yes

Similarity (rotation, translation, scale = 4 DoF) no yes yes yes yes

Affine (similarity+non-uniform scale,sheer =6DoF) no no no yes yes

Projective (8 DoF) no no no no yes
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Point Correspondence for Object Instance 
Recognition: General Approach
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1. Interest Point Detection: 
    Find a set of distinctive  
    key-points 

2. Extract and normalize  
    the region content  

3. Compute local  
    descriptor from the  
    normalized region

4. Match local descriptors
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(5. Estimate global  
     transformation)
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Recognition of Specific Objects, Scenes

Rothganger et al. 2003 Lowe 2002

Schmid and Mohr 1997 Sivic and Zisserman, 2003
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General Procedure for Point Correspondence

• 5-Step Procedure 
1. Interest Point Detection 
2. Extract and Normalize Region around Interest Point 
3. Compute Local Descriptor 
4. Match Local Descriptor 

5. Estimate Global Transformation 
- to align images (e.g. image stitching) 
- to verify point correspondence globally (e.g. object recognition)
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1. Interest Point Detection 
Common Requirements

• Problem 1: 
‣ Detect the same point independently in both images

No chance to match!

We need a repeatable detector!
Slide credit: Darya Frolova, Denis Simakov
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1. Interest Point Detection 
Many Existing Detectors Available

• Hessian & Harris [Beaudet ‘78], [Harris ‘88] 
• Laplacian, DoG [Lindeberg ‘98], [Lowe ‘99] 
• Harris-/Hessian-Laplace [Mikolajczyk & Schmid ‘01] 
• Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04] 
• EBR and IBR [Tuytelaars & Van Gool ‘04]  
• MSER [Matas ‘02] 
• Salient Regions [Kadir & Brady ‘01]  
• Others… 

• Those detectors have become a basic building block for many 
recent applications in Computer Vision.

12



High Level Computer Vision - May 3, 2o17

1. Interest Point Detection 
Common Requirements

• Problem 1: 
‣ Detect the same point independently in both images 

• Problem 2: 
‣ For each point correctly recognize the corresponding one

We need a reliable detector to find distinctive points/regions!

?

Slide credit: Darya Frolova, Denis Simakov
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1. Interest Point Detection 
Requirements
• Region extraction needs to be repeatable and accurate 

Ø Invariant to translation, rotation, scale changes 
Ø Robust or covariant to out-of-plane (≈affine) transformations 
Ø Robust to lighting variations, noise, blur, quantization 

• Locality: Features are local, therefore robust to occlusion and clutter. 

• Quantity: We need a sufficient number of regions to cover the object. 

• Distinctiveness: The regions should contain “interesting” structure. 

• Efficiency: Close to real-time performance.

14



High Level Computer Vision - May 3, 2o17

General Procedure for Point Correspondence

• 5-Step Procedure 
1. Interest Point Detection 
2. Extract and Normalize Region around Interest Point 
3. Compute Local Descriptor 
4. Match Local Descriptor 

5. Estimate Global Transformation 
- to align images (e.g. image stitching) 
- to verify point correspondence globally (e.g. object recognition)
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Invariance vs. Covariance - or 
Two Ways to Obtain Invariance

• Invariance: 
‣ features(transform(image)) = features(image) 

• Covariance: 
‣ features(transform(image)) = transform(features(image))

Covariant detection ⇒ invariant description

Slide credit: Svetlana Lazebnik, David Lowe
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2. Extract and Normalize Region around Interest Point  
Rotation Invariant Descriptors

• Find local orientation 
‣ Dominant direction of gradient  

for the image patch 

• Rotate patch according to this angle 
‣ This puts the patches into a canonical orientation.

Slide credit: Svetlana Lazebnik, Matthew Brown
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2. Extract and Normalize Region around Interest Point  
Orientation Normalization: Computation

• Compute orientation histogram 
• Select dominant orientation 
• Normalize: rotate to fixed orientation 

0 2π

[Lowe, SIFT, 1999]

Slide adapted from David Lowe
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2. Extract and Normalize Region around Interest Point  
The Need for Invariance

• Up to now, we had invariance to  
‣ Translation, Scale, Rotation 

• Not sufficient to match regions under viewpoint changes 
‣ For this, we need also affine adaptation

Slide credit: Tinne Tuytelaars
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2. Extract and Normalize Region around Interest Point  
Iterative Affine Adaptation

1.  Detect keypoints, e.g. multi-scale Harris 
2.  Automatically select the scales 
3.  Adapt affine shape based on second order moment matrix 
4.  Refine point location K. Mikolajczyk and C. Schmid, Scale and affine 

invariant interest point detectors,  
IJCV 60(1):63-86, 2004. 

Slide credit: Tinne Tuytelaars20
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2. Extract and Normalize Region around Interest Point  
Affine Normalization/Deskewing

• Steps 
Ø Rotate the ellipse’s main axis to horizontal 
Ø Scale the x axis, such that it forms a circle

rotate rescale

Slide credit: Tinne Tuytelaars
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2. Extract and Normalize Region around Interest Point  
Summary: Affine-Inv. Feature Extraction

Extract affine regions Normalize regions
Eliminate rotational  

ambiguity
Compare  

descriptors

Slide credit: Svetlana Lazebnik
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General Procedure for Point Correspondence

• 5-Step Procedure 
1. Interest Point Detection 
2. Extract and Normalize Region around Interest Point 
3. Compute Local Descriptor 
4. Match Local Descriptor 

5. Estimate Global Transformation 
- to align images (e.g. image stitching) 
- to verify point correspondence globally (e.g. object recognition)
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Local Descriptors

• Let's assume we know how to detect points 
• Next question: How to describe them for matching?

