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Class of Object Models:
Part-Based Models / Pictorial Structures

e Pictorial Structures [Fischler & Elschlager 1973]

» Model has two components
- parts (2D image fragments)

- structure (configuration of parts)

MOUTH
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“State-of-the-Art” in Object Class Representations

Bag of Words Models (BoW)

» object model =

histogram of local features

» e.g. local feature around interest points

Global Object Models

» object model

» e.g. HOG (Histogram of Oriented Gradients)

= global feature object feature

Part-Based Object Models

» object model =

models of parts

& spatial topology model

» e.g. constellation model or
ISM (Implicit Shape Model)

But: What is the Ideal Notion of Parts here?
And: Should those Parts be Semantic?

BoW: no spatial
relationships

5 06
) OQ

e.g. HOG:
fixed spatial
relationships

e.g. ISM:
flexible spatial
relationships
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Constellation of Parts

Fully connected shape model

Weber, Welling, Perona, ’00;
Fergus, Zisserman, Perona, 03
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Constellation Model

Weber, Welling, Perona, ’00;
Fergus, Zisserman, Perona, 03

Joint model for appearance and structure (=shape)

» X: positions, A: part appearance, S: scale

» h: Hypothesis = assignment of features (in the image) to
parts (of the model)

p(X,S,A|0) = Z p(X,S, A, h|0)

he H
o E p (A|X, S, h, Q)p(X]S h,6) p(S|h, 8) p(h|9)
~~ N e e, e e
heH T A ] L ]
Appearance Shape Rel. Scale Other
Gaussian part appearance pdf Gaussian shape pdf
ST Prob. of
Gaussian detection
- relative scale pdf
/ Log(scale
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Object Detection: ISM (Implicit Shape Model)

* Appearance of parts:

Implicit Shape Model (ISM)
[Leibe, Seemann & Schiele, CVPR 2005]
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Spatial Models for Categorization

Fully connected shape model “Star” shape model

e.g. Constellation Model

Parts fully connected
Recognition complexity: O(NP)
Method: Exhaustive search

e.g. ISM (Implicit Shape Model)

Parts mutually independent
Recognition complexity: O(NP)
Method: Generalized Hough Transform

v v Vv Vv
v v v Vv
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- ] [Leibe,Schiele@bmvc03]
Implicit Shape Model: [Leibe, Leonardis, Schiele@ijcvO8]

What are Good Parts?

e Parts of the Implicit Shape Model
» “parts” = feature clusters

» lots of “parts” (in the order of
1’000 - 10’000 codebook entries)
the more the better !

» “parts” are mostly non-semantic

e ‘parts” = (mostly non semantic) feature clusters also true for
» bag of words models
» constellation model (much fewer “parts” - but still feature clusters)
>
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Part-Based Models - Overview Today

e |Last Week:

» Part-Based based on Manual Labeling of Parts
- Detection by Components, Multi-Scale Parts
» The Constellation Model
- automatic discovery of parts and part-structure
» The Implicit Shape Model (ISM)

- star-model of part configurations, parts obtained by clustering interest-points

* Today:
» Pictorial Structures Model
» Learning Object Model from CAD Data

» Deformable Parts Model (DPM)
» Discussion Semantic Parts vs. Discriminative Parts
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People Detection: partiSM

e Appearance of parts:

Implicit Shape Model (ISM)
[Leibe, Seemann & Schiele, CVPR 2005]
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People Detection: partiSM

Appearance of parts:

Implicit Shape Model (ISM)
[Leibe, Seemann & Schiele, CVPR 2005]

Part decomposition and inference:
Pictorial structures model
[Felzenszwalb & Huttenlocher, 1JCV 2005]

p(L|D) < p(D|L)p(L)

/

Body-part positions Image evidence
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Pictorial Structures Model

p(D|L)p(L)
p(L|D) =
R
Body-part positions Image evidence

e Two Components
» Prior (capturing possible part configurations):

» Likelihood of Parts (capturing part appearance):

o p(D|L)p(L)
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Pictorial Structures:
Model Components

