

High Level Computer Vision

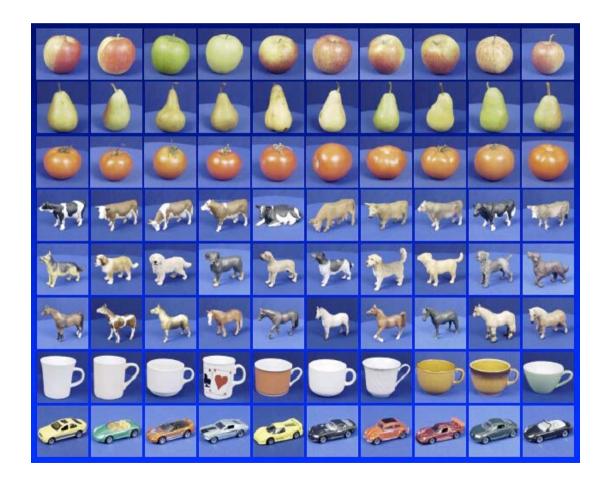
Bag of Words Model and Part-Based Models for Object Class Recognition

Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de

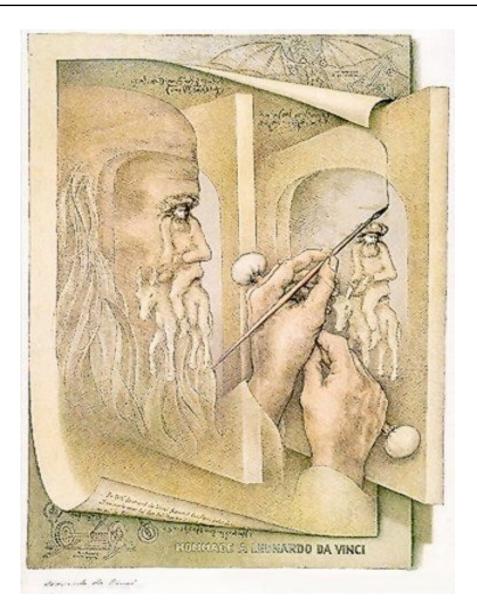
https://www.mpi-inf.mpg.de/hlcv

Object Recognition (reminder)

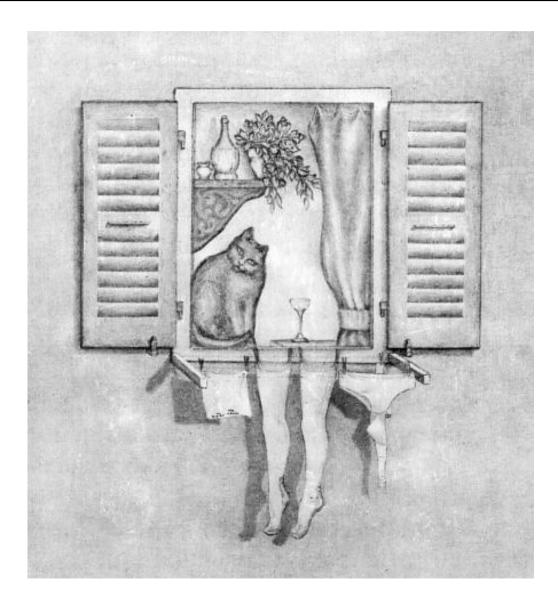
- Different Types of Recognition Problems:
 - Object Identification
 - recognize your apple, your cup, your dog
 - sometimes called: "instance recognition"
 - Object Classification
 - recognize any apple, any cup, any dog
 - also called: generic object recognition, object categorization, ...
 - typical definition:
 'basic level category'



Complexity of Recognition

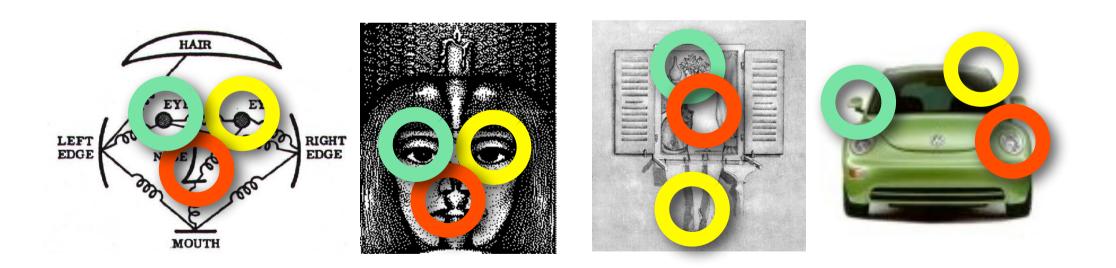


Complexity of Recognition



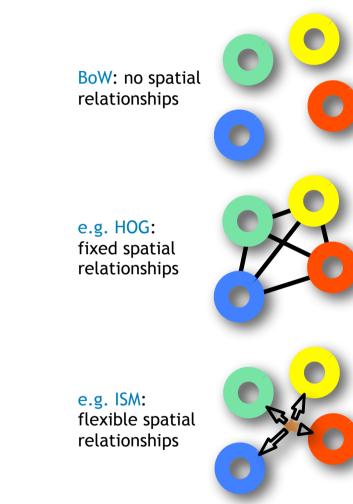
Class of Object Models: Part-Based Models / Pictorial Structures

- Pictorial Structures [Fischler & Elschlager 1973]
 - Model has two components
 - parts (2D image fragments)
 - **structure** (configuration of parts)

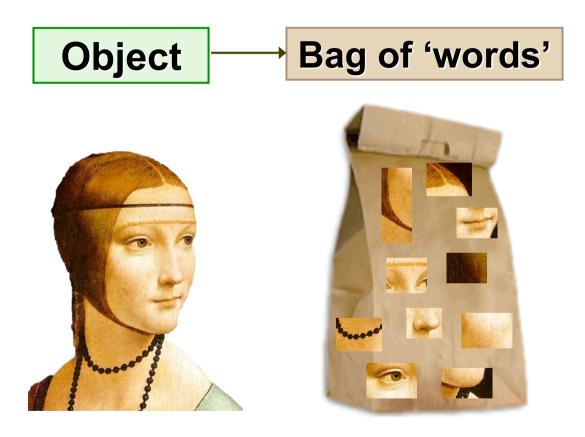


"State-of-the-Art" in Object Class Representations

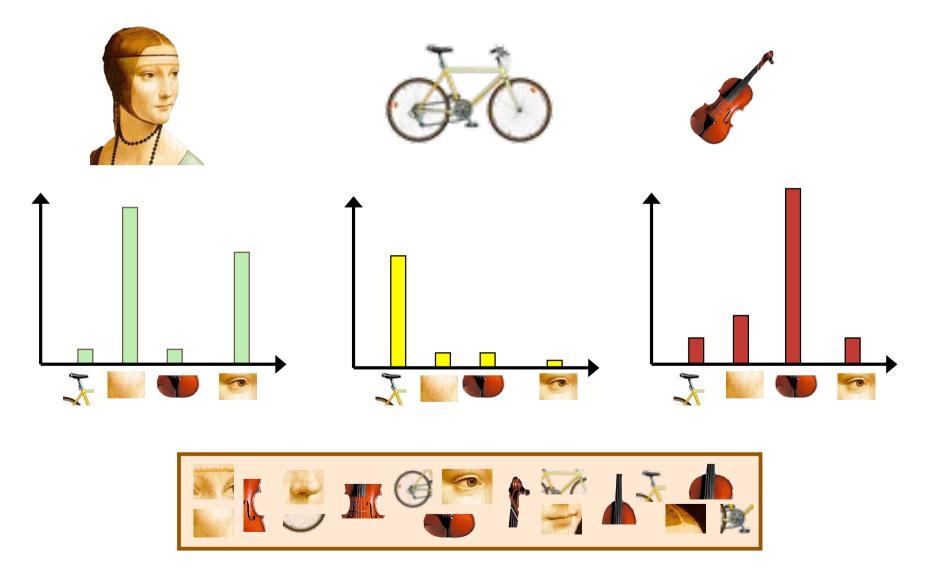
- Bag of Words Models (BoW)
 - object model = histogram of local features
 - e.g. local feature around interest points
- Global Object Models
 - object model = global feature object feature
 - e.g. HOG (Histogram of Oriented Gradients)
- Part-Based Object Models
 - object model = models of parts
 & spatial topology model
 - e.g. constellation model or ISM (Implicit Shape Model)



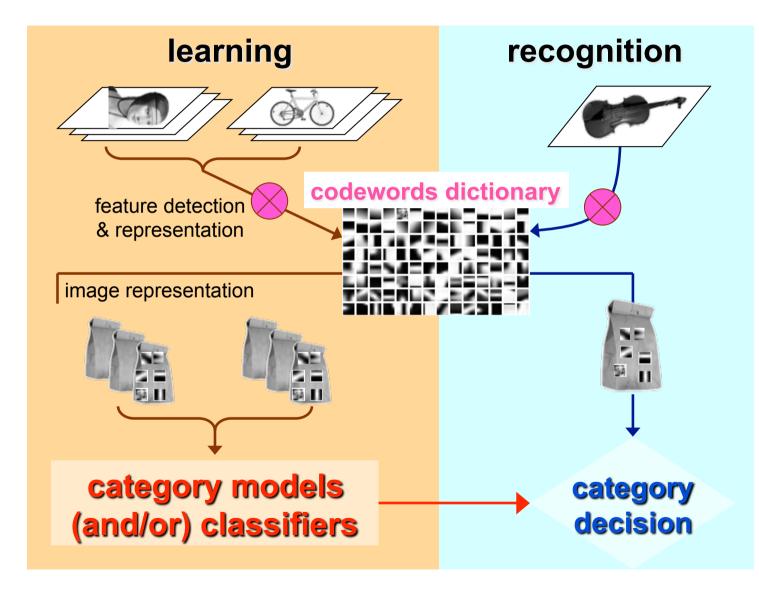
Bag-of-Words Model (BoW) for Object Categorization



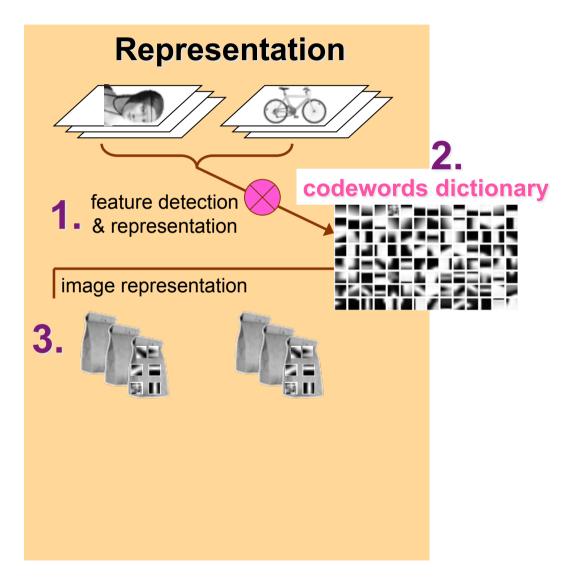
Visual words distributions



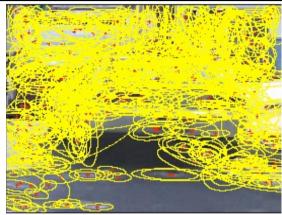
Bag-of-Words Model: Overview



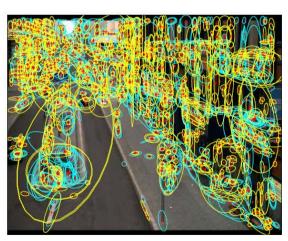
Bag-of-Words Model: Object Representation & Learning



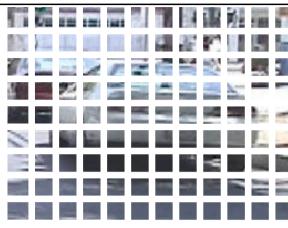
Sampling Strategies

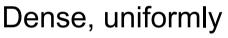


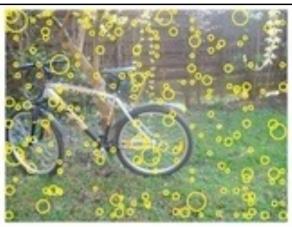
Sparse, at interest points



Multiple interest operators





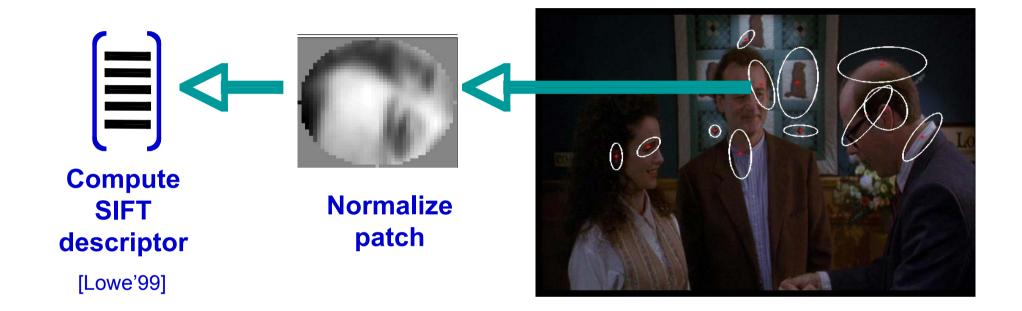


Randomly

- To find specific, textured objects, sparse sampling from interest points often more reliable.
- Multiple complementary interest operators offer more image coverage.
- For object categorization, dense sampling offers better coverage.

