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• Pictorial Structures [Fischler & Elschlager 1973] 
‣ Model has two components 

- parts (2D image fragments) 
- structure (configuration of parts)
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Class of Object Models:  
Part-Based Models / Pictorial Structures
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• Bag of Words Models (BoW) 
‣ object model = histogram of local features 

‣ e.g. local feature around interest points 

• Global Object Models 
‣ object model = global feature object feature  

‣ e.g. HOG (Histogram of Oriented Gradients) 

• Part-Based Object Models 
‣ object model = models of parts  

& spatial topology model 

‣ e.g. constellation model or  
ISM (Implicit Shape Model)  

• But: What is the Ideal Notion of Parts here?  
• And: Should those Parts be Semantic? 

“State-of-the-Art” in Object Class Representations
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BoW: no spatial  
relationships

e.g. HOG:  
fixed spatial  
relationships

e.g. ISM:  
flexible spatial  
relationships
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Constellation of Parts
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Fully connected shape model

Weber, Welling, Perona, ’00;  
Fergus, Zisserman, Perona, 03
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Constellation Model

• Joint model for appearance and structure (=shape) 
‣ X: positions, A: part appearance, S: scale 

‣ h: Hypothesis = assignment of features (in the image) to  
parts (of the model)

5

Gaussian shape pdf
Prob. of  
detection

Gaussian part appearance pdf

Gaussian  
relative scale pdf

Log(scale)

Weber, Welling, Perona, ’00;  
Fergus, Zisserman, Perona, 03
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Object Detection: ISM (Implicit Shape Model)

• Appearance of parts:  
Implicit Shape Model (ISM)  
[Leibe, Seemann & Schiele, CVPR 2005]
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Spatial Models for Categorization
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“Star” shape model
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x3
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x5

x2

Fully connected shape model

‣  e.g. Constellation Model 
‣  Parts fully connected 
‣  Recognition complexity: O(NP) 
‣  Method: Exhaustive search

‣  e.g. ISM (Implicit Shape Model) 
‣  Parts mutually independent 
‣  Recognition complexity: O(NP) 
‣  Method: Generalized Hough Transform
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Implicit Shape Model: 
What are Good Parts?
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[Leibe,Schiele@bmvc03]
[Leibe,Leonardis,Schiele@ijcv08]

• Parts of the Implicit Shape Model 
‣ “parts” = feature clusters  

‣ lots of “parts” (in the order of  
1’000 - 10’000 codebook entries)  
the more the better ! 

‣ “parts” are mostly non-semantic 

• “parts” = (mostly non semantic) feature clusters also true for  
‣ bag of words models 

‣ constellation model (much fewer “parts” - but still feature clusters) 

‣ ... 
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Part-Based Models - Overview Today

• Last Week: 
‣ Part-Based based on Manual Labeling of Parts  

- Detection by Components, Multi-Scale Parts 

‣ The Constellation Model  
- automatic discovery of parts and part-structure 

‣ The Implicit Shape Model (ISM) 
- star-model of part configurations, parts obtained by clustering interest-points 

• Today: 
‣ Pictorial Structures Model 

‣ Learning Object Model from CAD Data 

‣ Deformable Parts Model (DPM)  

‣ Discussion Semantic Parts vs. Discriminative Parts
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People Detection: partISM

• Appearance of parts:  
Implicit Shape Model (ISM)  
[Leibe, Seemann & Schiele, CVPR 2005]
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People Detection: partISM

• Appearance of parts:  
Implicit Shape Model (ISM)  
[Leibe, Seemann & Schiele, CVPR 2005] 

• Part decomposition and inference:  
Pictorial structures model  
[Felzenszwalb & Huttenlocher, IJCV 2005]
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Body-part positions Image evidence
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x4
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p(L|D) � p(D|L)p(L)
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Pictorial Structures Model

• Two Components 

‣ Prior (capturing possible part configurations): 