?
Point descriptor should be: 

1. Invariant 
2. Distinctive

Slide credit: Kristen Grauman
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Feature Descriptors: SIFT

• Scale Invariant Feature Transform 
• Descriptor computation: 
‣ Divide patch into 4x4 sub-patches: 16 cells 

‣ Compute histogram of gradient orientations (8 reference angles) for all pixels 
inside each sub-patch 

‣ Resulting descriptor: 4x4x8 = 128 dimensions

David G. Lowe. "Distinctive image features from scale-
invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004. Slide credit: Svetlana Lazebnik
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General Procedure for Point Correspondence

• 5-Step Procedure 
1. Interest Point Detection 
2. Extract and Normalize Region around Interest Point 
3. Compute Local Descriptor 
4. Match Local Descriptor 

5. Estimate Global Transformation 
- to align images (e.g. image stitching) 
- to verify point correspondence globally (e.g. object recognition)
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Feature Matching

• Generating putative matches:  
‣ For each patch in one image, find a short list of patches in the other image that 

could match it based solely on appearance. 

• Options 
‣ Exhaustive search 

- For each feature in one image, compute the distance to all features in the other image 
and find the “closest” ones (threshold or fixed number of top matches). 

‣ Fast approximate nearest neighbor search 
- Hierarchical spatial data structures (kd-trees, vocabulary trees) 

- Hashing

Slide credit: Svetlana Lazebnik
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Feature Space Outlier Rejection

• How can we tell which putative matches are reliable? 
• Heuristic: compare distance of nearest neighbor to that of  

second nearest neighbor (of another object) 
‣ Ratio will be high for features that are not distinctive 

‣ Threshold of 0.8 provides good separation

David G. Lowe. "Distinctive image features 
from scale-invariant keypoints.” IJCV 60 (2), 
pp. 91-110, 2004. 

Slide credit: Svetlana Lazebnik 28
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General Procedure for Point Correspondence

• 5-Step Procedure 
1. Interest Point Detection 
2. Extract and Normalize Region around Interest Point 
3. Compute Local Descriptor 
4. Match Local Descriptor 

5. Estimate Global Transformation 
- to align images (e.g. image stitching) 
- to verify point correspondence globally (e.g. object recognition)

29



High Level Computer Vision - May 3, 2o17

Recognition with Local Features

• Image content is transformed into local features that are invariant to 
translation, rotation, and scale 

• Goal: Verify if they belong to a consistent configuration

Local Features,  
e.g. SIFT

Slide credit: David Lowe
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Warping vs. Alignment

T

T

Warping: Given a source 
image and a transformation T, 

what does the transformed 
output look like?

Alignment: Given two images 
with corresponding points, 

what is the transformation T 
between them?

Slide credit: Kristen Grauman 31
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Parametric (Global) Warping

• Transformation T is a coordinate-changing machine:    
  p’ = T(p) 

• What does it mean that T is global? 
‣ It’s the same for any point p 

‣ It can be described by just a few numbers (parameters) 

• Let’s represent T as a matrix: 
  p’ = Mp ,

T

p = (x,y) p’ = (x’,y’)

Slide credit: Alexej Efros
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What Can be Represented by a 2×2 Matrix?

• 2D Scaling? 

• 2D Rotation around (0,0)? 

• 2D Shearing? 

Slide credit: Alexej Efros
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What Can be Represented by a 2×2 Matrix?

• 2D Mirror about y axis? 

• 2D Mirror over (0,0)? 

• 2D Translation? 

NO!

Slide credit: Alexej Efros
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2D Linear Transforms

• Only linear 2D transformations can be represented with a 2x2 matrix. 
• Linear transformations are combinations of … 

Ø Scale, 
Ø Rotation, 
Ø Shear, and 
Ø Mirror

Slide credit: Alexej Efros
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Homogeneous Coordinates
• Q: How can we represent translation as a 3x3 matrix using 

homogeneous coordinates? 

• A: Using the rightmost column:

Slide credit: Alexej Efros
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Basic 2D Transformations  
in homogeneous coordinates

• Basic 2D transformations as 3x3 matrices

Translation

Rotation Shearing

Scaling

Slide credit: Alexej Efros
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2D Affine Transformations

• Affine transformations are combinations of … 
‣ Linear transformations, and 

‣ Translations 

• Parallel lines remain parallel

Slide credit: Alexej Efros
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Projective Transformations

• Projective transformations: 
‣ Affine transformations, and 

‣ Projective warps 

• Parallel lines do not necessarily remain parallel

Slide credit: Alexej Efros
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Overview Today

• Object Identification by Point Correspondences 
‣ general procedure for recognition, stereo, image stitching, ... 

• Interest Point Detection & Descriptor  
‣ local interest point detection 

‣ scale-invariant interest point detection 

‣ local image descriptor 

• Scaling to Large Numbers of Images and Objects 
‣ inverted file 

‣ visual vocabulary
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Overview Interest Point Detection

• Local Interest Point Detection 
‣ contour based methods 

‣ intensity based methods 
- Examples: Harris, Hessian 

• Scale-Invariant Interest Point Detection 
‣ matching images of different scales 

‣ automatic scale selection 

‣ scale invariant methods for feature extraction 
- Example: Harris-Laplace
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Why LOCAL interest points?