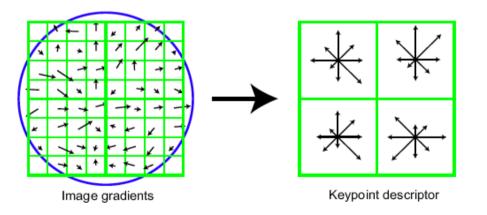
[See Nowak, Jurie & Triggs, ECCV 2006]

BoW-1. Feature detection and representation

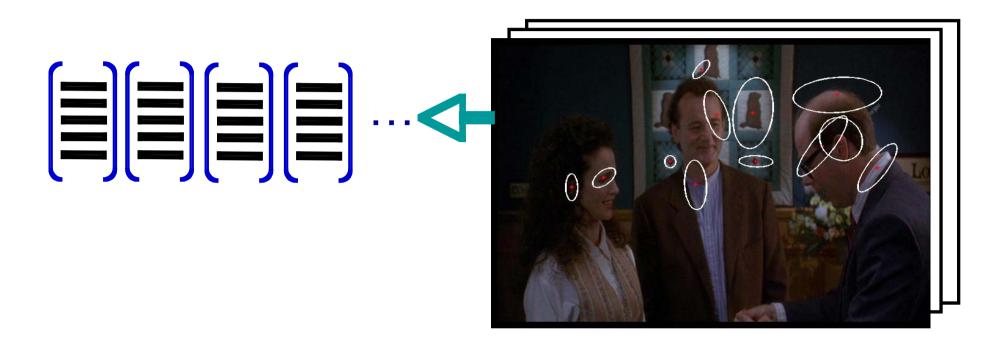


SIFT - Scale Invariant Feature Transform [Lowe]

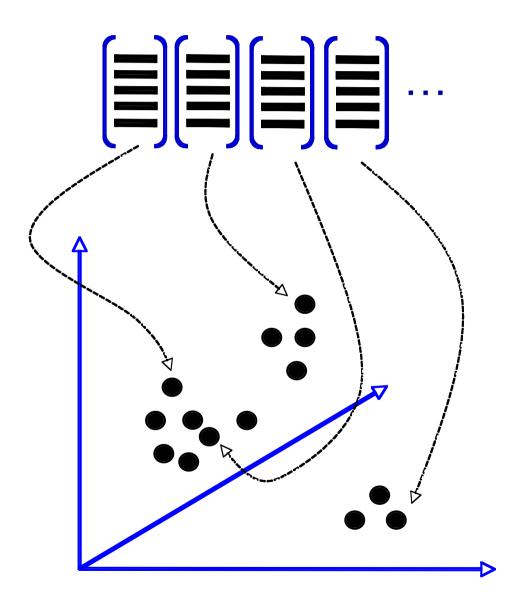
- Interest Points:
 - Difference of Gaussians
- Feature Descriptor:
 - local histogram of 4x4 local orientation histograms (each over 16x16 pixels),
 - 8 orientations x 4 x 4 = 128 dimensions
 - example: 2x2 local orientation histogram (each of 4x4 pixels):



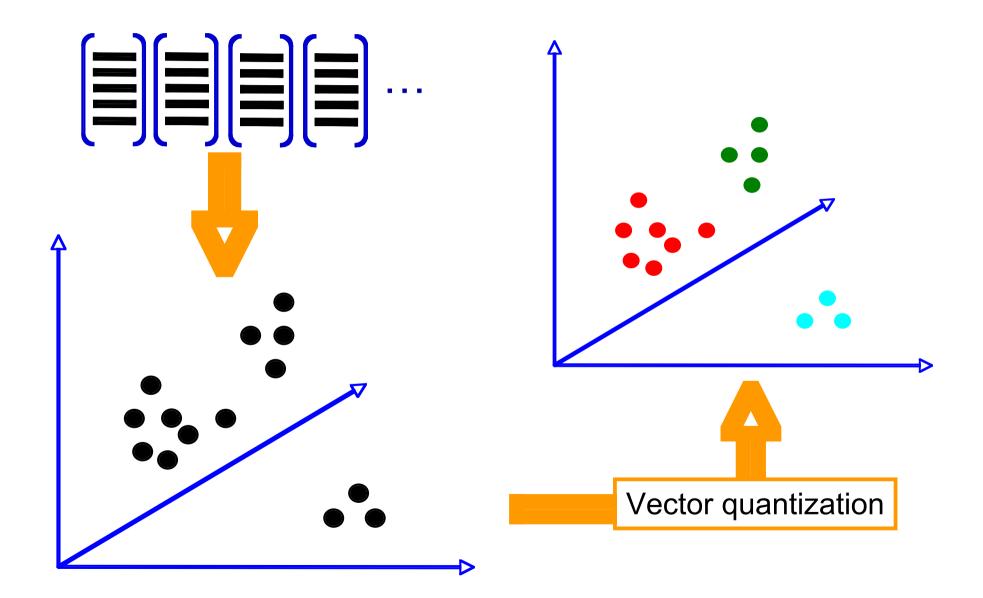
BoW-1. Feature detection and representation

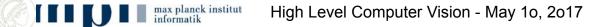


BoW-2. Codewords (= "visual words") dictionary formation



BoW-2. Codewords dictionary formation





BoW-2. Codewords dictionary formation

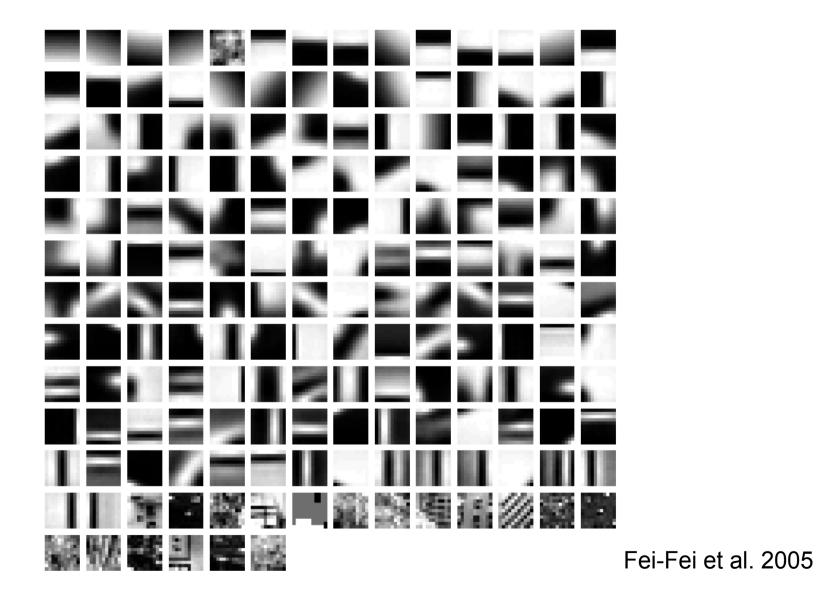
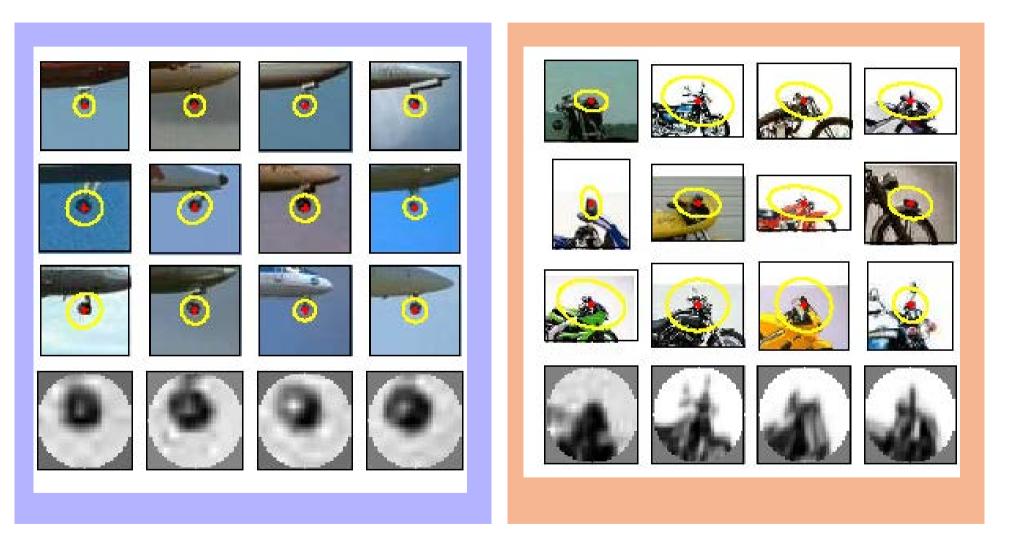
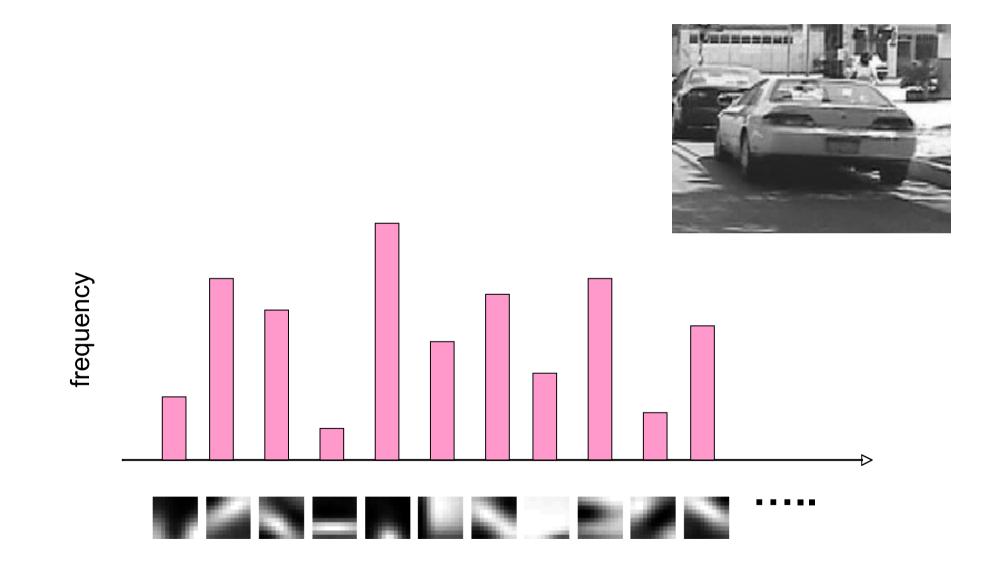


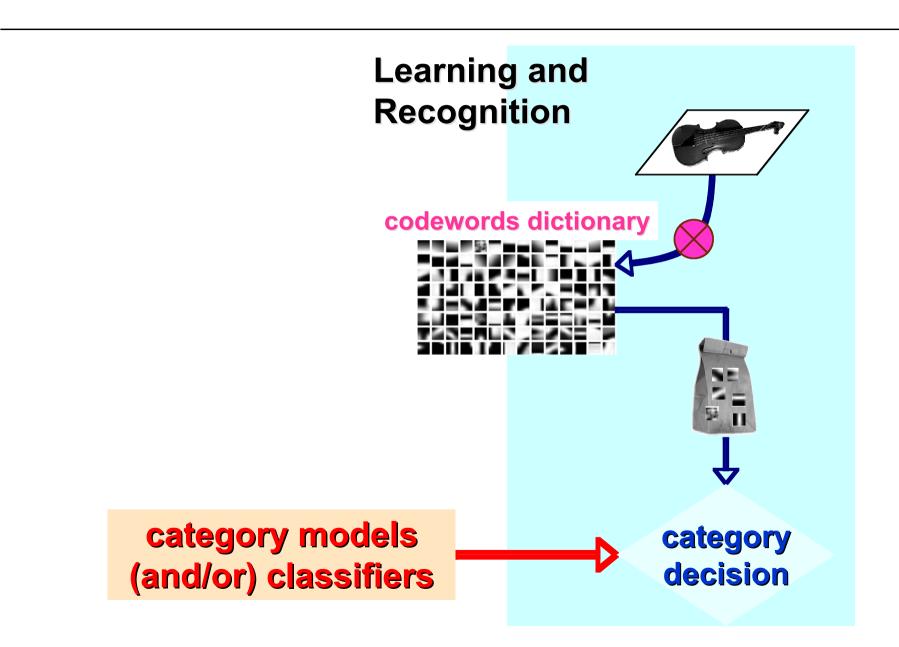
Image patch examples of codewords / "visual words"



Sivic et al. 2005

BoW-3. Object / Image representation: Histogram over Codewords / Visual Words

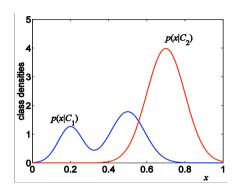


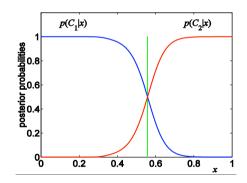


Learning and Recognition

- Generative method:
 - graphical models

- Discriminative method:
 - Support Vector Machine (SVM)





category models (and/or) classifiers

Generative Models explored

- Naïve Bayes classifier
 - Csurka Bray, Dance & Fan, 2004

- Hierarchical Bayesian text models (pLSA and LDA)
 - Background: Hoffman 2001, Blei, Ng & Jordan, 2004
 - Object categorization: Sivic et al. 2005, Sudderth et al. 2005
 - Natural scene categorization: Fei-Fei et al. 2005

