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Object Recognition (reminder)

• Different Types of Recognition Problems: 
‣ Object Identification 

- recognize your apple,  
your cup, your dog 

- sometimes called:  
“instance recognition” 

‣ Object Classification 
- recognize any apple,  

any cup, any dog 
- also called:  

generic object recognition,  
object categorization, … 

- typical definition:  
‘basic level category’
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Complexity of Recognition

3
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Complexity of Recognition

4
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Class of Object Models:  
Part-Based Models / Pictorial Structures

• Pictorial Structures [Fischler & Elschlager 1973] 
‣ Model has two components 

- parts (2D image fragments) 
- structure (configuration of parts)
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“State-of-the-Art” in Object Class Representations

• Bag of Words Models (BoW) 
‣ object model = histogram of local features 

‣ e.g. local feature around interest points 

• Global Object Models 
‣ object model = global feature object feature  

‣ e.g. HOG (Histogram of Oriented Gradients) 

• Part-Based Object Models 
‣ object model = models of parts  

& spatial topology model 

‣ e.g. constellation model or  
ISM (Implicit Shape Model) 

6

BoW: no spatial  
relationships

e.g. HOG:  
fixed spatial  
relationships

e.g. ISM:  
flexible spatial  
relationships
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Bag-of-Words Model (BoW) 
for Object Categorization
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Visual words distributions
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Bag-of-Words Model: Overview

9

feature detection 

& representation 

image representation 
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Bag-of-Words Model:  
Object Representation & Learning

10

feature detection 

& representation 

image representation 
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Sampling Strategies

Image credits: F-F. Li, E. Nowak, J. Sivic

Dense, uniformly Sparse, at 
interest points

Randomly

Multiple interest 
operators

• To find specific, textured objects, sparse 
sampling from interest points often more 
reliable. 

• Multiple complementary interest operators 
offer more image coverage. 

• For object categorization, dense sampling 
offers better coverage. 

    [See Nowak, Jurie & Triggs, ECCV 2006]

11



High Level Computer Vision - May 1o, 2o17

BoW-1. Feature detection and representation

12

Normalize
patch

Compute
SIFT

descriptor
      [Lowe’99]
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SIFT - Scale Invariant Feature Transform [Lowe]

• Interest Points: 
‣ Difference of Gaussians 

• Feature Descriptor: 
‣ local histogram of 4x4 local orientation histograms (each over 16x16 pixels),  

- 8 orientations x 4 x 4 = 128 dimensions 

‣ example: 2x2 local orientation histogram (each of 4x4 pixels):
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BoW-1. Feature detection and representation
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BoW-2. Codewords (= “visual words”) dictionary 
formation

15

…
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BoW-2. Codewords dictionary formation
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…

Vector quantization



High Level Computer Vision - May 1o, 2o17

BoW-2. Codewords dictionary formation
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Fei-Fei et al. 2005
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Image patch examples of codewords / “visual words”
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Sivic et al. 2005
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BoW-3. Object / Image representation:  
Histogram over Codewords / Visual Words
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categorycategory
decisiondecision

codewords dictionarycodewords dictionary

category modelscategory models
(and/or) classifiers(and/or) classifiers

Learning andLearning and
RecognitionRecognition
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Learning and Recognition

• Generative method:  
‣ graphical models 

• Discriminative method:  
‣ Support Vector Machine (SVM) 

21

category models 
(and/or) classifiers
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Generative Models explored

• Naïve Bayes classifier 
‣ Csurka Bray, Dance & Fan, 2004 

• Hierarchical Bayesian text models  (pLSA and LDA) 
‣ Background: Hoffman 2001, Blei, Ng & Jordan, 2004 

‣ Object categorization: Sivic et al. 2005, Sudderth et al. 2005 

‣ Natural scene categorization: Fei-Fei et al. 2005
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Naïve Bayes Classifier

• Classify image using histograms of occurrences on visual words:  
                                           
 
 
 
if only present/absence of a word is taken into account:  

• Naïve Bayes classifier assumes that visual words are conditionally 
independent given object class
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P (x|c) =
m�

i=1

P (xi|c)