• Global fail in 
‣ Image transformations 

- e.g. scale change 

‣ Occlusions and background clutter 
- i.e. segmentation is difficult 

‣ Color 
- changes in non-uniform lighting 

‣ Geometric  
- contour based (fail if no shape) 
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Interest point detectors  
Contour based methods

• Detecting curvature change 
‣ Detecting edges 

‣ Detecting sudden edge orientation change 

• Detecting intersections of line segments 
‣ Detecting edges 

‣ Fitting line segments to the edges  
i.e., Hough transform 

‣ Finding intersections
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Local Interest Points 
Intensity Based Methods

• Interest points 
‣ Two dimensional signal change 

‣ More complex local structures
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Interest point detectors  
Intensity based methods [Moravec’77]

• Autocorrelation function
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• Autocorrelation function
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Interest point detectors  
Intensity based methods [Moravec’77]
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 =b

• Autocorrelation function
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Interest point detectors  
Intensity based methods [Moravec’77]
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Interest point detectors  
Intensity based methods [Moravec’77]

• Autocorrelation function

 =ba=

(           )

-
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Interest point detectors  
Intensity based methods [Moravec’77]

• Autocorrelation function

 =b=00=a=

      (           )

-
 =d

 =c

min(a^2,b^2,c^2,d^2)  >  T
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min(a^2,b^2,c^2,d^2)  >  T

• Autocorrelation function (in this case not product, but sum of 
squared differences SSD)

-
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Interest point detectors  
Intensity based methods [Moravec’77]
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Interest point detectors  
Intensity based methods [Harris’88]

• More general: auto correlation function: 

• Taylor series expansion of image function: 

• Approximation of auto correlation function:

51
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Figure 4.4 Aperture problems for different image patches: (a) stable (“corner-like”) flow;
(b) classic aperture problem (barber-pole illusion); (c) textureless region. The two images I0

(yellow) and I1 (red) are overlaid. The red vector u indicates the displacement between the
patch centers and the w(xi) weighting function (patch window) is shown as a dark circle.

gradients in at least two (significantly) different orientations are the easiest to localize, as
shown schematically in Figure 4.4a.

These intuitions can be formalized by looking at the simplest possible matching criterion
for comparing two image patches, i.e., their (weighted) summed square difference,

EWSSD(u) =
X

i

w(xi)[I1(xi + u)� I0(xi)]2, (4.1)

where I0 and I1 are the two images being compared, u = (u, v) is the displacement vector,
w(x) is a spatially varying weighting (or window) function, and the summation i is over all
the pixels in the patch. Note that this is the same formulation we later use to estimate motion
between complete images (Section 8.1).

When performing feature detection, we do not know which other image locations the
feature will end up being matched against. Therefore, we can only compute how stable this
metric is with respect to small variations in position �u by comparing an image patch against
itself, which is known as an auto-correlation function or surface

EAC(�u) =
X

i

w(xi)[I0(xi + �u)� I0(xi)]2 (4.2)

(Figure 4.5).1 Note how the auto-correlation surface for the textured flower bed (Figure 4.5b
and the red cross in the lower right quadrant of Figure 4.5a) exhibits a strong minimum,
indicating that it can be well localized. The correlation surface corresponding to the roof
edge (Figure 4.5c) has a strong ambiguity along one direction, while the correlation surface
corresponding to the cloud region (Figure 4.5d) has no stable minimum.

1 Strictly speaking, a correlation is the product of two patches (3.12); I’m using the term here in a more qualitative
sense. The weighted sum of squared differences is often called an SSD surface (Section 8.1).
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Using a Taylor Series expansion of the image function I0(xi+�u) ⇡ I0(xi)+rI0(xi)·

�u (Lucas and Kanade 1981; Shi and Tomasi 1994), we can approximate the auto-correlation
surface as

EAC(�u) =
X

i

w(xi)[I0(xi + �u)� I0(xi)]2 (4.3)

⇡

X

i

w(xi)[I0(xi) +rI0(xi) · �u� I0(xi)]2 (4.4)

=
X

i

w(xi)[rI0(xi) · �u]2 (4.5)

= �uT A�u, (4.6)

where
rI0(xi) = (

@I0

@x
,
@I0

@y
)(xi) (4.7)

is the image gradient at xi. This gradient can be computed using a variety of techniques
(Schmid, Mohr, and Bauckhage 2000). The classic “Harris” detector (Harris and Stephens
1988) uses a [-2 -1 0 1 2] filter, but more modern variants (Schmid, Mohr, and Bauckhage
2000; Triggs 2004) convolve the image with horizontal and vertical derivatives of a Gaussian
(typically with � = 1).

The auto-correlation matrix A can be written as

A = w ⇤

"
I2
x IxIy

IxIy I2
y

#
, (4.8)

where we have replaced the weighted summations with discrete convolutions with the weight-
ing kernel w. This matrix can be interpreted as a tensor (multiband) image, where the outer
products of the gradientsrI are convolved with a weighting function w to provide a per-pixel
estimate of the local (quadratic) shape of the auto-correlation function.

As first shown by Anandan (1984; 1989) and further discussed in Section 8.1.3 and (8.44),
the inverse of the matrix A provides a lower bound on the uncertainty in the location of a
matching patch. It is therefore a useful indicator of which patches can be reliably matched.
The easiest way to visualize and reason about this uncertainty is to perform an eigenvalue
analysis of the auto-correlation matrix A, which produces two eigenvalues (�0, �1) and two
eigenvector directions (Figure 4.6). Since the larger uncertainty depends on the smaller eigen-
value, i.e., ��1/2

0 , it makes sense to find maxima in the smaller eigenvalue to locate good
features to track (Shi and Tomasi 1994).