Naïve Bayes Classifier

• Classify image using histograms of occurrences on visual words:

if only present/absence of a word is taken into account:

$$x_i \in \{0, 1\}$$

 Naïve Bayes classifier assumes that visual words are conditionally independent given object class

$$P(\mathbf{x}|c) = \prod_{i=1}^{m} P(x_i|c)$$

Based on lecture by Prof. T. Hofmann

Naive Bayes Classifier

• Multinomial model for each object class:

$$P(\mathbf{x}|c) = \prod_{i=1}^{m} P(x_i|c)$$

• Class priors:
$$P(c)$$
, with $\sum_{c} P(c) = 1$

• Posterior probabilities:

$$P(c|\mathbf{x}) = \frac{P(c) \prod_{t=1}^{n} P(x_t|c)}{\sum_{c'} P(c') \prod_{t=1}^{n} P(x_t|c')}$$

Naive Bayes Classifier: Decision

• Bayes optimal decision:

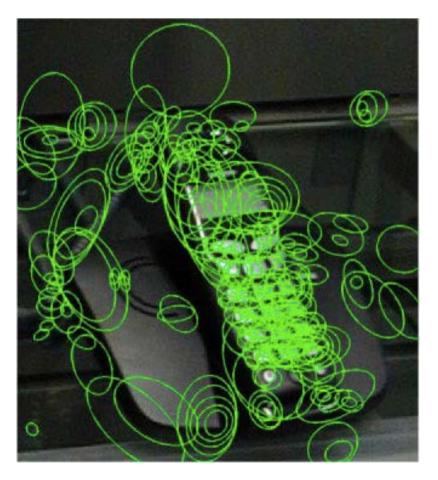
$$c^* = \operatorname{argmax}_c P(c|\mathbf{x})$$
$$= \operatorname{argmax}_c \left[\log P(c) + \sum_{t=1}^n \log P(x_t|c) \right]$$

Image Classification with Naive Bayes

• Image dataset: 7 object categories, arbitrary views, partial occlusions

Csurka et al. 2004

Example of feature extraction



All features detected in the image

Features corresponding to two different visual words

Csurka et al. 2004

Recognition results:

True classes \rightarrow	faces	buildings	trees	cars	phones	bikes	books
faces	76	4	2	3	4	4	13
buildings	2	44	5	0	5	1	3
trees	3	2	80	0	0	5	0
cars	4	1	0	75	3	1	4
phones	9	15	1	16	70	14	11
bikes	2	15	12	0	8	73	0
books	4	19	0	6	7	2	69
Mean ranks	1.49	1.88	1.33	1.33	1.63	1.57	1.57

Table 1. Confusion matrix and the mean rank for the best vocabulary (k=1000).

Examples of correctly classified images:

Summary & Discussion: BoW for Object Categorization

- Bag-of-words representation:
 - Sparse representation of object category
 - Many machine learning methods are directly applicable.
 - Robust to occlusions
 - Allows sharing of representation between multiple classes
- Problems:

- Localization of objects in images is problematic
- Spatial distribution of visual words is not modeled, all these images have equal probability for bag-of-words methods:

Beyond Bag-of-Words: Spatial Pyramid Matching

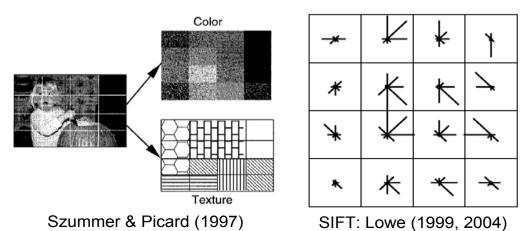
- Address the problem of preserving "some" spatial information
- Still applicable to local feature representations
- Idea:
 - compute local bag of words representations
 - concatenate the representations
- following slides form Svetlana Lazebnik

Overview

- A "pre-attentive" approach: recognize the scene as a whole without examining its constituent objects Biederman (1988), Thorpe et al. (1996), Fei-Fei et al. (2002), Renninger & Malik (2004)
- Inspiration: locally orderless images Koenderink & Van Doorn (1999)

Koendennk & Van Doom (1999)

Previous work: "subdivide-and-disorder" strategy

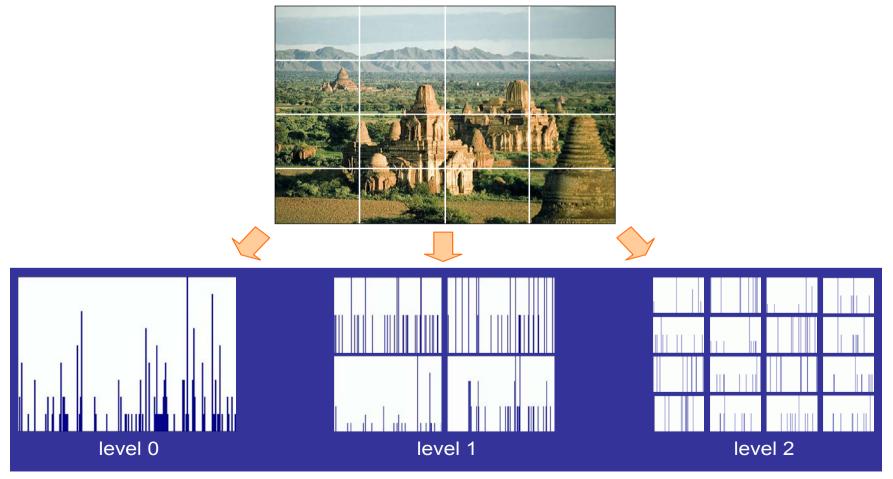


Gist: Torralba et al. (2003)

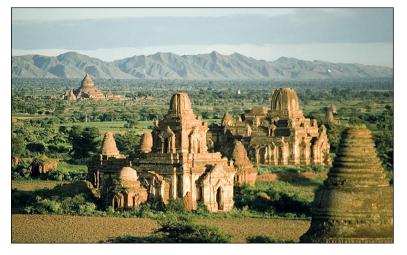
2

Spatial pyramid representation

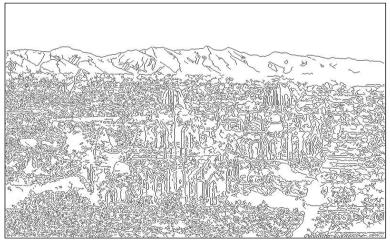
- Extension of a bag of features
- Locally orderless representation at several levels of resolution
- Based on pyramid match kernels Grauman & Darrell (2005)
 - Grauman & Darrell: build pyramid in feature space, discard spatial information
 - Our approach: build pyramid in image space, quantize feature space



Feature extraction

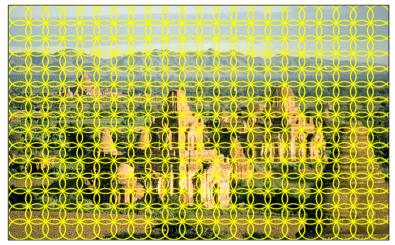


Weak features



Edge points at 2 scales and 8 orientations (vocabulary size 16)

Strong features



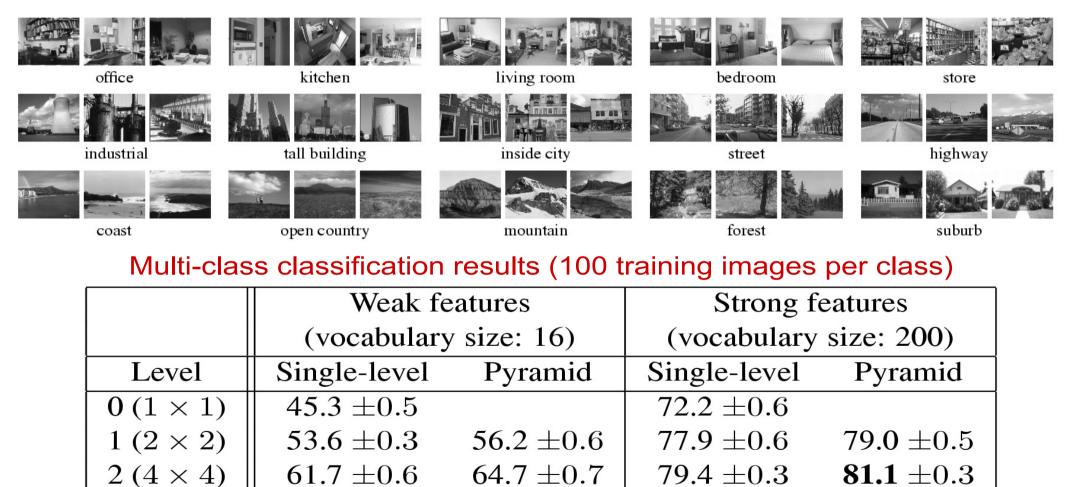
SIFT descriptors of 16x16 patches sampled on a regular grid, quantized to form visual vocabulary (size 200, 400)

5

Scene category dataset

Fei-Fei & Perona (2005), Oliva & Torralba (2001)

http://www-cvr.ai.uiuc.edu/ponce_grp/data



Fei-Fei & Perona: 65.2%

 77.2 ± 0.4

66.8 ±0.6

 63.3 ± 0.8

 $3(8 \times 8)$

6

 80.7 ± 0.3

Scene category retrieval

Query

kitchen

kitchen

tall bldg

tall bldg

living room

living room

Retrieved images

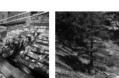
living room

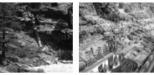
living room

inside city

mountain

office





inside city

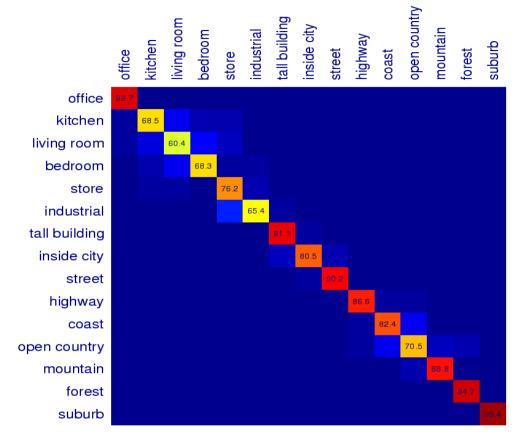
mountain

mountain

mountain

tall bldg

Scene category confusions



Difficult indoor images

kitchen

living room

bedroom

Caltech101 dataset

Fei-Fei et al. (2004)

http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html

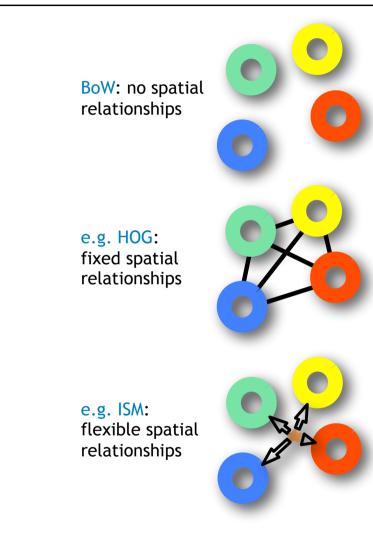
Multi-class classification results (30 training images per class)

	Weak features (16)		Strong features (200)	
Level	Single-level	Pyramid	Single-level	Pyramid
0	15.5 ± 0.9		41.2 ± 1.2	
1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	$57.0\pm\!\!0.8$
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	64.6 ±0.8
3	52.2 ± 0.8	54.0 ± 1.1	60.3 ± 0.9	$64.6\pm\!0.7$

9

"State-of-the-Art" in Object Class Representations

- Bag of Words Models (BoW)
 - object model = histogram of local features
 - e.g. local feature around interest points
- Global Object Models
 - object model = global feature object feature
 - e.g. HOG (Histogram of Oriented Gradients)
- Part-Based Object Models
 - object model = models of parts
 & spatial topology model
 - e.g. constellation model or ISM (Implicit Shape Model)



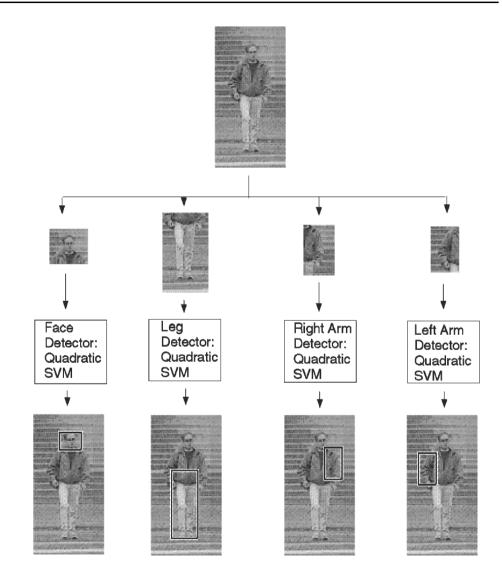
Part-Based Models - Overview Today (more next week)

- Part-Based using Manual Labeling of Parts
 - Detection by Components
 - Multi-Scale Parts
- The Constellation Model
 - automatic discovery of parts and part-structure
- The Implicit Shape Model (ISM)
 - parts obtained by clustering interest-points
 - star-model to model configuration of parts