[Andriluka,Roth,Schiele@cvpr09]

e Body is represented as flexible configuration of body parts

posterior over body poses

p(L|D) o p(D|L)p(L)

likelihood of observations /

prior on body poses

orientation K

likelihood |

Qf part N

estimated
pose

N

part
posteriors
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Kinematic Tree Prior (1)
(modeling the structure) O ﬁm 0.0

W o -

e Represent pairwise part relations
[Felzenszwalb & Huttenlocher, [JCV'05]

p(lafly) = N (T12(12)|To1 (1), %)

part locations relative transformed

to the joint part locations
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Kinematic Tree Prior

» Prior parameters: [T} Z"?j}
e Parameters of the prior are estimated with maximum likelihood
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Pictorial Structures:
Model Components [Andriluka,Roth,Schiele@cvpr09]

e Body is represented as flexible configuration of body parts

posterior over body poses

N
p(L|D) o p(D|L)p(L)

likelihood of observations / prior on body poses
f - likelihood | [ | A
orientation K ofpartN || estimated part
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Likelihood Model

e Assumption:

» evidence (image features) for each part independent of all other parts:

p(D|L) = Hp

e assumption clearly not correct, but
» allows efficient computation
» works rather well in practice
» training data for different body parts should cover “all” appearances
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Likelihood Model

* Build on recent advances in object detection:

» state-of-the-art image descriptor: Shape Context
[Belongie et al., PAMI'02; Mikolajczyk&Schmid, PAMI'05]

» dense representation

» discriminative model: AdaBoost classifier for each body part

- Shape Context: 96 dimensions
(4 angular, 3 radial, 8 gradient
orientations)

- Feature Vector: concatenate the
descriptors inside part bounding box

- head: 4032 dimensions

- torso: 8448 dimensions
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Likelihood Model

 Part likelihood derived from the boosting score:

decision stump weight decision stump output

\ /
25((;1@-) ~ max (Zt O‘gth;i’t i) 8@

part location small constant to deal with part
occlusions
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Likelihood Model

Head Torso Upper leg

Input image

PR e e e Nl 2
e FCUERAR w "
-

»’A " 'vtrvm‘g
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Part-Based Model: [Andriluka,Roth,Schiele@cvpr09]
2D Human Pose Estimation

Our model

[Ramanan,
NIPS’06]

Our model

8/10 .

[Ramanan,

NIPS’06]

4/10 3/10
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Pictorial Structures for Human Pose Estimation:
What are Good Parts?

e Parts of the Pictorial Structures Model

“parts” = semantic body parts

v

» pose estimation = estimation
of body part configuration

» semantic body parts allow to use
motion capture data, etc.
to improve kinematic tree prior

» non-semantic parts (e.g. in the ISM-model) are more difficult to generalize across
human body poses
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Part-Based Models - Overview Today

e |Last Week:

» Part-Based based on Manual Labeling of Parts
- Detection by Components, Multi-Scale Parts
» The Constellation Model
- automatic discovery of parts and part-structure
» The Implicit Shape Model (ISM)

- star-model of part configurations, parts obtained by clustering interest-points

* Today:
» Pictorial Structures Model
» Learning Object Model from CAD Data

» Deformable Parts Model (DPM)
» Discussion Semantic Parts vs. Discriminative Parts
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Back to the Future: [Stark,Goesele,Schiele@bmvc10]
Learning Shape Models from 3D CAD Data

e 3D Computer Aided Design (CAD) Models

» Computer graphics, game design

» Polygonal meshes + texture descriptions
» semantic part annotations (may) exist

e (Can we learn Object Class Models directly from 3D CAD data?

» Issue: Transition between 3D CAD models and 2D real-world images
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Weber, Welling, Perona, ’00;
Fergus, Zisserman, Perona, 03

Constellation Model

e Joint model for appearance and structure (=shape)

» X: positions, A: part appearance, S: scale

» h: Hypothesis = assignment of features (in the image) to
parts (of the model)

p(X,S,A|0) = Z p(X,S, A, h|0)

he H
o E p (A|X, S, h, Q)p(X]S h,6) p(S|h, 8) p(h|9)
~~ N e e, e e
heH T A ] L ]
Appearance Shape Rel. Scale Other
Gaussian part appearance pdf Gaussian shape pdf
ST Prob. of
Gaussian detection
- relative scale pdf
/ Log(scale
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[Stark,Goesele,Schiele@bmvc10]