Förstner–Harris. While Anandan and Lucas and Kanade (1981) were the first to analyze
the uncertainty structure of the auto-correlation matrix, they did so in the context of asso-
ciating certainties with optic flow measurements. Förstner (1986) and Harris and Stephens
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1988) uses a [-2 -1 0 1 2] filter, but more modern variants (Schmid, Mohr, and Bauckhage
2000; Triggs 2004) convolve the image with horizontal and vertical derivatives of a Gaussian
(typically with � = 1).

The auto-correlation matrix A can be written as

A = w ⇤

"
I2
x IxIy

IxIy I2
y

#
, (4.8)

where we have replaced the weighted summations with discrete convolutions with the weight-
ing kernel w. This matrix can be interpreted as a tensor (multiband) image, where the outer
products of the gradientsrI are convolved with a weighting function w to provide a per-pixel
estimate of the local (quadratic) shape of the auto-correlation function.

As first shown by Anandan (1984; 1989) and further discussed in Section 8.1.3 and (8.44),
the inverse of the matrix A provides a lower bound on the uncertainty in the location of a
matching patch. It is therefore a useful indicator of which patches can be reliably matched.
The easiest way to visualize and reason about this uncertainty is to perform an eigenvalue
analysis of the auto-correlation matrix A, which produces two eigenvalues (�0, �1) and two
eigenvector directions (Figure 4.6). Since the larger uncertainty depends on the smaller eigen-
value, i.e., ��1/2

0 , it makes sense to find maxima in the smaller eigenvalue to locate good
features to track (Shi and Tomasi 1994).

Förstner–Harris. While Anandan and Lucas and Kanade (1981) were the first to analyze
the uncertainty structure of the auto-correlation matrix, they did so in the context of asso-
ciating certainties with optic flow measurements. Förstner (1986) and Harris and Stephens

in each direction now!

·�u
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Calculation of Image Derivatives

• 1st derivative: 

‣ convolution with 1st derivative of a Gaussian:

52

f

(
d

dx
g)� f

d

dx
g

d

dx
(g � f) =

�
d

dx
g

⇥
� f
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Interest point detectors  
Intensity based methods [Harris’88]

• Second moment matrix 
autocorrelation matrix

Image row of pixels

σD
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Interest point detectors  
Intensity based methods [Harris’88]

• Second moment matrix 
autocorrelation matrix

Image row of pixels

σD

σI
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Eigenvalues-reminder

• Singular value decomposition

determinant

eigenvalues

eigenvectors

Eigenvector, eigenvalue

A =
�

a11 a12

a21 a22

⇥
=

�
u11 u12

u21 u22

⇥ �
d1 0
0 d2

⇥ �
v11 v12

v21 v22

⇥T

= U · D · V T

�
v11

v21

⇥�
v12

v22

⇥
U · UT = V · V T = I
UT = U�1 V T = V �1

d1, d2 � 0
det(A) = ad� cb = d1d2
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Interest point detectors  
Intensity based methods [Harris’88]

• Harris Corner Detector 
‣ looks at eigenvalues d1 and d2 of second moment matrix A 

- if d1 and d2 are small -> no feature of interest around (x,y) 
- if d1 small and d2 is some large value -> then an edge is found at (x,y) 

- if d1 and d2 are both large values -> then a corner is found at (x,y) 

• criteria: 

• no need to compute eigenvalues: det and trace

56

cornerness = d1d2 � �(d1 + d2)2

cornerness = det(A)� �(trace(A))2
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Interest point detectors  
Intensity based methods [Harris’88]

• Second moment matrix 
autocorrelation matrix

Ix Iy

2.  Square of    
     derivatives

IxIy

1. Image derivatives 
    Ix(σD),  Iy(σD)

Ix2 Iy2
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Interest point detectors  
Intensity based methods [Harris’88]

• Second moment matrix  
autocorrelation matrix

1. Image 
derivatives

2. Square of 
derivatives

3. Gaussian 
filter g(σI)

Ix Iy

Ix2 Iy2 IxIy

g(Ix2) g(Iy2) g(IxIy)
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Interest point detectors  
Intensity based methods [Harris’88]

• Second moment matrix  
autocorrelation matrix

1. Image  
    derivatives

2. Square of  
    derivatives

3. Gaussian  
    filter g(σI)

Ix Iy

Ix2 Iy2 IxIy

g(Ix2) g(Iy2) g(IxIy)
4. Cornerness function – both eigenvalues are strong

har
5. Non-maxima suppression

2
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Interest point detectors  
Intensity based methods [Harris’88]
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Interest point detectors  
Intensity based methods [Beaudet’78]

• Hessian determinant
Ixx

IyyIxy

In Matlab:
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Interest point detectors  
Intensity based methods [Beaudet’78]
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Discussion

• Interest-point Detection so far: 
‣ using Harris or Hessian-detector 

‣ finds discriminant points  
(Harris detector was the “de-facto” standard for a long time) 

‣ used for recognition, correspondence for stereo, sparse optical flow/motion, etc. 