Manually Selected Parts

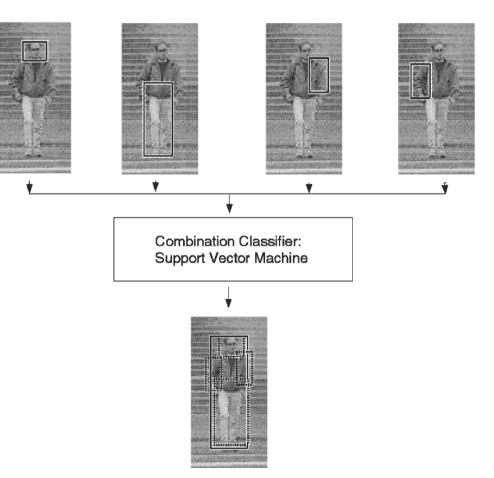
- Simplest solution
 - Let a human expert select a set of parts
 - (If it doesn't work, take a different human expert)

- Application
 - Pedestrian detection
- Representation by 4 parts
 - Part candidates are selected by a human expert
 - Part detectors are learned and applied independently
 - The "most suitable" head, leg, and arms are identified by the part detectors

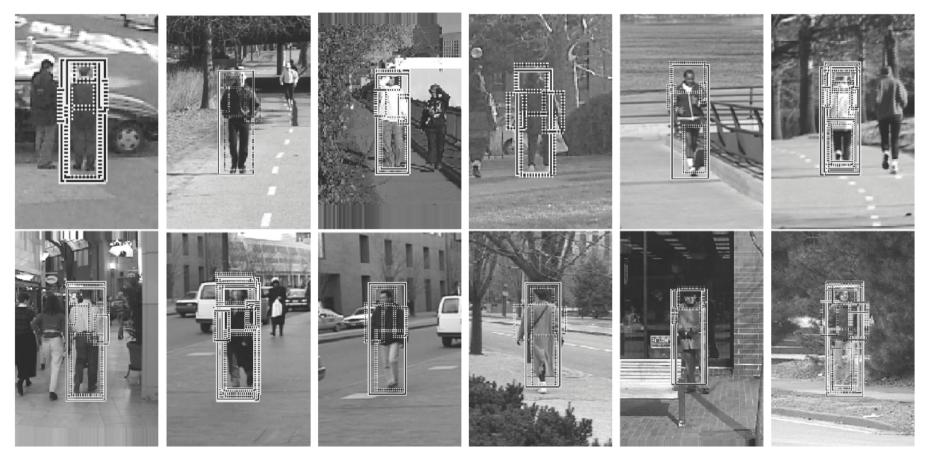


- "Structural model" via a Combination Classifier (stacking)
 - Part scores are fed into the combination classifier

- Combination classifier classifies the pattern as "person" or "non-person"
- The person is detected as an ensemble of its parts



• Detection results



- Robustness to occlusion
 - System still detects pedestrians if a part is not visible

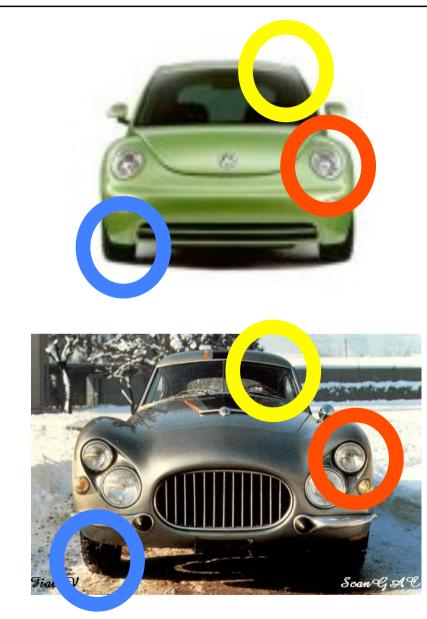
Discussion

- Approach
 - Manually selected set of parts Specific detector trained for each part
 - Spatial model trained on part activations
 - Evaluate joint likelihood of part activations
- Advantages
 - Parts have intuitive meaning.
 - Standard detection approaches can be used for each part (e.g. SVMs or AdaBoost).
 - Works well for specific categories.
- Disadvantages
 - Parts need to be selected manually
 - Semantically motivated parts sometimes don't have a simple appearance distribution
 - No guarantee that some important part hasn't been missed
 - When switching to another category, the model has to be rebuilt from scratch.
- \Rightarrow Goal: Model that can be automatically learned for many categories

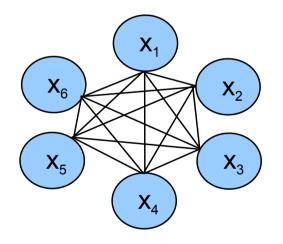
Part-Based Models - Overview Today (more next week)

- Part-Based using Manual Labeling of Parts
 - Detection by Components
 - Multi-Scale Parts
- The Constellation Model
 - automatic discovery of parts and part-structure
- The Implicit Shape Model (ISM)
 - parts obtained by clustering interest-points
 - star-model to model configuration of parts

Constellation of Parts



Fully connected shape model



Weber, Welling, Perona, '00; Fergus, Zisserman, Perona, 03

Automatic Part Learning

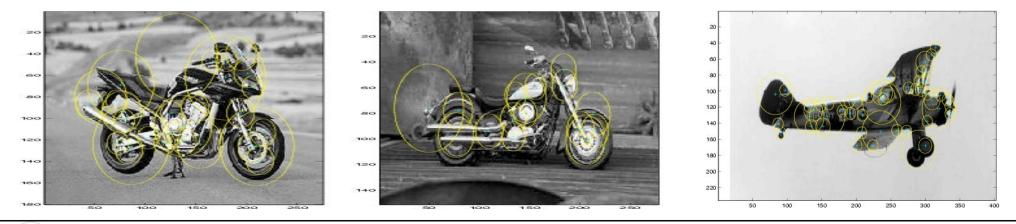
Basic idea consists of two steps

Fergus, Zisserman, Perona, '03

- "Part" candidates in each image
 - take the output regions of an interest point detector as part candidates (use scale-invariant interest point detector for that).
 - interest point detector "guarantees" (sort of ;-) that similar structures will be detected in all images (keyword: repeatability)
- "Part learning"

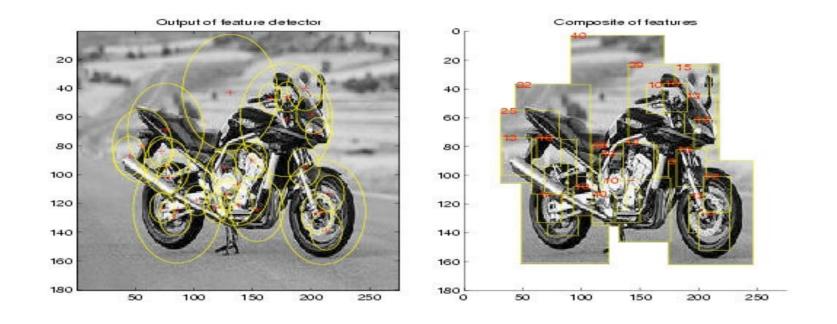
informatik

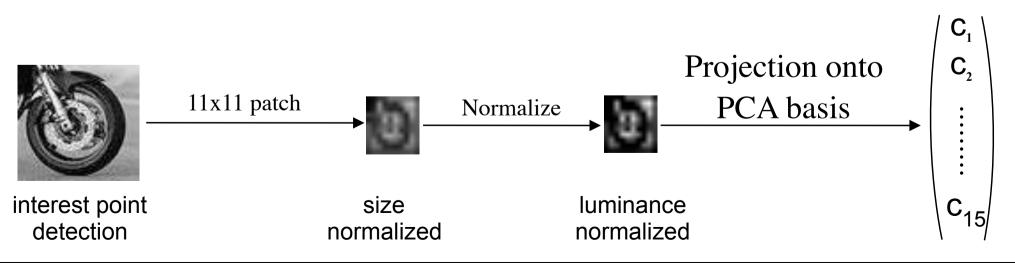
- find those regions, that occur repeatedly on different instances of the same object:
- for this: group (=cluster) the extracted regions to find those that are characteristic for the object category.



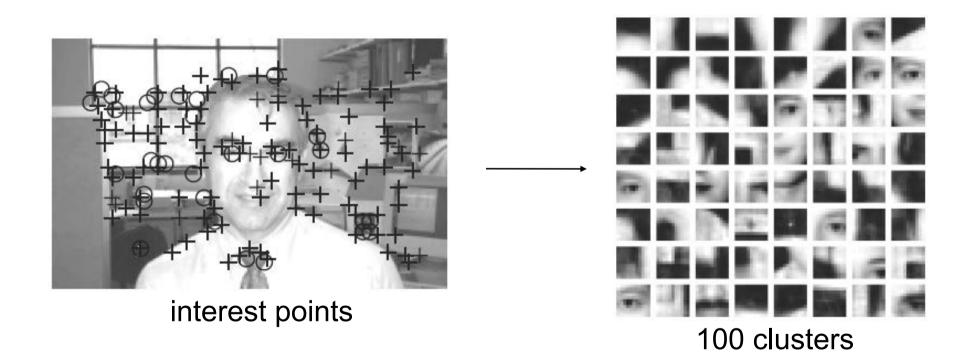
Representation of Appearance

Fergus, Zisserman, Perona, '03





Selected Features & "Parts" (=feature clusters)



Weber, Welling, Perona, '00

Weakly Supervised Training

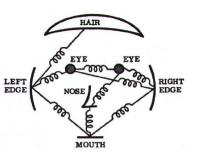
200 images containing faces

200 background images

- Repeating structures (clusters in appearance space and in location space) are more likely to belong to the object category than to the background.
 - \Rightarrow Clusters should mainly represent objects.

Weber, Welling, Perona, '00

Weber, Welling, Perona, '00; Fergus, Zisserman, Perona, 03

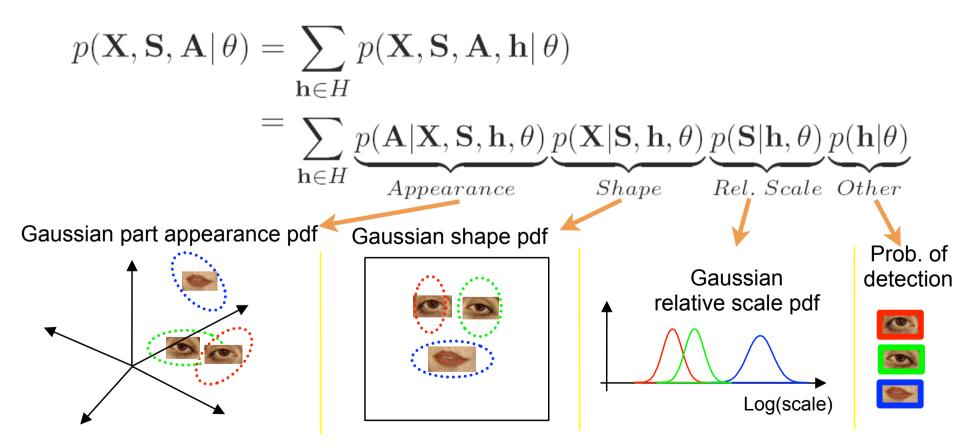


• Joint model for appearance and structure (=shape)

• X: positions, A: part appearance, S: scale

Constellation Model

 h: Hypothesis = assignment of features (in the image) to parts (of the model)



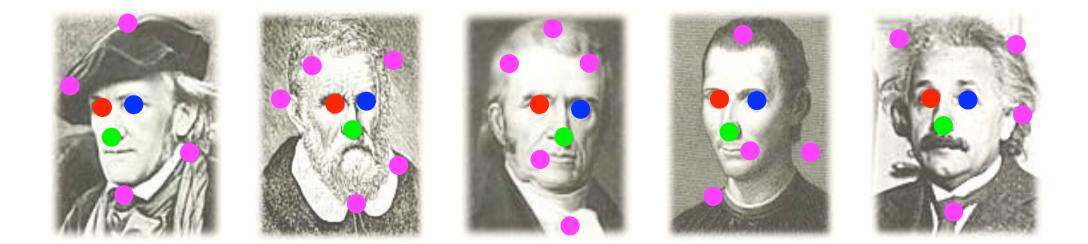
Training Procedure

- Need to solve two problems
 - Select a subset of appearance clusters as part candidates
 - Greedy strategy
 - Start with 3-part model, then test if additional part improves the results
 - Learn the parameters of their joint probability density over appearance & structure
 - Expectation Maximization (EM) algorithm

Weber, Welling, Perona, '00

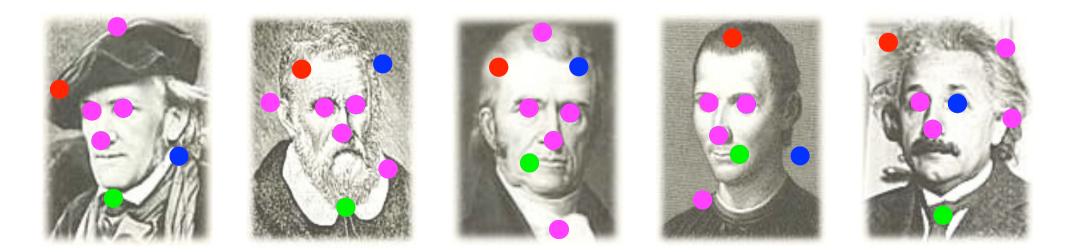
Learning

- Task: Estimation of model parameters
- Chicken and Egg type problem, since we initially know neither:
 - Model parameters
 - Assignment of regions to foreground/background
- Let the assignments be a hidden variable and use EM algorithm to learn them and the model parameters