Three Tools to Meet the Challenge

1. Shape-based appearance abstraction

» Non-photorealistic rendering

— -

— |

» Local shape + global geometry

2. Discriminative part detectors
» Robust local shape features
» AdaBoost classifiers

3. Powerful spatial model

» Full covariance
» Efficient DDMCMC inference
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Shape-based Appearance Abstraction
»> Non-Photorealistic Rendering

e |earn shape models from rendered images

» we do NOT render photo-realistically / texture
» But focus on 3D CAD model edges (mimic real-world image edges)

Part boundaries

Mesh creases

Final edges
(hidden edges removed)

Silhouette

[Stark,Goesele,Schiele@bmvc10]
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I ————
[Stark,Goesele,Schiele@bmvc10]

Shape - Local Shape + Global Geometry

* Part-based object class representation

» Semantic parts from 3D CAD models: left front wheel, left front door, etc.
View-points Left Front left

Parts

l

+

Global
geometry
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I ————
[Stark,Goesele,Schiele@bmvc10]

Qualitative Results

e Three strongest true positive detections per viewpoint model

=
¥ LA

RS )Y

Back-right
e (Observations

» Accurate part localization

» Predicted viewpoints do match
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Shape Model learned from 3D CAD-Data
What are Good Parts?

e Parts of the Shape Model:

» “parts” = just means to enable correspondence across 3D-models

» semantics of parts:
- in our case: yes - because of the employed 3D models

- but: semantics neither necessary nor important

Left Front left Front
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Part-Based Models - Overview Today

e |Last Week:

» Part-Based based on Manual Labeling of Parts
- Detection by Components, Multi-Scale Parts
» The Constellation Model
- automatic discovery of parts and part-structure
» The Implicit Shape Model (ISM)

- star-model of part configurations, parts obtained by clustering interest-points

* Today:
» Pictorial Structures Model
» Learning Object Model from CAD Data
» Deformable Parts Model (DPM)
» Discussion Semantic Parts vs. Discriminative Parts
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slide curtesy: Pedro Felzenszwalb

Object Detection with

Discriminatively Trained Part
Based Models

Pedro F. Felzenszwalb
Department of Computer Science
University of Chicago

Joint with David Mcallester, Deva Ramanan, Ross Girshick
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PASCAL Challenge

e ~10,000 images, with ~25,000 target objects
- Objects from 20 categories (person, car, bicycle, cow, table...)

— Objects are annotated with labeled bounding boxes
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Starting Point: Sliding Window Method

e Sliding Window Based People Detection:

Extract Classify Non-Maxima
Feature Vector Feature Vector Suppression

Two Important Questions:
1) which feature vector
2) which classifier

For example:

‘slide’ detection window over
all positions & scales

- HOG Pedestrian Detector
- HOG descriptor
- linear SVM
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Histogram of Oriented Gradients (HOG):

Static Feature Extraction

Input Image

Normalise gamma
Compute gradients

Weighted vote in spatial &
orientation cells

Contrast normalise over
overlapping spatial cells

Collect HOGs over
detection window

Linear SVM

Detection Window

Cell —

-
L

Block

Overlap
of Blocks

RN SIS

Feature vector f=1 ..., ...
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Starting point: sliding window classifiers

® Detect objects by testing each subwindow
- Reduces object detection to binary classification
- Dalal & Triggs: HOG features + linear SVM classifier

- Previous state of the art for detecting people
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Histogram of Gradient (HOG) features
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® [mage 1s partitioned into 8x8 pixel blocks
® [n cach block we compute a histogram of gradient orientations
— Invariant to changes in lighting, small deformations, etc.

e Compute features at different resolutions (pyramid)
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HOG Filters

® Array of weights for features in subwindow of HOG pyramid

® Score 1s dot product of filter and feature vector

p
= Filter I
18 Score of F at position p is
F-¢(p, H)
- ¢(p, H) = concatenation of
- HOG features from