• But: remember goals of interest point detection: 
‣ discriminance vs. invariance to transformation 

‣ Harris & Hessian find discriminant points - but they are not invariant  
to scale, affine and projective transformations

63
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Overview Interest Point Detection

• Local Interest Point Detection 
‣ parametric model based methods 

‣ contour based methods 

‣ intensity based methods 
- Examples: Harris, Hessian 

• Scale-Invariant Interest Point Detection 
‣ matching images of different scales 

‣ automatic scale selection 

‣ scale invariant methods for feature extraction 
- Example: Harris-Laplace
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Similarity transformation  
Matching patches

• Matching images of different scales
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Similarity transformation  
Matching patches

• Detecting interest points
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Similarity transformation  
Matching patches

• Extracting patches

11 pixels

11 pixels

11 pixels

11 pixels
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Similarity transformation  
Matching patches

• Computing descriptors

color color
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Similarity transformation  
Matching patches

• Comparing descriptors  
‣ Impossible to match – different histograms due to different patch content

Similarity measure

color color
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Similarity transformation  
Matching patches

• Comparing descriptors 
‣ The patch should contain the same image – how to find the correct size?

Similarity measure

color color
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Similarity transformation  
Matching patches

• Comparing descriptors while varying the patch size

Similarity measure

color color
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Similarity transformation  
Matching patches

• Comparing descriptors while varying the patch size

Similarity measure

color color
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Similarity transformation  
Matching patches

• Comparing descriptors while varying the patch size

Similarity measure

color color
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Similarity transformation  
Matching patches

• Comparing descriptors while varying the patch size

Similarity measure

color color
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Similarity transformation  
Matching patches

• Comparing descriptors while varying  
the patch size 
‣ Computationally inefficient/prohibitive 

‣ Inefficient but possible for matching 

‣ Prohibitive for retrieval in large databases 

‣ Prohibitive for recognition

Similarity measure

color color

color

color

color
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Similarity transformation  
Scale invariant detector

• Detector finds location and scale of interest points 
‣ In both images: independent automatic scale detection 

‣ by finding “characteristic” scale of an interest point

Similarity measure

color color
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Automatic scale selection

The same derivative responses if the patch contains the same 
image up to scale factor
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Automatic scale selection

The same operator responses if the patch contains the same image 
up to scale factor 

How to find corresponding patch sizes?
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Automatic scale selection
Function responses for increasing scale  

Scale trace (signature)



High Level Computer Vision - May 3, 2o17 80

Automatic scale selection
Function responses for increasing scale  

Scale trace (signature)
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Automatic scale selection
Function responses for increasing scale  

Scale trace (signature)
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Automatic scale selection
Function responses for increasing scale  

Scale trace (signature)
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Automatic scale selection
Function responses for increasing scale  

Scale trace (signature)
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Automatic scale selection
Function responses for increasing scale  

Scale trace (signature)
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Automatic scale selection
Function responses for increasing scale  

Scale trace (signature)
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Automatic scale selection
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Automatic scale selection
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Automatic scale selection
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Automatic scale selection
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Automatic scale selection
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1. Interest Point Detection 
Characteristic Scale

• We define the characteristic scale as the scale that produces peak of 
Laplacian response

Characteristic scale
T. Lindeberg (1998). "Feature detection with automatic scale selection." International 

Journal of Computer Vision 30 (2): pp 77--116. 
Slide credit: Svetlana Lazebnik
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Scale invariant detectors 
Laplacian of Gaussian 

• Local maxima in scale 
space of Laplacian of  
Gaussian LoG
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Scale invariant detectors 
Laplacian of Gaussian 

• Local maxima in scale  
space of Laplacian of  
Gaussian LoG

σ
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Scale invariant detectors 
Laplacian of Gaussian 

• Local maxima in scale  
space of Laplacian of  
Gaussian LoG

σ

σ2
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Scale invariant detectors 
Laplacian of Gaussian 

• Local maxima in scale 
space of Laplacian of 
Gaussian LoG

σ

σ2

σ3

σ4

σ5
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Scale invariant detectors 
Laplacian of Gaussian 

• Local maxima in scale 
space of Laplacian of 
Gaussian LoG

σ

σ2

σ3

σ4

σ5

list of 
(x, y, σ)
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Scale invariant detectors 
Laplacian of Gaussian 

• Local maxima in scale 
space of Laplacian of 
Gaussian LoG

σ

σ2

σ3

σ4

σ5

list of 
(x, y, σ)
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Scale invariant detectors 
Laplacian of Gaussian 

• Local maxima in scale 
space of Laplacian of 
Gaussian LoG

σ

σ2

σ3

σ4

σ5

list of 
(x, y, σ)
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Scale invariant detectors 
Laplacian of Gaussian
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Scale invariant detectors 
Harris-Laplace (HarLap)

• Detecting multiscale  
Harris points

�I = 1.6 · �D
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Scale invariant detectors 
Harris-Laplace (HarLap)

• Detecting multiscale  
Harris points

Computing Harris function

σ

�I = 1.6 · �D
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Scale invariant detectors 
Harris-Laplace (HarLap)

• Detecting multiscale  
Harris points

Computing Harris function

σ

σ2

�I = 1.6 · �D
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Scale invariant detectors 
Harris-Laplace (HarLap)

• Detecting multiscale  
Harris points –  
thousands of interest points

Computing Harris function

σ

σ2

σ3

σ4

�I = 1.6 · �D
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Scale invariant detectors 
Harris-Laplace (HarLap)

• Detecting multiscale  
Harris points –  
thousands of interest points

Computing Harris function Detecting local maxima

σ

σ2

σ3

σ4

�I = 1.6 · �D

list of 
(x, y, σ)
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Scale invariant detectors 
Harris-Laplace (HarLap)