Learning Procedure

- Find regions: their location, scale & appearance
- Initialize model parameters
- Use EM and iterate to convergence
 - E-step: Compute assignments for which regions are foreground/background
 - M-step: Update model parameters
- Trying to maximize likelihood consistency in shape & appearance

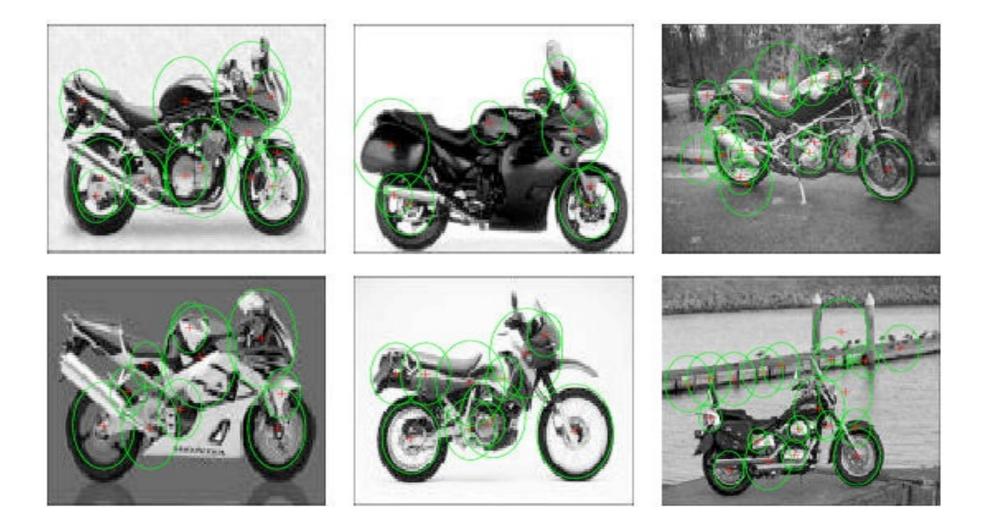


Experiments

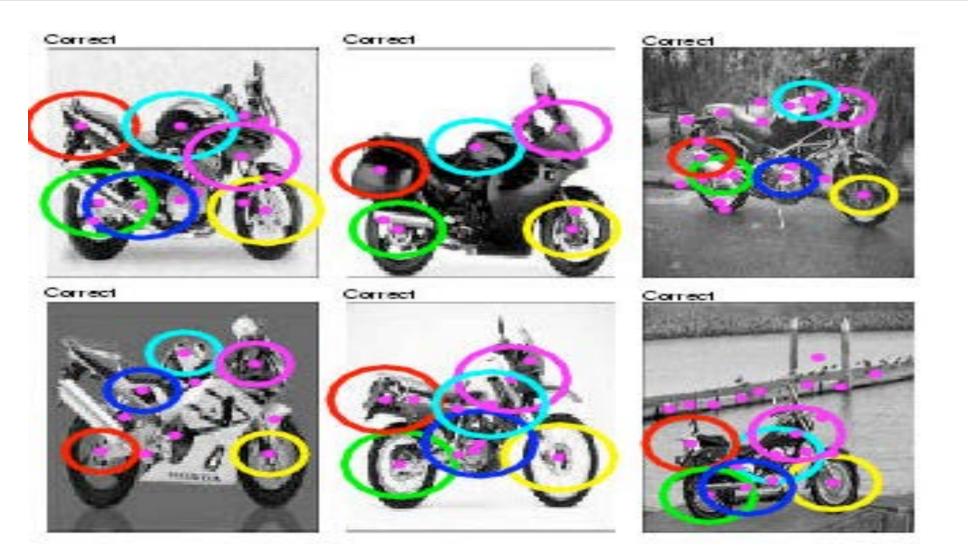
- Data sets
 - Motorbikes, Airplanes, Faces, Cars from side and behind, Spotted cats
 - and background images
 - Between 200 and 800 images per category

- Training
 - ▶ 50% of images
 - position of object unknown within image (called weakly supervised)
- Testing
 - ▶ 50% of images
 - Simple object present/absent test
 - ROC equal error rate computed, using background set of images

Example: Motorbikes - Part Hypotheses

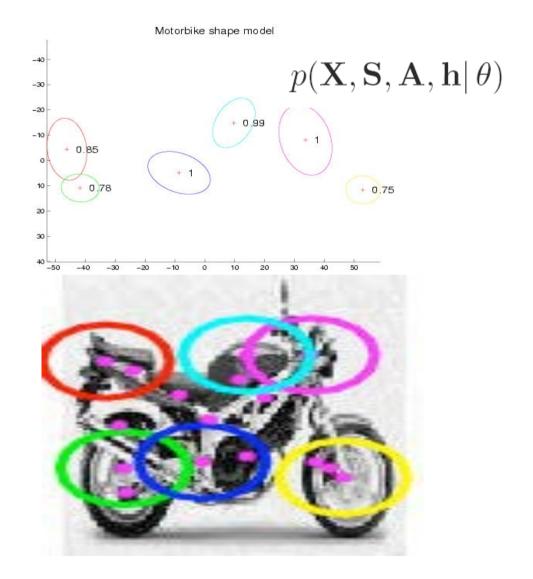


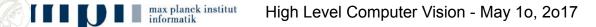
Example: Motorbikes - Learned Parts



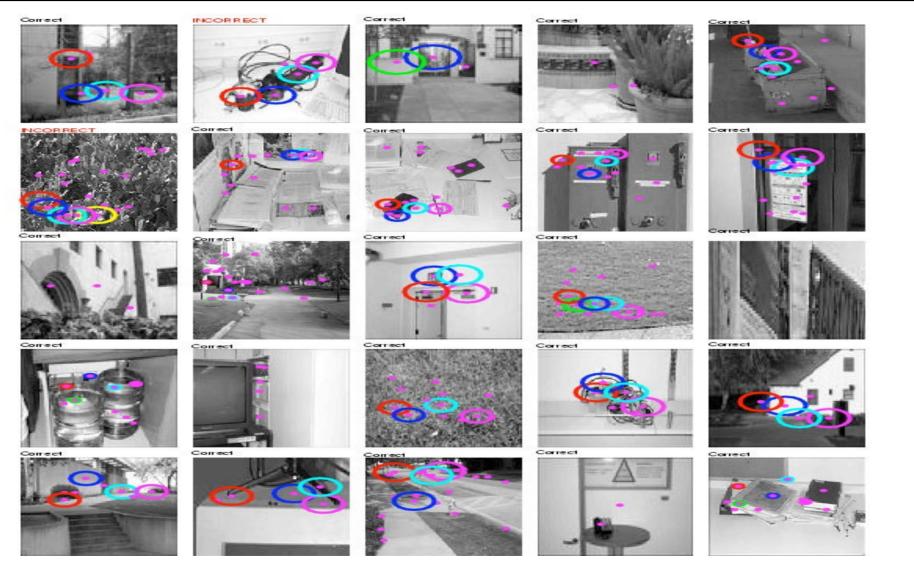
Equal error rate: 7.5%

Motorbikes - Constellation Model



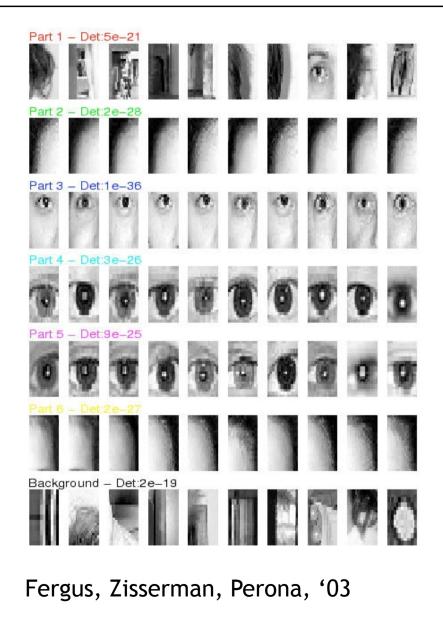


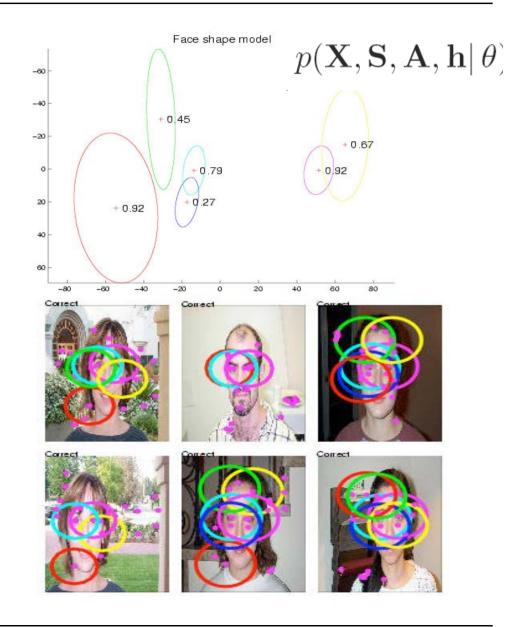
Background Images



Equal error rate: 4.6%

Frontal Faces - Constellation Model

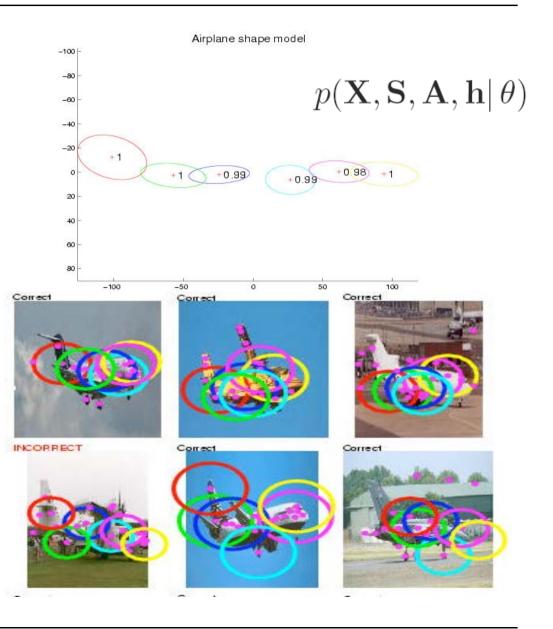




Equal error rate: 9.8%

Airplanes - Constellation Model

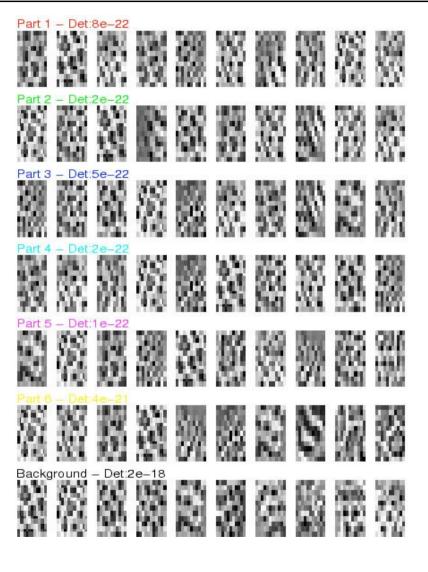
Fergus, Zisserman, Perona, '03



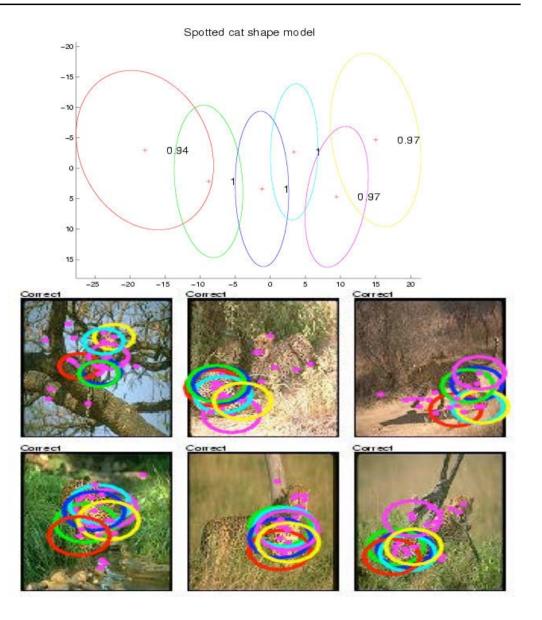
max planck institut High Level Computer Vision - May 10, 2017