‣ Likelihood of Parts (capturing part appearance): 
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Body-part positions Image evidence

p(L|D) =
p(D|L)p(L)

p(D)
� p(D|L)p(L)

p(L)

p(D|L)
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Pictorial Structures: 
Model Components

• Body is represented as flexible configuration of body parts
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Figure 2. (left) Kinematic prior learned on the multi-view and
multi-articulation dataset from [15]. The mean part position is
shown using blue dots; the covariance of the part relations in the
transformed space is shown using red ellipses. (right) Several in-
dependent samples from the learned prior (for ease of visualiza-
tion given fixed torso position and orientation).

[14], and use AdaBoost [7] to train discriminative part clas-
sifiers. Our detectors are evaluated densely and are boot-
strapped to improve performance. Strong detectors of that
type have been commonplace in the pedestrian detection lit-
erature [1, 12, 13, 24]. In these cases, however, the em-
ployed body models are often simplistic. A simple star
model for representing part articulations is, for example,
used in [1], whereas [12] does not use an explicit part repre-
sentation at all. This precludes the applicability to strongly
articulated people and consequently these approaches have
been applied to upright people detection only.

We combine this discriminative appearance model with a
generative pictorial structures approach by interpreting the
normalized classifier margin as the image evidence that is
being generated. As a result, we obtain a generic model
for people detection and pose estimation, which not only
outperforms recent work in both areas by a large margin, but
is also surprisingly simple and allows for exact and efficient
inference.
More related work: Besides the already mentioned related
work there is an extensive literature on both people (and
pedestrian) detection, as well as on articulated pose estima-
tion. A large amount of work has been advocating strong
body models, and another substantial set of related work
relies on powerful appearance models.

Strong body models have appeared in various forms. A
certain focus has been the development of non-tree mod-
els. [17] imposes constraints not only between limbs on
the same extremity, but also between extremities, and relies
on integer programming for inference. Another approach
incorporate self-occlusion in a non-tree model [8]. Either
approach relies on matching simple line features, and only
appears to work on relatively clean backgrounds. In con-
trast, our method also works well on complex, cluttered
backgrounds. [20] also uses non-tree models to improve
occlusion handling, but still relies on simple features, such
as color. A fully connected graphical model for represent-
ing articulations is proposed in [2], which also uses dis-
criminative part detectors. However, the method has sev-

eral restrictions, such as relying on absolute part orienta-
tions, which makes it applicable to people in upright poses
only. Moreover, the fully connected graph complicates in-
ference. Other work has focused on discriminative tree
models [16, 18], but due to the use of simple features, these
methods fall short in terms of performance. [25] proposes
a complex hierarchical model for pruning the space of valid
articulations, but also relies on relatively simple features. In
[5] discriminative training is combined with strong appear-
ance representation based on HOG features, however the
model is applied to detection only.

Discriminative part models have also been used in con-
junction with generative body models, as we do here.
[11, 21], for example, use them as proposal distributions
(“shouters”) for MCMC or nonparametric belief propaga-
tion. Our paper, however, directly integrates the part detec-
tors and uses them as the appearance model.

2. Generic Model for People Detection and
Pose Estimation

To facilitate reliable detection of people across a wide
variety of poses, we follow [4] and assume that the body
model is decomposed into a set of parts. Their configuration
is denoted as L = {l0, l1, . . . , lN}, where the state of part i
is given by li = (xi, yi, �i, si). xi and yi is the position of
the part center in image coordinates, �i is the absolute part
orientation, and si is the part scale, which we assume to be
relative to the size of the part in the training set.

Depending on the task, the number of object parts may
vary (see Figs. 2 and 3). For upper body detection (or pose
estimation), we rely on 6 different parts: head, torso, as well
as left and right lower and upper arms. In case of full body
detection, we additionally consider 4 lower body parts: left
and right upper and lower legs, resulting in a 10 part model.
For pedestrian detection we do not use arms, but add feet,
leading to an 8 part model.