• Detecting multiscale  
Harris points –  
thousands of interest points

Computing Harris function Detecting local maxima

σ

σ2

σ3

σ4

�I = 1.6 · �D

list of 
(x, y, σ)
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Scale invariant detectors 
Harris-Laplace (HarLap)

• Detecting multiscale  
Harris points –  
thousands of interest points

Computing Harris function Detecting local maxima

σ

σ2

σ3

σ4

�I = 1.6 · �D
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Scale invariant detectors 
Harris-Laplace (HarLap)

• Detecting multiscale Harris points 
• Selecting points which maximize the Laplacian 
‣ Automatic scale selection 

- Given a point                   
- If                                                                                              and  

 
    
      

Harris points

Harris-Laplace points

(x, y,�n)
(Lxx(�n) + Lyy(�n)) > (Lxx(�n�1) + Lyy(�n�1))
(Lxx(�n) + Lyy(�n)) > (Lxx(�n+1) + Lyy(�n+1))  keep the point, 

 otherwise reject
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Scale invariant detectors 
Harris-Laplace

• Detecting multiscale Harris points  
• Selecting Harris points which maximize the Laplacian 
• Automatic scale selection

Harris-Laplace points
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Local Descriptors / Features

• Important properties of local descriptors 
‣ Distinctiveness, invariance, robustness, dimensionality, etc...  

• Local descriptors 
‣ Differential invariants, steerable filters, complex filters 

‣ PCA, 

‣ Moment invariants,  

‣ Shape context,  

‣ Gradient orientation histogram 

• Evaluation criteria

109
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Local descriptors

• Detector finds location, scale and shape of interest regions 
• Local descriptors are computed for interest regions

Similarity measure

color color



High Level Computer Vision - May 3, 2o17 111

Local descriptors

• Important properties of local descriptors 
‣ Distinctiveness 

- Visually similar regions should have similar descriptors 
- Different regions should have different descriptors

regions

descriptor
s

Similarity measure

color color color color

Similarity measure
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Local descriptors

• Important properties of local descriptors 
‣ Distinctiveness 

- Visually similar regions should have similar descriptors 
- Different regions should have different descriptors 

‣ Invariance 
- Visually similar regions should have similar descriptors despite the transformation 

(geometric, photometric) i.e., rotation, brightness

Two ways to obtain invariance
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Local descriptors

• Important properties of local descriptors 
‣ Distinctiveness 

- Visually similar regions should have similar descriptors 
- Different regions should have different descriptors 

‣ Invariance 
- Visually similar regions should have similar descriptors despite the transformation 

(geometric, photometric) i.e., rotation, brightness

color color

Two ways to obtain invariance

1. Computing invariant descriptor
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Local descriptors

• Important properties of local descriptors 
‣ Distinctiveness 

- Visually similar regions should have similar descriptors 
- Different regions should have different descriptors 

‣ Invariance 
- Visually similar regions should have similar descriptors despite the transformation 

(geometric, photometric) i.e., rotation, brightness

Two ways to obtain invariance

2. Geometric normalization
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Local descriptors

• Important properties of local descriptors 
‣ Distinctiveness 

- Visually similar regions should have similar descriptors 
- Different regions should have different descriptors 

‣ Invariance 
- Visually similar regions should have similar descriptors despite the transformation 

(geometric, photometric) i.e., rotation, brightness

Two ways to obtain invariance

2. Geometric normalization +  
photometric normalization
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Local descriptors

• Important properties of local descriptors 
‣ Distinctiveness 

- Visually similar regions should have similar descriptors 
- Different regions should have different descriptors 

‣ Invariance 
- Visually similar regions should have similar descriptors despite the transformation 

(geometric, photometric) i.e., rotation, brightness

color color

Two ways to obtain invariance

2. Geometric normalization +  
photometric normalization +  
computing descriptors
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Local descriptors
• Important properties of local descriptors 
‣ Distinctiveness 

- Visually similar regions should have similar descriptors 

- Different regions should have different descriptors 

‣ Invariance 
- Visually similar regions should have similar descriptors despite the transformation (geometric, photometric) 

i.e., rotation, brightness 

‣ Robustness  
- Visually similar regions should have similar descriptors despite  

the noise (geometric, photometric)

color color
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Local descriptors

• Important properties of local descriptors 
‣ Distinctiveness 

- Visually similar regions should have similar descriptors 
- Different regions should have different descriptors 

‣ Invariance 
- Visually similar regions should have similar descriptors despite the transformation 

(geometric, photometric) i.e., rotation, brightness 

‣ Robustness  
- Visually similar regions should have similar descriptors despite  

the noise (geometric, photometric) 

‣ Dimensionality 
- Descriptors should be low dimensional i.e., small number of histogram bins. 

• Efficiency (large databases)  

• Generalization property
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Local Descriptors / Features

• Important properties of local descriptors 
‣ Distinctiveness, invariance, robustness, dimensionality, etc...  