Equal error rate: 10.0%

Spotted Cats - Constellation Model

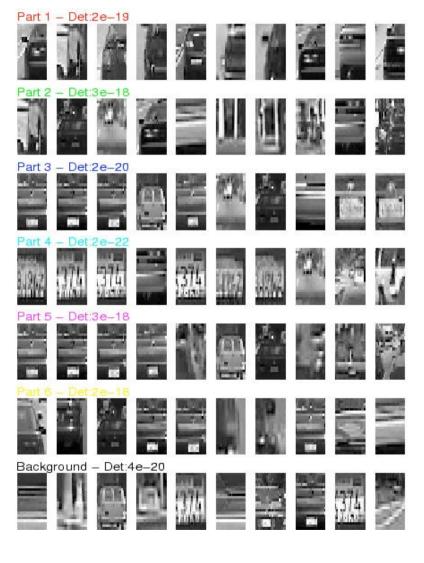


Fergus, Zisserman, Perona, '03



Equal error rate: 9.7%

Cars (Rear Views) - Constellation Model



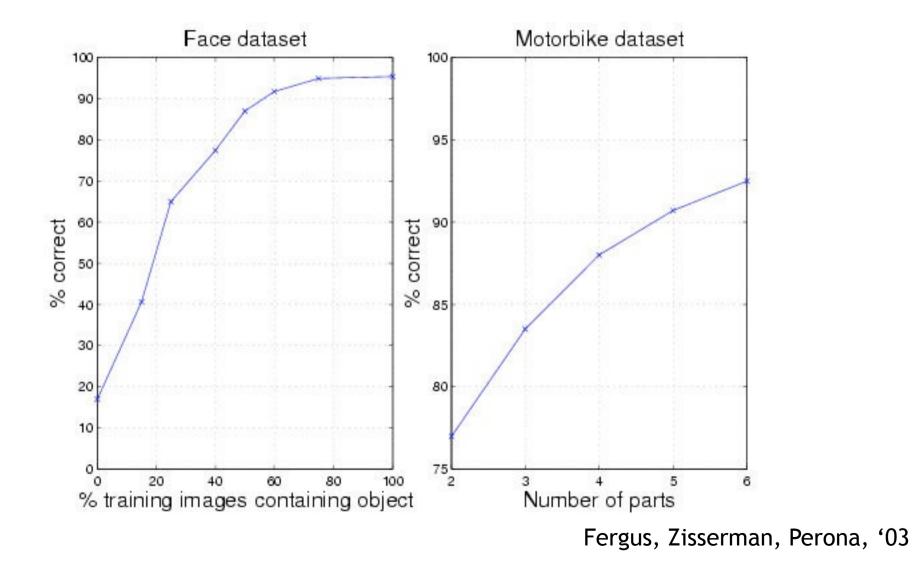
Fergus, Zisserman, Perona, '03

 $p(\mathbf{X}, \mathbf{S}, \mathbf{A}, \mathbf{h} | \theta)$ -60 -40 -20 + 0.98 +0.98+0.99 +0.99 + 1 20 40 60 -100 -80 60 -60 Correct Correct Contect

Cars (rear) scale-invariant shape model

max planck institut informatik High Level Computer Vision - May 10, 2017

Robustness of the Algorithm



Discussion

- Advantages
 - Works well for different object categories
 - Can adapt to categories where
 - Shape/structure is more important
 - Appearance is more important
 - Everything is learned from training data
 - Weakly-supervised training possible

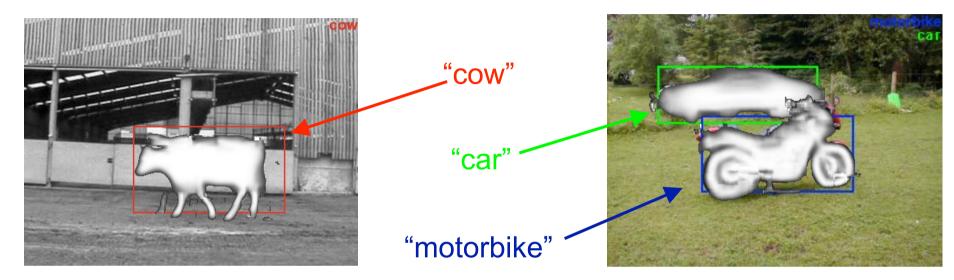
Disadvantages

- Model contains many parameters that need to be estimated
- Cost increases exponentially with increasing number of parameters (that is in particular with the # of parts !)

Part-Based Models - Today

- Part-Based using Manual Labeling of Parts
 - Detection by Components
 - Multi-Scale Parts
- The Constellation Model
 - automatic discovery of parts and part-structure
- The Implicit Shape Model (ISM)
 - parts obtained by clustering interest-points
 - star-model to model configuration of parts

Implicit Shape Model: Object Categorization

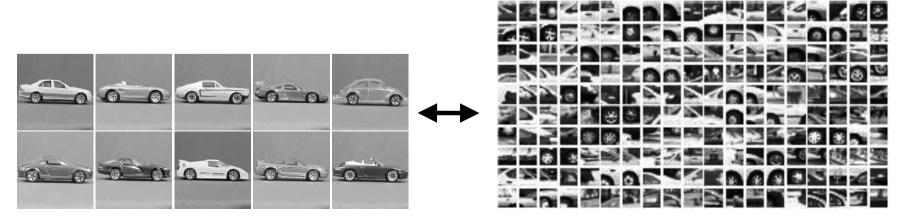


- Goals
 - Learn to recognize object categories
 - Detect and localize them in real-world scenes
 - Segment objects from background
- Combination with top-down segmentation
 - Initial hypothesis generation
 - Category-specific figure-ground segmentation used to verify object hypothesis

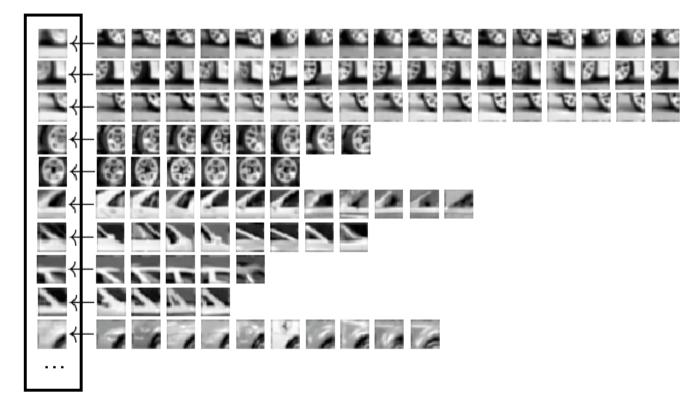
Codebook Representation

- Extraction of local object patches
 - Interest Points (e.g. Harris detector, Hes-Lap, DoG, ...)
 - inspired by [Agarwal & Roth, 02]

- Collect patches from whole training set
 - Example:



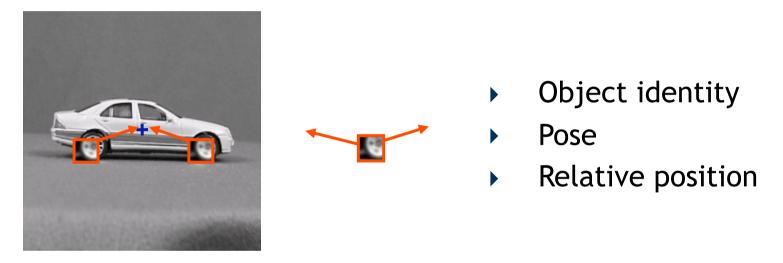
Appearance Codebook



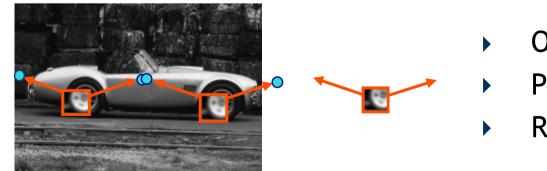
- Clustering Results
 - Visual similarity preserved
 - Wheel parts, window corners, fenders, ...
 - Store cluster centers as Appearance Codebook

Learning the Spatial Layout

For every codebook entry, store possible "occurrences"

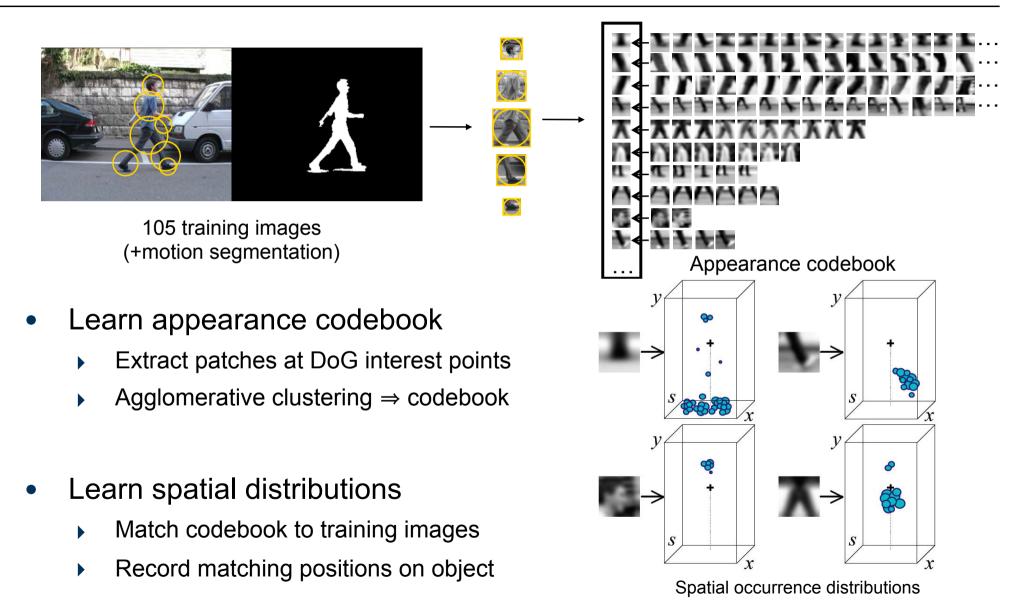


For new image, let the matched patches vote for possible object positions



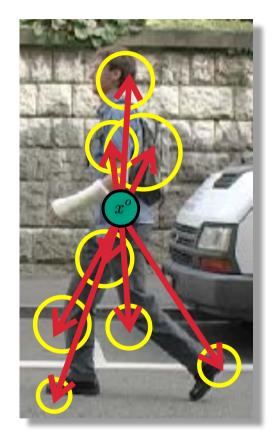
- **Object identity**
- Pose
- **Relative position**

Implicit Shape Model - Representation



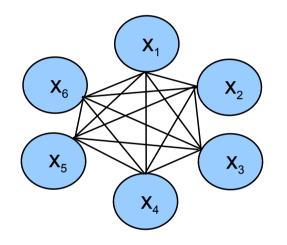
Object Detection: ISM (Implicit Shape Model)

 Appearance of parts: Implicit Shape Model (ISM) [Leibe, Seemann & Schiele, CVPR 2005]

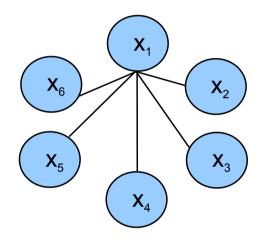


Spatial Models for Categorization

Fully connected shape model

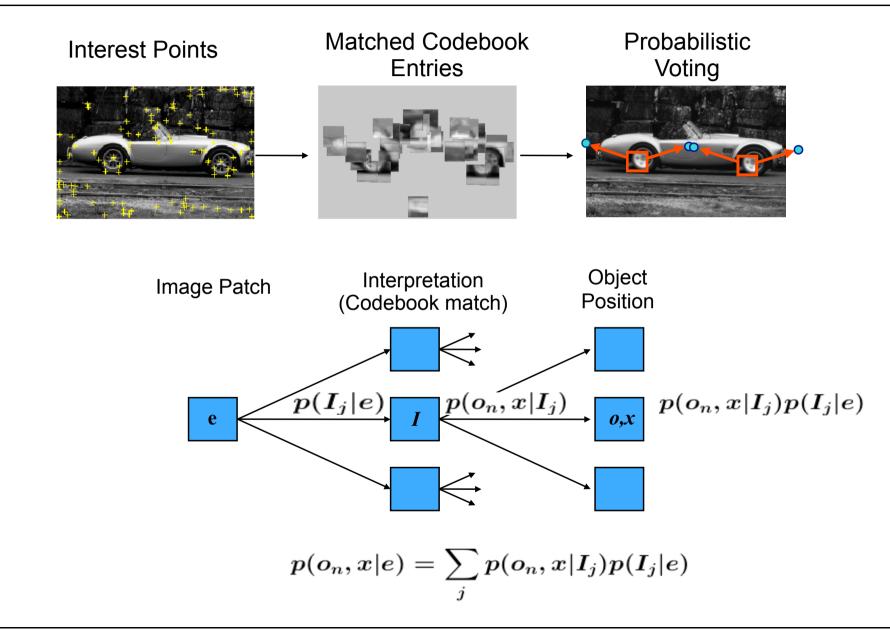


- e.g. Constellation Model
- Parts fully connected
- Recognition complexity: O(N^P)
- Method: Exhaustive search