…..

fre
qu
en
cy

xi

x =

xi � {0, 1}

Based on lecture by Prof. 
T. Hofmann
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Naive Bayes Classifier

• Multinomial model for each object class: 

• Class priors:         ,  with  

• Posterior probabilities: 

24

P (x|c) =
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P (xi|c)

P (c)
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Naive Bayes Classifier: Decision

• Bayes optimal decision:
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c� = argmaxc P (c|x)

= argmaxc

�
log P (c) +

n⇤

t=1

log P (xt|c)
⇥
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Image Classification with Naive Bayes

• Image dataset: 7 object categories, arbitrary views, partial occlusions
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Csurka et al. 2004
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Example of feature extraction

27

All features detected in the image Features corresponding to 
two different visual words

Csurka et al. 2004
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Recognition results:

28

Examples of correctly classified images:
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Summary & Discussion:  
BoW for Object Categorization

• Bag-of-words representation: 
‣ Sparse representation of object category 

‣ Many machine learning methods are directly applicable. 
‣ Robust to occlusions 

‣ Allows sharing of representation between multiple classes 

• Problems: 
‣ Localization  of objects in images is problematic 

‣ Spatial distribution of visual words is not modeled, all these images have equal 
probability for bag-of-words methods:
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Beyond Bag-of-Words: Spatial Pyramid Matching

• Address the problem of preserving “some” spatial information 
• Still applicable to local feature representations 
• Idea: 

‣ compute local bag of words representations 

‣ concatenate the representations 

• following slides form Svetlana Lazebnik

30



High Level Computer Vision - May 1o, 2o17

2

" A %pre-attentive/ approach: recognize the scene as a whole without examining 
its constituent objects

" Inspiration: locally orderless images Koenderink & Van Doorn (1999)

" Previous work: %subdivide-and-disorder/ strategy

Overview

Szummer & Picard (1997) SIFT: Lowe (1999, 2004) Gist: Torralba et al. (2003)

Biederman (1988), Thorpe et al. (1996), Fei-Fei et al. (2002), Renninger & Malik (2004)
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3

Spatial pyramid representation

level 0 level 1 level 2

5 Extension of a bag of features
5 Locally orderless representation at several levels of resolution
5 Based on pyramid match kernels Grauman & Darrell (2005)

E Grauman & Darrell: build pyramid in feature space, discard spatial information
E Our approach: build pyramid in image space, quantize feature space

32
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5

Feature extraction

Weak features Strong features

Edge points at 2 scales and 8 orientations
(vocabulary size 16)

SIFT descriptors of 16x16 patches sampled
on a regular grid, quantized to form visual
vocabulary (size 200, 400)

33
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6

Scene category dataset
Fei-Fei & Perona (2005), Oliva & Torralba (2001) 

Fei-Fei & Perona: 65.2%

Multi-class classification results (100 training images per class)

http://www-cvr.ai.uiuc.edu/ponce_grp/data
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7

Scene category retrieval
Query Retrieved images

35
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8

Scene category confusions

Difficult indoor images

kitchen bedroomliving room

36
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9

Caltech101 dataset
Fei-Fei et al. (2004)

Multi-class classification results (30 training images per class)

http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html
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“State-of-the-Art” in Object Class Representations

• Bag of Words Models (BoW) 
‣ object model = histogram of local features 

‣ e.g. local feature around interest points 

• Global Object Models 
‣ object model = global feature object feature  

‣ e.g. HOG (Histogram of Oriented Gradients) 

• Part-Based Object Models 
‣ object model = models of parts  

& spatial topology model 

‣ e.g. constellation model or  
ISM (Implicit Shape Model) 

38

BoW: no spatial  
relationships

e.g. HOG:  
fixed spatial  
relationships

e.g. ISM:  
flexible spatial  
relationships
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Part-Based Models - Overview Today (more next week)

• Part-Based using Manual Labeling of Parts  
‣ Detection by Components 

‣ Multi-Scale Parts 

• The Constellation Model  
‣ automatic discovery of parts and part-structure 

• The Implicit Shape Model (ISM) 
‣ parts obtained by clustering interest-points 

‣ star-model to model configuration of parts

39
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Manually Selected Parts

• Simplest solution 
‣ Let a human expert select a set of parts 

‣ (If it doesn’t work, take a different human expert)