• Local descriptors 
‣ Differential invariants, steerable filters, complex filters 

‣ PCA, 

‣ Moment invariants,  

‣ Shape context,  

‣ Gradient orientation histogram 

• Evaluation criteria

119
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SIFT - Scale Invariant Feature Transform [Lowe]

• Interest Points: 
‣ Difference of Gaussians 

• Feature Descriptor: 
‣ local histogram of 4x4 local orientation histograms  

(each over 16x16 pixels),  
- 8 orientations x 4 x 4 = 128 dimensions 

‣ example: 2x2 local orientation histogram (each of 4x4 pixels):

120
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Local Descriptors

• Gradient location-orientation histogram (GLOH) 
‣ Invariant – only when computed on normalized patches

Histogram of gradient 
locations and orientations

magnitude

orientation

derivatives
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Evaluation &  
Comparison

• Sample  
Images  
‣ (Mikolajczyk  

& Schmid,  
PAMI o5) 

‣ (a,b) rotation 

‣ (c,d) zoom &  
rotation 

‣ (e,f) viewpoint 

‣ (g) blur 

‣ (i) JPEG 

‣ (j) light change

122



High Level Computer Vision - May 3, 2o17

Sample Results for viewpoint changes (e)
• Interest Points: Hes-Affine 

• Image Descriptors: varied... 

• Nearest Neighbor Matching 
‣ best:  

- GLOH 

- SIFT 

‣ second:  
- Shape Context 

- cross correlation 

- PCA-SIFT 

‣ not so good: 
- steerable filters  

- spin  

- gradient moments 

- differential invariants 

• similar results for other test images (scale, blur, ...)
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Local Interest Points and Features

• So far talked about: 
‣ local interest points (Harris, Hessian) 

‣ local scale selection (e.g. Laplacian) 

‣ local features (e.g. SIFT, Shape Context) 

• Application: find corresponding points 
‣ recognition by point correspondence 

‣ point correspondence for (sparse) stereo matching 

‣ point correspondence for (sparse) optical flow 

‣ point correspondence for image matching 

‣ ...
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Wide-Baseline Stereo

125

Image from T. Tuytelaars ECCV 2006 tutorial
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Application of Point Correspondence: Image 
Matching

126

by Diva Sian

by swashford

Slide credit: Steve Seitz
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Harder Case

by Diva Sian by scgbt

Slide credit: Steve Seitz
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Harder Still?

NASA Mars Rover images

128

Slide credit: Steve Seitz
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Answer Below (Look for tiny colored squares)

NASA Mars Rover images with SIFT feature matches 
(Figure by Noah Snavely)

129

Slide credit: Steve Seitz
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Application: Image Stitching

130

Slide credit: Darya Frolova, Denis Simakov
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Application: Image Stitching

• Procedure: 
‣ Detect feature points in both images (step 1 & 2)

131

Slide credit: Darya Frolova, Denis Simakov



High Level Computer Vision - May 3, 2o17

Application: Image Stitching

• Procedure: 
‣ Detect feature points in both images (step 1 & 2) 

‣ Find corresponding pairs (step 3 & 4)

Slide credit: Darya Frolova, Denis Simakov
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Application: Image Stitching

• Procedure: 
‣ Detect feature points in both images (step 1 & 2) 

‣ Find corresponding pairs (step 3 & 4) 

‣ Use these pairs to align the images (step 5)

133

Slide credit: Darya Frolova, Denis Simakov
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Application: Image Stitching

• Procedure: 
‣ Detect feature points in both images (step 1 &2) 

‣ Find corresponding pairs (step 3 & 4) 

‣ Use these pairs to align the images (step 5)

134

Slide credit: Darya Frolova, Denis Simakov
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Automatic Mosaicing [Brown & Lowe, ICCV’03]

135
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Panorama Stitching

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html iPhone version 
available

[Brown, Szeliski, and Winder, 2005]
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Overview Today

• Object Identification by Point Correspondences 
‣ general procedure for recognition, stereo, image stitching, ... 

• Interest Point Detection & Descriptor 
‣ local interest point detection 

‣ scale-invariant interest point detection 

‣ local image descriptor 

• Scaling to Large Numbers of Images and Objects 
‣ inverted file 

‣ visual vocabulary

137
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Application: Mobile Visual Search

• Take photos of objects as queries for visual search
138
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Large-Scale Image Matching Problem

• How can we perform this matching step efficiently?
Database with thousands (millions) of images

?
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Indexing Local Features

• Each patch / region has a descriptor, which is a point in some high-
dimensional feature space (e.g., SIFT)

Figure credit: A. Zisserman
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Indexing Local Features

Figure credit: A. Zisserman

• When we see close points in feature space, we have similar 
descriptors, which indicates similar local content. 

• This is of interest for many applications 
‣ E.g. Image matching, 

‣ E.g. Retrieving images of similar objects, 

‣ E.g. Object recognition, categorization, 3d Reconstruction,…
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• For text documents, an efficient way to find all pages on which a word 
occurs is to use an index… 

• We want to find all images in which a feature occurs. 
• To use this idea, we’ll need to map our features to “visual words”.

Indexing Local Features: Inverted File Index

slide credit:  
K. Grauman, B. Leibe
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Visual Words: Main Idea
• Extract some local features from a number of images …

e.g., SIFT descriptor space: 
each point is 128-dimensional

Slide credit: David Nister
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Visual Words: Main Idea
• Extract some local features from a number of images …

e.g., SIFT descriptor space: 
each point is 128-dimensional

Slide credit: David Nister
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Visual Words: Main Idea
• Extract some local features from a number of images …

e.g., SIFT descriptor space: 
each point is 128-dimensional

Slide credit: David Nister
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Visual Words: Main Idea

Slide credit: David Nister
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Visual Words: Main Idea

Slide credit: David Nister
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Visual Words: Main Idea

Slide credit: David Nister

148



Each point is a 
local descriptor, 
e.g. SIFT vector. 