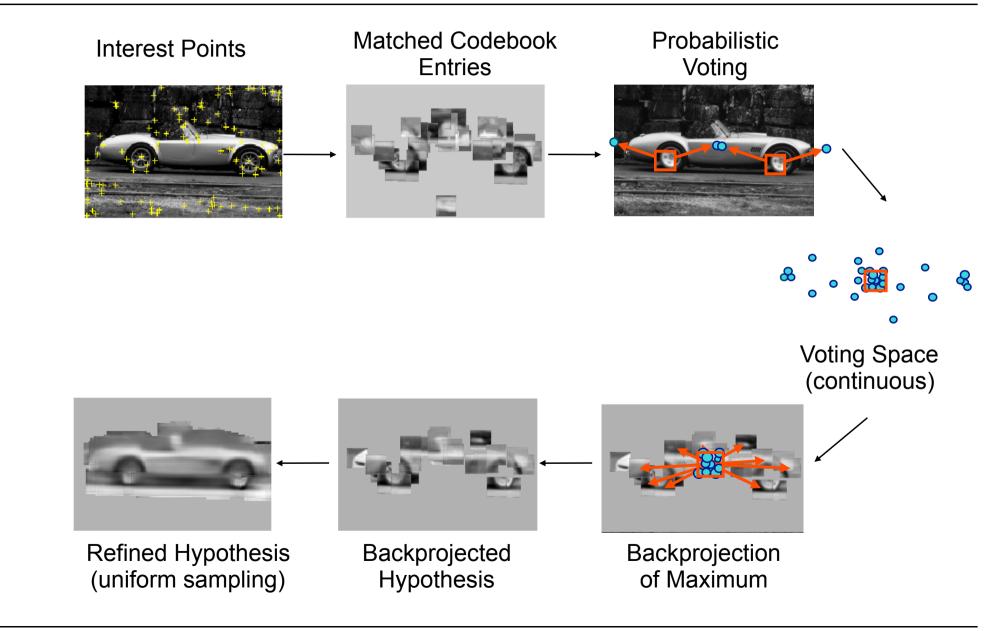


- e.g. ISM (Implicit Shape Model)
- Parts mutually independent
- Recognition complexity: O(NP)
- Method: Generalized Hough Transform

Object Categorization Procedure



Object Categorization Procedure



Car Categorization - Qualitative Results

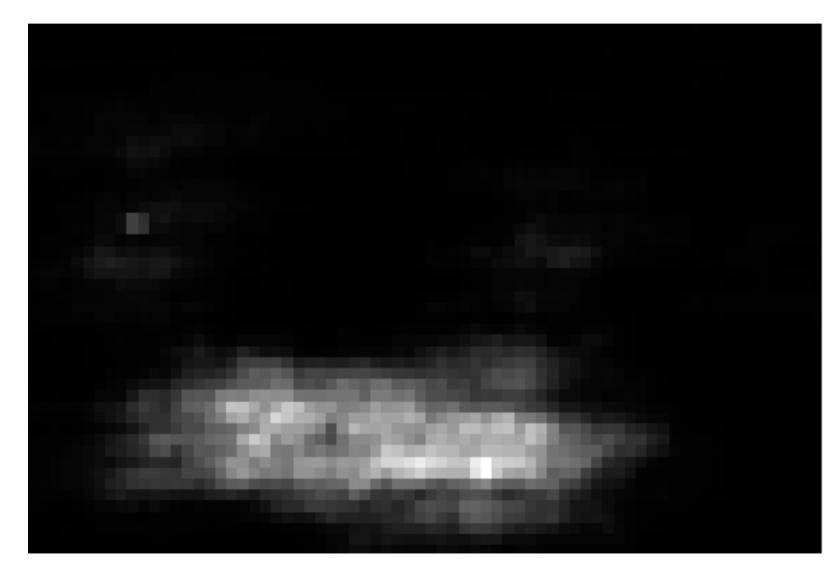
• 1st hypothesis

2nd hypothesis

4th hypothesis

7th hypothesis

8th hypothesis



Prob. Votes

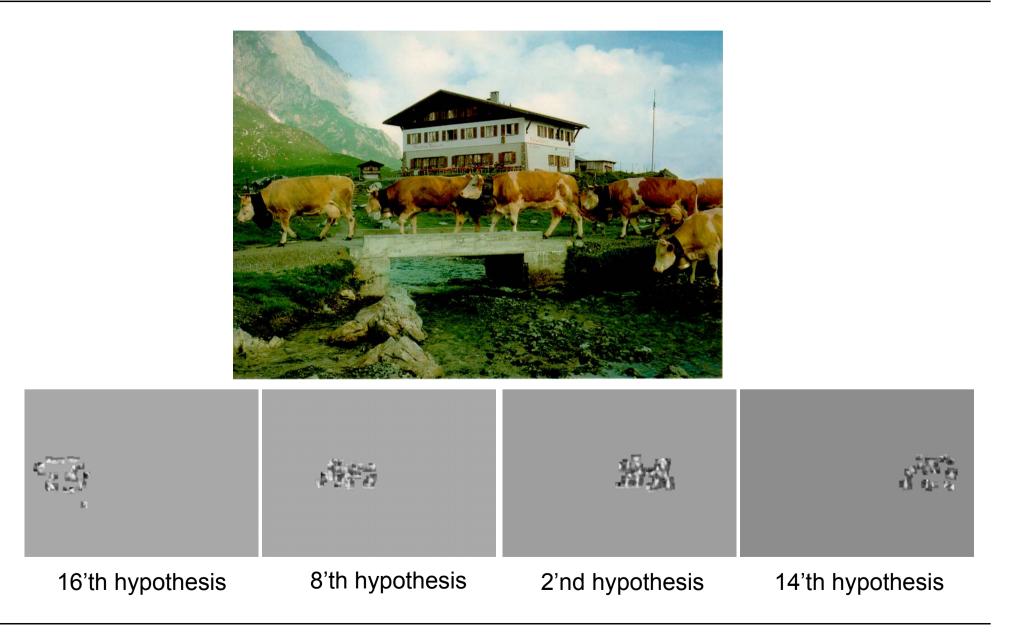
1'st hypothesis



2'nd hypothesis

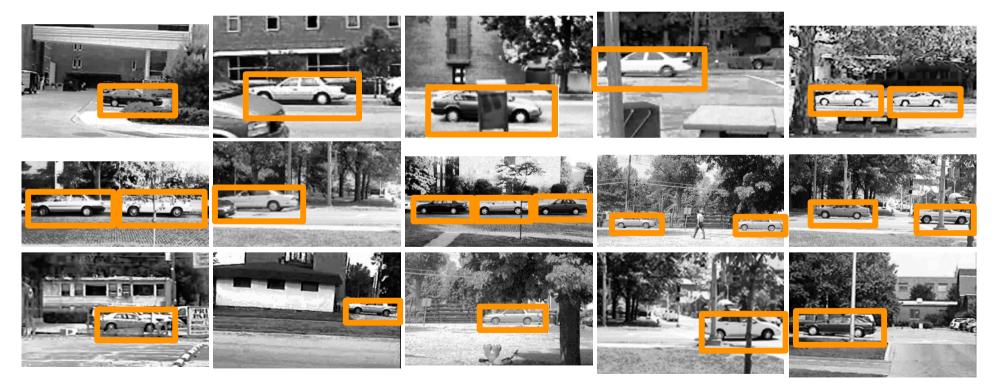
3'rd hypothesis

More Results on Cows...

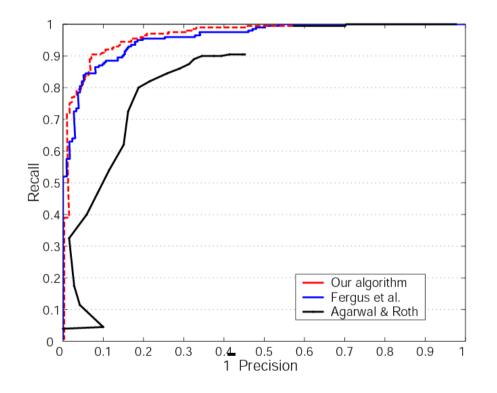


Detection Results

- Qualitative Performance (UIUC database 200 cars)
 - Recognizes different kinds of cars
 - Robust to clutter, occlusion, low contrast, noise



Quantitative Evaluation



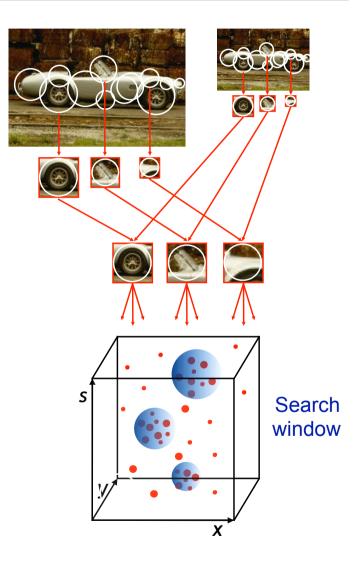
- Results on UIUC car database
 - (170 images containing 200 cars)
 - Good performance, similar to Constellation Model
 - Still some false positives

Scale Invariance

- Scale-invariant feature selection
 - Scale-invariant interest points
 - Rescale extracted patches
 - Match to constant-size codebook
- Generate scale votes
 - Scale as 3rd dimension in voting space

$$x_{vote} = x_{img} - x_{occ}(s_{img}/s_{occ})$$
$$y_{vote} = y_{img} - y_{occ}(s_{img}/s_{occ})$$
$$s_{vote} = (s_{img}/s_{occ})$$

• Search for maxima in 3D voting space



Qualitative Detection Results

Altogether, objects detected with factor 5.0 scale differences!

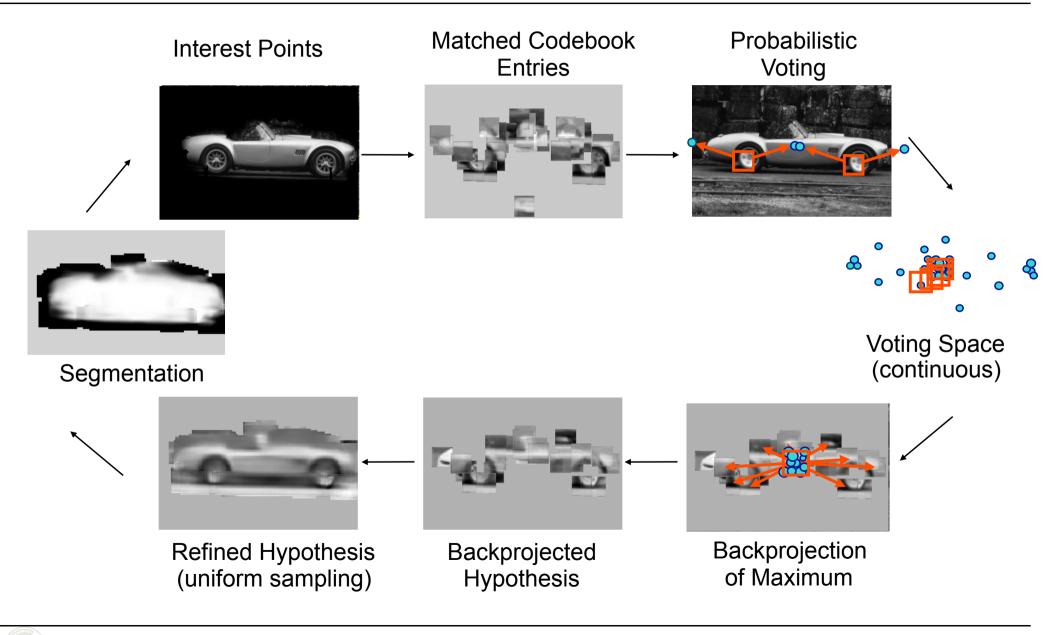
Discussion

- Approach: Implicit Shape Model
 - Generate appearance codebook
 - Learn spatial occurrence distribution for each codebook entry
 - Recognition using a probabilistic extension of the Generalized Hough Transform
- Advantages
 - Highly flexible shape model
 - Each image feature acts independently
 - Possible to learn good object models already from very few (50-100) training examples
 - Recognition is fast!

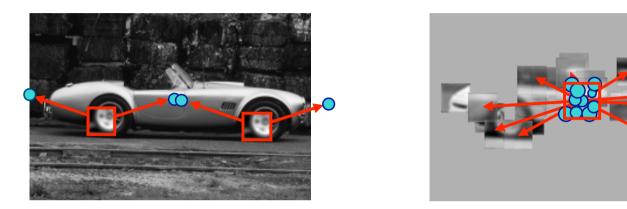
Discussion (2)

- Disadvantages
 - ► Each feature acts independently
 ⇒ Assumption violated if sampled patches overlap
 - Only loose constraints on object shape
 - False positives on structured regions of the background
 - \Rightarrow Hypothesis verification needed
- Idea: Combination with top-down segmentation
 - Initial hypothesis generation
 - Category-specific figure-ground segmentation
 - Hypothesis verification using segmentation

"Closing the Loop"



Segmentation: Probabilistic Formulation



• Influence of patch e on object hypothesis

$$p(\mathbf{e} \mid o_n, x) = \frac{p(o_n, x \mid \mathbf{e})p(\mathbf{e})}{p(o_n, x)} = \frac{\sum_{I} p(o_n, x \mid I)p(I \mid \mathbf{e})p(\mathbf{e})}{p(o_n, x)}$$

• Backprojection to patches e and pixels p:

$$p(\mathbf{p} = figure \mid o_n, x) = \sum_{\mathbf{p} \in \mathbf{e}} p(\mathbf{p} = figure \mid \mathbf{e}, o_n, x) p(\mathbf{e} \mid o_n, x)$$