40

Mohan, Papageorgiou, Poggio, ‘01
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Example 1: Detection by Components

• Application 
‣ Pedestrian detection 

• Representation by 4 parts 
‣ Part candidates are selected 

by a human expert 

‣ Part detectors are learned 
and applied independently 

‣ The “most suitable” head,  
leg, and arms are identified 
by the part detectors

41

Mohan, Papageorgiou, Poggio, ‘01
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Example 1: Detection by Components

• “Structural model” via a Combination Classifier (stacking) 

‣ Part scores are fed into 
the combination classifier 

‣ Combination classifier  
classifies the pattern as 
“person” or “non-person” 

‣ The person is detected as an 
ensemble of its parts

Mohan, Papageorgiou, Poggio, ‘01
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Example 1: Detection by Components

• Detection results

43

Mohan, Papageorgiou, Poggio, ‘01
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Example 1: Detection by Components

• Robustness to occlusion 
‣ System still detects pedestrians if a part is not visible

44

Mohan, Papageorgiou, Poggio, ‘01
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Discussion

• Approach 
‣ Manually selected set of parts - Specific detector trained for each part 

‣ Spatial model trained on part activations 

‣ Evaluate joint likelihood of part activations 

• Advantages 
‣ Parts have intuitive meaning. 

‣ Standard detection approaches can be used for each part (e.g. SVMs or AdaBoost). 

‣ Works well for specific categories. 

• Disadvantages 
‣ Parts need to be selected manually 

- Semantically motivated parts sometimes don’t have a simple appearance distribution 

- No guarantee that some important part hasn’t been missed 

‣ When switching to another category, the model has to be rebuilt from scratch. 

⇒ Goal: Model that can be automatically learned for many categories

45
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Part-Based Models - Overview Today (more next week)

• Part-Based using Manual Labeling of Parts  
‣ Detection by Components 

‣ Multi-Scale Parts 

• The Constellation Model  
‣ automatic discovery of parts and part-structure 

• The Implicit Shape Model (ISM) 
‣ parts obtained by clustering interest-points 

‣ star-model to model configuration of parts

46
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Constellation of Parts

47

x1

x3

x4

x6

x5

x2

Fully connected shape model

Weber, Welling, Perona, ’00;  
Fergus, Zisserman, Perona, 03
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Automatic Part Learning

• Basic idea consists of two steps 
‣ “Part” candidates in each image 

- take the output regions of an interest point detector as part candidates  
(use scale-invariant interest point detector for that). 

- interest point detector “guarantees” (sort of ;-) that similar structures will be  detected in all 
images (keyword: repeatability) 

‣ “Part learning” 
- find those regions, that occur repeatedly on different instances of the same object:  
- for this:  group (=cluster) the extracted regions to find those that are characteristic for the 

object category.

48

Fergus, Zisserman, Perona, ‘03
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Representation of Appearance

49

11x11 patch Normalize
Projection onto

PCA basis

c1

c2

c15

Fergus, Zisserman, Perona, ‘03

interest point 
detection

size 
normalized

luminance 
normalized
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Selected Features & “Parts” (=feature clusters)

50

interest points
100 clusters

Weber, Welling, Perona, ‘00
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Weakly Supervised Training

• Repeating structures (clusters in appearance space and in location 
space) are more likely to belong to the object category than to the 
background.  
⇒ Clusters should mainly represent objects.
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200 images containing faces 200 background images

Weber, Welling, Perona, ‘00
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Constellation Model

• Joint model for appearance and structure (=shape) 
‣ X: positions, A: part appearance, S: scale 

‣ h: Hypothesis = assignment of features (in the image) to  
parts (of the model)

52

Gaussian shape pdf
Prob. of  

detection

Gaussian part appearance pdf

Gaussian  
relative scale pdf

Log(scale)

Weber, Welling, Perona, ’00;  
Fergus, Zisserman, Perona, 03
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Training Procedure