Slide credit: David Nister

149



B. Leibe

Slide credit: David Nister

Idea: quantize the 
feature space.
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Indexing with Visual Words
Map high-dimensional descriptors to  
tokens/words by quantizing the feature space

Quantize via 
clustering, let 
cluster centers be 
the prototype 
“words”

Descriptor space

Slide credit: Kristen Grauman
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Indexing with Visual Words
Map high-dimensional descriptors to  
tokens/words by quantizing the feature space

Determine which 
word to assign to 
each new image 
region by finding 
the closest cluster 
center.

Slide credit: Kristen Grauman
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Descriptor space
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Visual Words
• Example: each group  

of patches belongs to  
the same visual word

Figure from  Sivic & Zisserman, ICCV 2003Slide credit: Kristen Grauman
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Visual Words

• More recently used for 
describing scenes and 
objects for the sake of 
indexing or classification.

Sivic & Zisserman 2003; 
Csurka, Bray, Dance, & Fan 

2004; many others.
Slide credit: Kristen Grauman
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Inverted File for Images of Visual Words

Image credit: A. Zisserman

Word 
number

List of image 
numbers

When will this give us a significant gain in efficiency? 

Slide credit: Kristen Grauman
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Visual Vocabulary Formation
Design choices: 
• Sampling strategy: where to extract features? 
• Clustering / quantization algorithm 
• Unsupervised vs. supervised 
• What corpus provides features (universal vocabulary?) 
• Vocabulary size, number of words

Slide credit: Kristen Grauman
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Sampling Strategies

Image credits: F-F. Li, E. Nowak, J. Sivic

Dense, uniformly Sparse, at 
interest points

Randomly

Multiple interest 
operators

• To find specific, textured objects, sparse 
sampling from interest points often more 
reliable. 

• Multiple complementary interest operators 
offer more image coverage. 

• For object categorization, dense sampling 
offers better coverage. 

    [See Nowak, Jurie & Triggs, ECCV 2006]
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Clustering / Quantization Methods
• k-means (typical choice), agglomerative clustering, mean-shift,… 

• Hierarchical clustering: allows faster insertion / word assignment while 
still allowing large vocabularies  
Ø Vocabulary tree [Nister & Stewenius, CVPR 2006]

Slide credit: Kristen Grauman
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Example: Recognition with Vocabulary Tree
• Tree construction:

[Nister & Stewenius, CVPR’06]
Slide credit: David Nister
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Example: Recognition with Vocabulary Tree
• Tree construction:

[Nister & Stewenius, CVPR’06]
Slide credit: David Nister
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Vocabulary Tree
• Training: Filling the tree

[Nister & Stewenius, CVPR’06]
Slide credit: David Nister
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Vocabulary Tree
• Training: Filling the tree

[Nister & Stewenius, CVPR’06]
Slide credit: David Nister
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Vocabulary Tree
• Training: Filling the tree

[Nister & Stewenius, CVPR’06]
Slide credit: David Nister
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Vocabulary Tree
• Training: Filling the tree

[Nister & Stewenius, CVPR’06]Slide credit: David Nister
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Vocabulary Tree
• Training: Filling the tree

[Nister & Stewenius, CVPR’06]
Slide credit: David Nister
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Vocabulary Tree: Performance
• Evaluated on large databases 

Ø Indexing with up to 1M images 

• Online recognition for database  
of 50,000 CD covers 
Ø Retrieval in ~1s 

• Experimental finding that large 
vocabularies can be beneficial for 
recognition

[Nister & Stewenius, CVPR’06]
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Vocabulary Size

• Larger vocabularies can 
be advantageous… 

• But what happens when 
the vocabulary gets too 
large? 
Ø Efficiency? 
Ø Robustness?

Branch factor

Figure from [Nister & Stewenius, CVPR’06]
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tf-idf Weighting
• Term frequency – inverse document frequency 
• Describe frame by frequency of each word within it, downweight words 

that appear often in the database 
• (Standard weighting for text retrieval)

Total number of 
documents in database

Number of occurrences 
of word i in whole 

database

Number of occurrences 
of word i in document d

Number of words in 
document d

Slide credit: Kristen Grauman
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Applications

• Applications 
‣ Content based image/video retrieval 

‣ Specific object recognition 

‣ Mobile visual search 

‣ Mobile augmented reality
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Application for Content Based Image Retrieval
• What if query of interest is a portion of a frame?

Slide credit: Andrew Zisserman [Sivic & Zisserman, ICCV’03]
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Video Google System
1. Collect all words within query region 
2. Inverted file index to find relevant 

frames 
3. Compare word counts 
4. Spatial verification 

Sivic & Zisserman, ICCV 2003 

• Demo online at :  
http://www.robots.ox.ac.uk/~vgg/research/
vgoogle/index.html

Query 
region

R
etrieved fram

es

Slide credit: Kristen Grauman
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Example Results

Query

Retrieved shots
Slide credit: Andrew Zisserman
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Collecting Words Within a Query Region
• Example: Friends

Query region:  
pull out only the SIFT 

descriptors whose 
positions are within the 

polygon

Slide credit: Kristen Grauman 173



High Level Computer Vision - May 3, 2o17

Example Results

Slide credit: Kristen Grauman

Query
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More Results

Query

Retrieved shots

Slide credit: Kristen Grauman
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More Results

Query

Retrieved shots

Slide credit: Kristen Grauman
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Applications: Specific Object Recognition
• Commercial 

services:

(~20M images indexed)

Works well for mostly 
planar objects: 
  - Movie posters, 
  - Book covers, 
  - CD/DVD covers, 
  - Video games,  
  - …

Source: http://www.kooaba.com 177
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