HOG pyramid H subwindow specified by p
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Dalal & 'Triggs: HOG + linear SVMs

not pedestrian

" F-¢(p,H) <0

_‘¢(I7- H) ®
1L |
.-'......-
H . o e
¢(q') o .. pedestrian
- ' A ® 0

There 1s much more background than objects
Start with random negatives and repeat:

1) Train a model

T 2) Harvest false positives to define “hard negatives™
I'ypical form of

a model
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Overview of our models

® Mixture of deformable part models

® Each component has global template + deformable parts

® [ully trained from bounding boxes alone
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2 component bicycle model
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root filters part filters deformation
coarse resolution  finer resolution models

Each component has a root filter Fo
and n part models (Fi, vi, d;)

HIar

max planck institut Hjgh [ evel Computer Vision - May 17, 2017
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-
Z2=(Po,.., P
- (Poy+vvs Pn)
- i:‘u po : location of root
t Pi,...., Pn - location of parts
Lad
1
. £ : Score 1s sum of filter
2, ' ;‘P scores minus
¥ #4 deformation costs
Image pyramid HOG feature pyramid

Multiscale model captures features at two-resolutions
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Score of a hypothesis

“data term” “spatial prior”

T T
SC()I‘(‘,(])(), .« o -,p'n.) — Z Fz ’ ¢(Hspt) | Z dz ’ (dmg’dyf)
i=0 T =1 I displacements

filters deformation parameters

score(z) = 3-V(H,z)

A

concatenation filters and  concatenation of HOG
deformation parameters features and part
displacement features
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Matching

® Define an overall score for each root location

- Based on best placement of parts

score(pg) = max score(pg. . ... D)o
Plseees Pn

® [High scoring root locations define detections
- “sliding window approach™

e Lfficient computation: dynamic programming +
generalized distance transforms (max-convolution)
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Efficient Computation

e Overall score: " n
score(po, ... ,Pn) = ZFz - o(H,p;) — Zdi - (dz, dy7)
i=0

i=1
 Maximization can be done separately:

SCO’I“G(}?()) — plﬂla}; SCOTQ(pOa e 7pn)
yeersDPn

— FO ) qb(vaO)_'_
max (F1 - O(H,p1) — dy - (de%ady%)) +

P1

max (F, - ¢(H,pn) — dy - (da}, dy?))
Pn
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input image

head filter

Response of filter in 1-th pyramid level
Ri(z,y) = F - ¢(H, (z,9,1))

cross-correlation

Transformed response

Di(x,y) = max (R;(;v +dz,y + dy) — d; - (dz?, (13/2))

dx,dy

max-convolution, computed in linear time
(spreading, local max, etc)
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teature map at twice the resolution

response of part filters

N -

transtormed responses

response of root filter|

color encoding of filter
response values

_ combined score of
root locations
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Matching results

(after non-maximum suppression)

~1 second to search all scales

HiIar
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Training
® ‘[raining data consists of images with labeled bounding boxes.

® Need to learn the model structure, filters and deformation costs.

Training
4)

o) | U S S R
W J.I I'.l‘,.l “.;u} lf") _t’ _!_l ",' !
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SVM training

e C(Classifier scores and example x using:

f(z)=p-2(z)
» model parameter: 5
» feature vector: ) ( 33)

e Linear SVM:

» objective: maximize margin
(for best generalization)

margin
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SVM training

e Training data:

D = ((z1,y1), -+, (Tn,Yn)) with y; € {-1,1}

e (Constraints:

f(x;) =2 +1 for y; = +1
f(x;) < —1for y;, = —1

margin
= yif(z;) > +1

= 02>1—yf(x;)
e Training error:

Z IT11aX (O, 1 — yzf(ﬂﬁz))
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SVM training

e Two objectives: 1
min §||5||2

min Z max (0,1 — y; f(z;))

. . i=1
 Therefore minimize (primal formulation)

» maximize margin:
» minimize training error:

L(5) = min <%|5|2 + ZmaX (0,1 — yzf(fl?z)))

b i=1
e Hinge loss: 4

H(z) = max(0,1 — 2)
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su Latent SVM (MI-SVM)

Classifiers that score an example x using

fa(z) = max B-®P(z,2)
zeZ(x) '

[ are model parameters
Z are latent values

Training data D = ((x1,%1), .- -, (T Ui ) ) y; € {—1,1}
We would like to find 3 such that: vifs(xi) >0
Minimize