• Need to solve two problems 
‣ Select a subset of appearance clusters as part candidates 

- Greedy strategy 
- Start with 3-part model, then test if additional part  

improves the results 

‣ Learn the parameters of their joint probability density over  
appearance & structure 
- Expectation Maximization (EM) algorithm

53

Weber, Welling, Perona, ‘00
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Learning

• Task: Estimation of model parameters 
• Chicken and Egg type problem, since we initially know neither: 

‣ Model parameters 

‣ Assignment of regions to foreground/background 

• Let the assignments be a hidden variable and use EM algorithm to 
learn them and the model parameters

54
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Learning Procedure

• Find regions: their location, scale & appearance 
• Initialize model parameters 
• Use EM and iterate to convergence 

‣ E-step: Compute assignments for which regions are foreground/background 

‣ M-step: Update model parameters 

• Trying to maximize likelihood – consistency in shape & appearance

55
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Experiments

• Data sets 
‣ Motorbikes, Airplanes, Faces, Cars from side and behind, Spotted cats 

‣ and background images 
‣ Between 200 and 800 images per category

56

• Training 
‣ 50% of images 
‣ position of object unknown within 

image (called weakly supervised)

• Testing 
‣ 50% of images 
‣ Simple object present/absent test 
‣ ROC equal error rate computed,  

using background set of images

Fergus, Zisserman, Perona, ‘03
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Example: Motorbikes - Part Hypotheses

57

Fergus, Zisserman, Perona, ‘03
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Example: Motorbikes - Learned Parts
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Fergus, Zisserman, Perona, ‘03
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Motorbikes - Constellation Model
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Equal error rate: 7.5%

Fergus, Zisserman, Perona, ‘03
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Background Images

60

Fergus, Zisserman, Perona, ‘03
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Frontal Faces - Constellation Model
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Equal error rate: 4.6%

Fergus, Zisserman, Perona, ‘03
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Airplanes - Constellation Model

62

Equal error rate: 9.8%

Fergus, Zisserman, Perona, ‘03
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Spotted Cats - Constellation Model
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Equal error rate: 10.0%

Fergus, Zisserman, Perona, ‘03
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Cars (Rear Views) - Constellation Model
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Equal error rate: 9.7%

Fergus, Zisserman, Perona, ‘03
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Robustness of the Algorithm

65

Fergus, Zisserman, Perona, ‘03
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Discussion

• Advantages 
‣ Works well for different object categories 

‣ Can adapt to categories where 
- Shape/structure is more important 

- Appearance is more important 

‣ Everything is learned from training data 

‣ Weakly-supervised training possible 

• Disadvantages 
‣ Model contains many parameters that need to be estimated 

‣ Cost increases exponentially with increasing number of parameters  
(that is in particular with the # of parts !)
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Part-Based Models - Today

• Part-Based using Manual Labeling of Parts  
‣ Detection by Components 

‣ Multi-Scale Parts 

• The Constellation Model  
‣ automatic discovery of parts and part-structure 

• The Implicit Shape Model (ISM) 
‣ parts obtained by clustering interest-points 

‣ star-model to model configuration of parts
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Implicit Shape Model: Object Categorization

• Goals 
‣ Learn to recognize object categories 

‣ Detect and localize them in real-world scenes 

‣ Segment objects from background 

• Combination with top-down segmentation 
‣ Initial hypothesis generation 

‣ Category-specific figure-ground segmentation - used to verify object hypothesis

68

“cow”

“motorbike”

“car”
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Codebook Representation

• Extraction of local object patches 
‣ Interest Points (e.g. Harris detector, Hes-Lap, DoG, ...) 

‣ inspired by [Agarwal & Roth, 02] 

• Collect patches from whole training set 
‣ Example:

69
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Appearance Codebook

• Clustering Results 
‣ Visual similarity preserved 

‣ Wheel parts, window corners, fenders, ... 