Given the image evidence D, the posterior of the part
configuration L is modeled as p(L|D) � p(D|L)p(L),
where p(D|L) is the likelihood of the image evidence given
a particular body part configuration. In the pictorial struc-
tures approach p(L) corresponds to a kinematic tree prior.
Here, both these terms are learned from training data, ei-
ther from generic data or trained more specifically for the
application at hand. To make such a seemingly generic
and simple approach work well, and to compete with more
specialized models on a variety of tasks, it is necessary to
carefully pick the appropriate prior p(L) and an appropriate
image likelihood p(D|L). In Sec. 2.1, we will first intro-
duce our generative kinematic model p(L), which closely
follows the pictorial structures approach [4]. In Sec. 2.2,
we will then introduce our discriminatively trained appear-
ance model p(D|L).

2

prior on body poseslikelihood of observations 

posterior over body poses

[Andriluka,Roth,Schiele@cvpr09]

p(L|D) � p(D|L)p(L)
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• Represent pairwise part relations  
[Felzenszwalb & Huttenlocher, IJCV’05] 

Kinematic Tree Prior 
(modeling the structure)
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l1

p(l2|l1) = N (T12(l2)|T21(l1),�12)

p(L) = p(l0)
�

(i,j)�E
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Kinematic Tree Prior

• Prior parameters:  
• Parameters of the prior are estimated with maximum likelihood
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Figure 2. (left) Kinematic prior learned on the multi-view and
multi-articulation dataset from [15]. The mean part position is
shown using blue dots; the covariance of the part relations in the
transformed space is shown using red ellipses. (right) Several in-
dependent samples from the learned prior (for ease of visualiza-
tion given fixed torso position and orientation).

[14], and use AdaBoost [7] to train discriminative part clas-
sifiers. Our detectors are evaluated densely and are boot-
strapped to improve performance. Strong detectors of that
type have been commonplace in the pedestrian detection lit-
erature [1, 12, 13, 24]. In these cases, however, the em-
ployed body models are often simplistic. A simple star
model for representing part articulations is, for example,
used in [1], whereas [12] does not use an explicit part repre-
sentation at all. This precludes the applicability to strongly
articulated people and consequently these approaches have
been applied to upright people detection only.

We combine this discriminative appearance model with a
generative pictorial structures approach by interpreting the
normalized classifier margin as the image evidence that is
being generated. As a result, we obtain a generic model
for people detection and pose estimation, which not only
outperforms recent work in both areas by a large margin, but
is also surprisingly simple and allows for exact and efficient
inference.
More related work: Besides the already mentioned related
work there is an extensive literature on both people (and
pedestrian) detection, as well as on articulated pose estima-
tion. A large amount of work has been advocating strong
body models, and another substantial set of related work
relies on powerful appearance models.

Strong body models have appeared in various forms. A
certain focus has been the development of non-tree mod-
els. [17] imposes constraints not only between limbs on
the same extremity, but also between extremities, and relies
on integer programming for inference. Another approach
incorporate self-occlusion in a non-tree model [8]. Either
approach relies on matching simple line features, and only
appears to work on relatively clean backgrounds. In con-
trast, our method also works well on complex, cluttered
backgrounds. [20] also uses non-tree models to improve
occlusion handling, but still relies on simple features, such
as color. A fully connected graphical model for represent-
ing articulations is proposed in [2], which also uses dis-
criminative part detectors. However, the method has sev-

eral restrictions, such as relying on absolute part orienta-
tions, which makes it applicable to people in upright poses
only. Moreover, the fully connected graph complicates in-
ference. Other work has focused on discriminative tree
models [16, 18], but due to the use of simple features, these
methods fall short in terms of performance. [25] proposes
a complex hierarchical model for pruning the space of valid
articulations, but also relies on relatively simple features. In
[5] discriminative training is combined with strong appear-
ance representation based on HOG features, however the
model is applied to detection only.