Lp(3 :—'|)’|\ + Zmd\ 0,1 —y;fa(z;))

=1
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Latent SVM training

| o 4 n '
Lp(3) = 3|].7’|]“ + ( anx((). 1l —y; falz;))

i=1
e Convex if we fix z for positive examples
e Optimization:
- Initialize /5 and iterate:
- Pick best z for each positive example

- Optimize f3 via gradient descent with data-mining
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\{

® Scquence of training rounds

Training algorithm, nested iterations
Fix “best” positive latent values for positives
Harvest high scoring (x,z) pairs from background images

Update model using gradient descent

v Trow away (x,z) pairs with low score

~ Train root filters
- Inmitialize parts from root

— Tramn final model
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Car model

LA P
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root filters part filters deformation
coarse resolution finer resolution models
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Car detections

high scoring true positives

JL!il

high scoring false positives
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Person model
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finer resolution

root filters
coarse resolution
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Person detections

high scoring false positives

'0 S ~ ) 1 o \ 1 -V ).
high scoring true positives (not enough overlap)
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slides from Dan Huttenlocher

PASCAL VOC 2007 Person Detection PASCAL VOC 2008 Person Detection

» Pictorial structure model —— = Disjunction of two pictorial structures
- 45% precision at 20% recall - 80% precision at 20% recall

o8|

'''''

PASCAL VOC 2009 Person Detection

= Disjunction of three pictorial structures
- 85% precision at 20% recall

N
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Cat model

root filters part filters deformation
coarse resolution finer resolution models

P l .k' sl1 . . .
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Cat detections

high scoring false positives

high scoring true positives
= = P (not enough overlap)
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Bottle model

root filters part filters
coarse resolution finer resolution

deformation
models

HIar
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Horse detections

high scoring true positives

high scoring false positives
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Quantitative results

e 7 systems competed in the 2008 challenge
e Out of 20 classes we got:
- First place 1n 7 classes
- Second place in 8 classes
® Some statistics:
— It takes ~2 seconds to evaluate a model 1n one 1image
- It takes ~4 hours to train a model

- MUCH faster than most systems.
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Precision/Recall results on Bicycles 2008
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Precision/Recall results on Person 2008
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Precision/Recall results on Bird 2008
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Comparison of Car models on 2006 data

class: car, year 2006
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Summary

® Deformable models for object detection
- Irast matching algorithms
- Learning from weakly-labeled data
— Leads to state-of-the-art results in PASCAL challenge
® luture work:
- Hierarchical models
- Visual grammars

- AO%* search (coarse-to-fine)
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Part-Based Models - Overview Today

e |Last Week:

» Part-Based based on Manual Labeling of Parts
- Detection by Components, Multi-Scale Parts
» The Constellation Model
- automatic discovery of parts and part-structure
» The Implicit Shape Model (ISM)

- star-model of part configurations, parts obtained by clustering interest-points

* Today:
» Pictorial Structures Model
» Learning Object Model from CAD Data

» Deformable Parts Model (DPM)
» Discussion Semantic Parts vs. Discriminative Parts
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What are Ideal Parts for
Part-Based Object Models?

e Parts can/may

» be semantic body parts - e.g. for articulated
human body pose estimation

» be feature clusters (typically many clusters)
(e.g. ISM, constellation model, BoW)

» support learnability of
discriminant appearance (e.g. DPM model)

» enable correspondence
across 3D models

e in all those cases: the most important property is that
“parts” facilitate correspondence across object instances
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What are Ideal Parts for
Part-Based Object Models?

e Multiple motivations for part based models exist:

» intuitiveness: semantic meaning of parts/attributes is attractive
(e.g. enables use of language sources)

» learnability: sharing of parts/attributes across instances/classes
» scalability: transferability of parts/attributes across classes
>

* in general, parts support learnability and scalability when they
facilitate correspondence

» across object instances

» across object classes

» across modalities (e.g. from language to visual appearance)

» and semantics is only a secondary concern (for “intuitiveness”)
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What are Ideal Parts for
Part-Based Object Models?

the Good, the Bad, and the Ugly
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