‣ Store cluster centers as Appearance Codebook

70

…
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Learning the Spatial Layout

• For every codebook entry, store possible “occurrences”

71

‣   Object identity 
‣   Pose 
‣   Relative position

‣   Object identity 
‣   Pose 
‣   Relative position

For new image, let the matched patches vote for possible object positions
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Implicit Shape Model - Representation

• Learn appearance codebook 
‣ Extract patches at DoG interest points 

‣ Agglomerative clustering ⇒ codebook 

• Learn spatial distributions 
‣ Match codebook to training images 

‣ Record matching positions on object

72

105 training images  
(+motion segmentation) Appearance codebook…

…
…
…

…

Spatial occurrence distributions
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Object Detection: ISM (Implicit Shape Model)

• Appearance of parts:  
Implicit Shape Model (ISM)  
[Leibe, Seemann & Schiele, CVPR 2005]

73

xo
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Spatial Models for Categorization

74

x1

x3

x4

x6

x5

x2

“Star” shape model

x1

x3

x4

x6

x5

x2

Fully connected shape model

‣  e.g. Constellation Model 
‣  Parts fully connected 
‣  Recognition complexity: O(NP) 
‣  Method: Exhaustive search

‣  e.g. ISM (Implicit Shape Model) 
‣  Parts mutually independent 
‣  Recognition complexity: O(NP) 
‣  Method: Generalized Hough Transform
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Object Categorization Procedure

75

Interest Points Matched Codebook  
Entries

Probabilistic  
Voting

Interpretation 
(Codebook match)

Object  
Position

Image Patch

o,xe I
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Object Categorization Procedure

76

Voting Space 
(continuous)

Interest Points Matched Codebook  
Entries

Probabilistic  
Voting

Backprojection 
of Maximum

Refined Hypothesis 
(uniform sampling)

Backprojected 
Hypothesis
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Car Categorization - Qualitative Results

• 1st hypothesis

77

2nd hypothesis

4th hypothesis

7th hypothesis

8th hypothesis
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Results on Cows

78

Original imageInterest pointsMatched patchesProb. Votes
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Results on Cows

79

1’st hypothesis
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Results on Cows

80

2’nd hypothesis
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Results on Cows

81

3’rd hypothesis
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More Results on Cows…

82

2’nd hypothesis 14’th hypothesis8’th hypothesis16’th hypothesis
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Detection Results

• Qualitative Performance (UIUC database - 200 cars) 
‣ Recognizes different kinds of cars 

‣ Robust to clutter, occlusion, low contrast, noise

83

Leibe, Leonardis, Schiele, ‘04
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Quantitative Evaluation

• Results on UIUC car database 
‣ (170 images containing 200 cars) 

‣ Good performance, similar to Constellation Model  

‣ Still some false positives

84

-
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Scale Invariance

• Scale-invariant feature selection 
‣ Scale-invariant interest points 

‣ Rescale extracted patches 
‣ Match to constant-size codebook 

• Generate scale votes 
‣ Scale as 3rd dimension in voting space 

‣ Search for maxima in 3D voting space

85

Search  
window

x

y

s

Leibe, Schiele ‘04
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Qualitative Detection Results

86

Altogether, objects detected with factor 5.0 scale differences!

scale = 0.75

scale = 3.71
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Discussion

• Approach: Implicit Shape Model 
‣ Generate appearance codebook 

‣ Learn spatial occurrence distribution for each codebook entry 
‣ Recognition using a probabilistic extension of the Generalized Hough Transform 

• Advantages 
‣ Highly flexible shape model 

‣ Each image feature acts independently 

‣ Possible to learn good object models already from very few (50-100) training 
examples 

‣ Recognition is fast!

87
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Discussion (2)

• Disadvantages 
‣ Each feature acts independently  
⇒ Assumption violated if sampled patches overlap 

‣ Only loose constraints on object shape 

‣ False positives on structured regions of the background 

⇒ Hypothesis verification needed 

• Idea: Combination with top-down segmentation 
‣ Initial hypothesis generation 
‣ Category-specific figure-ground segmentation 

‣ Hypothesis verification using segmentation

88
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"Closing the Loop"

89

Voting Space 
(continuous)

Interest Points Matched Codebook  
Entries

Probabilistic  
Voting

Backprojection 
of Maximum

Refined Hypothesis 
(uniform sampling)

Backprojected 
Hypothesis

Segmentation
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Segmentation: Probabilistic Formulation

• Influence of patch e on object hypothesis

90

•  Backprojection to patches e and pixels p:

Leibe, Schiele, ‘03
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Segmentation: Probabilistic Formulation

• Resolve patches by interpretations (codebook entries) I

91

Segmentation 
information

Influence on  
object hypothesis

  ⇒ Store patch segmentation mask for every occurrence position!