Leibe, Schiele, '03

Segmentation: Probabilistic Formulation

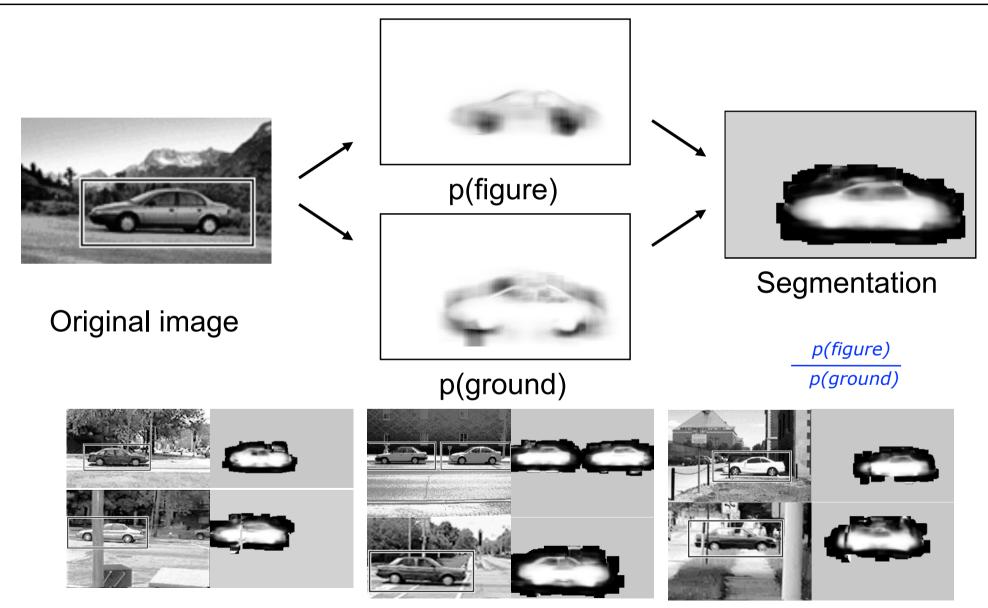
• Resolve patches by interpretations (codebook entries) I

$$p(\mathbf{p} = figure \mid o_n, x) = \sum_{\mathbf{p} \in \mathbf{e}} \sum_{I} p(\mathbf{p} = figure \mid \mathbf{e}, I, o_n, x) p(\mathbf{e}, I \mid o_n, x)$$
$$= \sum_{\mathbf{p} \in \mathbf{e}} \sum_{I} p(\mathbf{p} = figure \mid I, o_n, x) \frac{p(o_n, x \mid I)p(I \mid \mathbf{e})p(\mathbf{e})}{p(o_n, x)}$$
$$\underbrace{p(o_n, x)}$$
Segmentation Influence on object hypothesis

⇒ Store patch segmentation mask for every occurrence position!

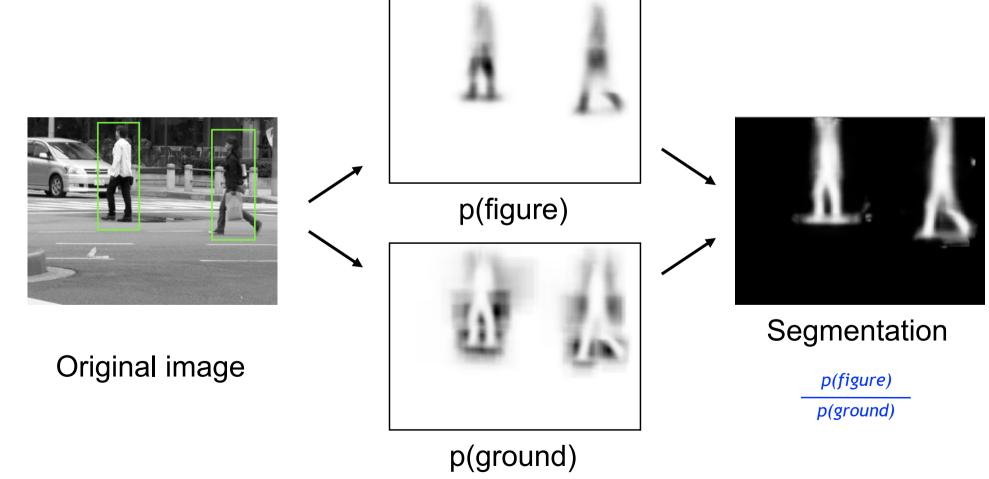
Leibe, Schiele, '03

Segmentation



Segmentation

- Interpretation of p(figure) map
 - per-pixel confidence in object hypothesis
 - Use for hypothesis verification



Top-Down Driven Segmentation

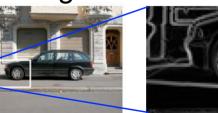
Example 1:

Leibe, Schiele, '03

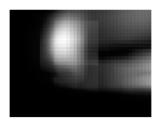
Pedestrian is segmented out since it does not contribute to the car hypothesis

Example 2:

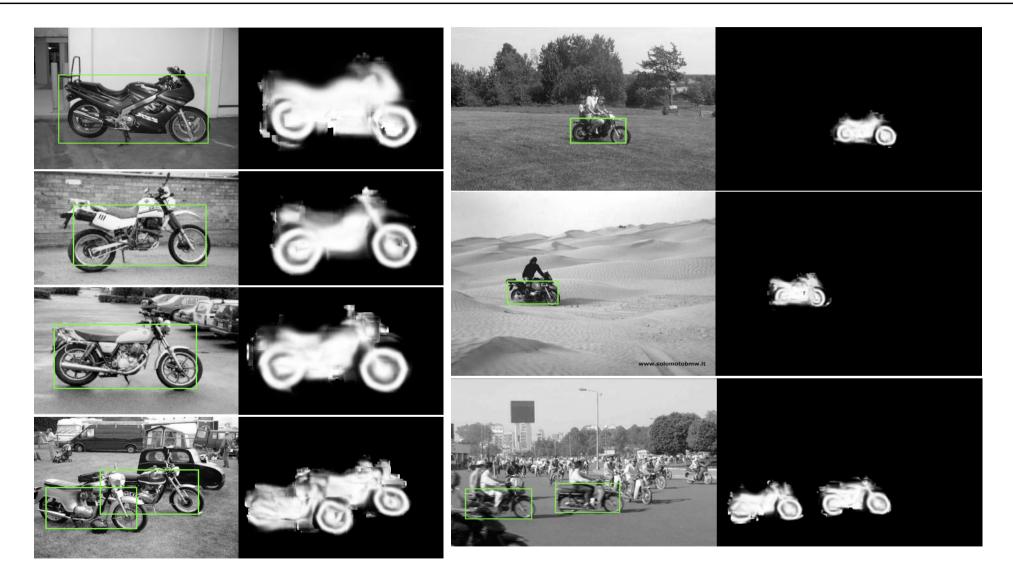
image



p(figure)

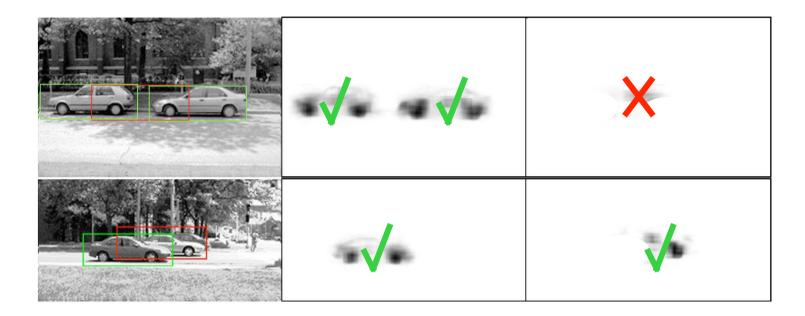


Motorbikes: Segmentation Results



Leibe, Schiele, '04

Hypothesis Verification: Motivation



- Secondary hypotheses
 - Desired property of algorithm! \Rightarrow robustness to partial occlusion
 - Standard solution: reject based on bounding box overlap
 - \Rightarrow Problematic may lead to missing detections!
 - \Rightarrow Use segmentations to resolve ambiguities instead

Formalization in MDL Framework

• Savings of a hypothesis [Leonardis, IJCV'95]

$$S_h = K_0 S_{area} - K_1 S_{model} - K_2 S_{error}$$

- with
 - Sarea : #pixels N in segmentation
 - ► S_{model} : model cost, assumed constant
 - Serror : estimate of error, according to

$$S_{error} = \sum_{\mathbf{p} \in Seg(h)} (1 - p(\mathbf{p} = figure|h))$$

Final form of equation⁵

$$S_h = -\frac{K_1}{K_0} + \left(1 - \frac{K_2}{K_0}\right)N + \frac{K_2}{K_0}\sum_{\mathbf{p}\in Seg(h)} p(\mathbf{p} = figure|h)$$

Formalization in MDL Framework (2)

• Savings of combined hypothesis

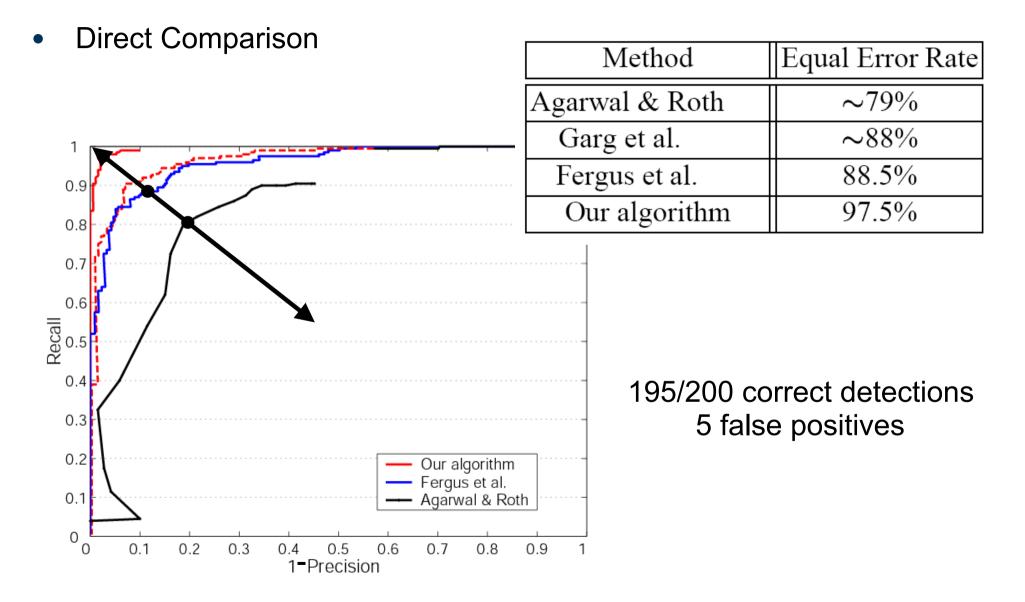
$$S_{h_1 \cup h_2} = S_{h_1} + S_{h_2} - S_{area}(h_1 \cap h_2) + S_{error}(h_1 \cap h_2)$$

- Goal: Find combination (vector m) that best explains the image
 - Quadratic Boolean Optimization problem [Leonardis et al, 95]

$$S(\widehat{m}) = \max_{m} m^{T} Qm = \max_{m} m^{T} \begin{bmatrix} S_{h_{1}} & \cdots & \frac{1}{2} S_{h_{1} \cap h_{N}} \\ \vdots & \ddots & \vdots \\ \frac{1}{2} S_{h_{1} \cap h_{2}} & \cdots & S_{h_{N}} \end{bmatrix} m$$

In practice often sufficient to compute greedy approximation

Performance after Verification Stage



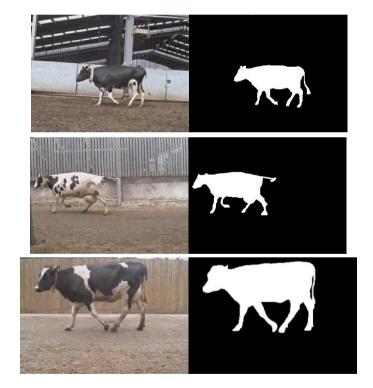
Other Categories: Cows

- Articulated Object Recognition
 - Use set of cow sequences (from Derek Magee@Leeds)

Train on 113 images

(+ segmentation)

• Extract frames from subset of sequences



Cows: Results on Novel Sequences

• Object Detections

Leibe, Leonardis, Schiele, '04

Single-frame recognition - No temporal continuity used!

Cows: Results on Novel Sequences (2)

• Segmentations from interest points

Leibe, Leonardis, Schiele, '04

• Single-frame recognition - No temporal continuity used!

Cows: Results on Novel Sequences (3)

- Segmentations from refined hypotheses Leibe, Leonardis, Schiele, '04
 - Single-frame recognition No temporal continuity used!

Another Example

• Object Detections

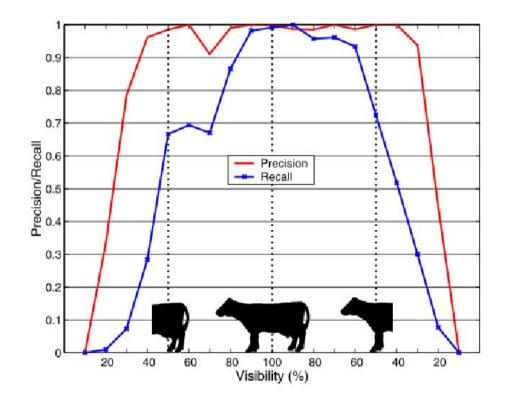
Another Example (2)

• Segmentations from interest points

Another Example (3)

Segmentations from refined hypotheses

Robustness to Occlusion



- Quantitative results (14 sequences, 2217 frames total)
 - No difficulties recognizing fully visible cows (99.1% recall)
 - Robust to significant partial occlusion!
 - Some detections even with 20-30% visibility

Example Detections