Leibe, Schiele, ‘03
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Segmentation

92

p(figure)
p(ground)

Segmentation

p(figure)

Original image

p(ground)
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• Interpretation of p(figure) map 
‣ per-pixel confidence in object hypothesis 

‣ Use for hypothesis verification 

p(figure)

p(ground)

Segmentation

Segmentation

p(figure)

p(ground)

Original image

93
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Top-Down Driven Segmentation

• Example 1: 
 
       

‣ Pedestrian is segmented out since it does not contribute  
to the car hypothesis

94

• Example 2:

image hypothesis segmentation p(figure)

image
p(figure)segmentationsub-image 

contours

Leibe, Schiele, ‘03
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Motorbikes: Segmentation Results

95

Leibe, Schiele, ‘04
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Hypothesis Verification: Motivation

• Secondary hypotheses 
‣ Desired property of algorithm!  ⇒ robustness to partial occlusion 

‣ Standard solution: reject based on bounding box overlap 
 ⇒ Problematic - may lead to missing detections!  

⇒ Use segmentations to resolve ambiguities instead

96

Leibe, Leonardis, Schiele, ‘04



High Level Computer Vision - May 1o, 2o17

Formalization in MDL Framework

• Savings of a hypothesis [Leonardis, IJCV’95] 

• with 
‣ Sarea    : #pixels N in segmentation 

‣ Smodel   : model cost, assumed constant 

‣ Serror   : estimate of error, according to 

• Final form of equation

97

Sh = K0Sarea �K1Smodel �K2Serror

Serror =
�

p�Seg(h)

(1� p(p = figure|h))

Sh = �K1

K0
+

�
1� K2

K0

⇥
N +

K2

K0

⇤

p�Seg(h)

p(p = figure|h)
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Formalization in MDL Framework (2)

• Savings of combined hypothesis 

• Goal: Find combination (vector m) that best explains the image 
‣ Quadratic Boolean Optimization problem     [Leonardis et al, 95] 

‣ In practice often sufficient to compute greedy approximation
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Sh1�h2 = Sh1 + Sh2 � Sarea(h1 ⇥ h2) + Serror(h1 ⇥ h2)
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Performance after Verification Stage

• Direct Comparison
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-

195/200 correct detections 
5 false positives
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Other Categories: Cows

• Articulated Object Recognition 
‣ Use set of cow sequences (from Derek Magee@Leeds) 

• Extract frames from subset  
    of sequences
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  Train on 113 images 
    (+ segmentation)

Leibe, Leonardis, Schiele, ‘04
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Cows: Results on Novel Sequences

• Object Detections 
‣ Single-frame recognition - No temporal continuity used!
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Leibe, Leonardis, Schiele, ‘04
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Cows: Results on Novel Sequences (2)

• Segmentations from interest points 
‣ Single-frame recognition - No temporal continuity used!

Leibe, Leonardis, Schiele, ‘04
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Cows: Results on Novel Sequences (3)

• Segmentations from refined hypotheses 
‣ Single-frame recognition - No temporal continuity used!
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Leibe, Leonardis, Schiele, ‘04
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Another Example

• Object Detections
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Leibe, Leonardis, Schiele, ‘04
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Another Example (2)

• Segmentations from interest points
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Leibe, Leonardis, Schiele, ‘04
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Another Example (3)

• Segmentations from refined hypotheses
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Leibe, Leonardis, Schiele, ‘04
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Robustness to Occlusion

• Quantitative results (14 sequences, 2217 frames total) 
‣ No difficulties recognizing fully visible cows (99.1% recall) 

‣ Robust to significant partial occlusion! 

‣ Some detections even with 20-30% visibility
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Example Detections
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