Discriminative part models have also been used in con-
junction with generative body models, as we do here.
[11, 21], for example, use them as proposal distributions
(“shouters”) for MCMC or nonparametric belief propaga-
tion. Our paper, however, directly integrates the part detec-
tors and uses them as the appearance model.

2. Generic Model for People Detection and
Pose Estimation

To facilitate reliable detection of people across a wide
variety of poses, we follow [4] and assume that the body
model is decomposed into a set of parts. Their configuration
is denoted as L = {l0, l1, . . . , lN}, where the state of part i
is given by li = (xi, yi, �i, si). xi and yi is the position of
the part center in image coordinates, �i is the absolute part
orientation, and si is the part scale, which we assume to be
relative to the size of the part in the training set.

Depending on the task, the number of object parts may
vary (see Figs. 2 and 3). For upper body detection (or pose
estimation), we rely on 6 different parts: head, torso, as well
as left and right lower and upper arms. In case of full body
detection, we additionally consider 4 lower body parts: left
and right upper and lower legs, resulting in a 10 part model.
For pedestrian detection we do not use arms, but add feet,
leading to an 8 part model.

Given the image evidence D, the posterior of the part
configuration L is modeled as p(L|D) � p(D|L)p(L),
where p(D|L) is the likelihood of the image evidence given
a particular body part configuration. In the pictorial struc-
tures approach p(L) corresponds to a kinematic tree prior.
Here, both these terms are learned from training data, ei-
ther from generic data or trained more specifically for the
application at hand. To make such a seemingly generic
and simple approach work well, and to compete with more
specialized models on a variety of tasks, it is necessary to
carefully pick the appropriate prior p(L) and an appropriate
image likelihood p(D|L). In Sec. 2.1, we will first intro-
duce our generative kinematic model p(L), which closely
follows the pictorial structures approach [4]. In Sec. 2.2,
we will then introduce our discriminatively trained appear-
ance model p(D|L).

2

mean pose several independent samples
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Pictorial Structures: 
Model Components

• Body is represented as flexible configuration of body parts
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Figure 2. (left) Kinematic prior learned on the multi-view and
multi-articulation dataset from [15]. The mean part position is
shown using blue dots; the covariance of the part relations in the
transformed space is shown using red ellipses. (right) Several in-
dependent samples from the learned prior (for ease of visualiza-
tion given fixed torso position and orientation).

[14], and use AdaBoost [7] to train discriminative part clas-
sifiers. Our detectors are evaluated densely and are boot-
strapped to improve performance. Strong detectors of that
type have been commonplace in the pedestrian detection lit-
erature [1, 12, 13, 24]. In these cases, however, the em-
ployed body models are often simplistic. A simple star
model for representing part articulations is, for example,
used in [1], whereas [12] does not use an explicit part repre-
sentation at all. This precludes the applicability to strongly
articulated people and consequently these approaches have
been applied to upright people detection only.

We combine this discriminative appearance model with a
generative pictorial structures approach by interpreting the
normalized classifier margin as the image evidence that is
being generated. As a result, we obtain a generic model
for people detection and pose estimation, which not only
outperforms recent work in both areas by a large margin, but
is also surprisingly simple and allows for exact and efficient
inference.
More related work: Besides the already mentioned related
work there is an extensive literature on both people (and
pedestrian) detection, as well as on articulated pose estima-
tion. A large amount of work has been advocating strong
body models, and another substantial set of related work
relies on powerful appearance models.

Strong body models have appeared in various forms. A
certain focus has been the development of non-tree mod-
els. [17] imposes constraints not only between limbs on
the same extremity, but also between extremities, and relies
on integer programming for inference. Another approach
incorporate self-occlusion in a non-tree model [8]. Either
approach relies on matching simple line features, and only
appears to work on relatively clean backgrounds. In con-
trast, our method also works well on complex, cluttered
backgrounds. [20] also uses non-tree models to improve
occlusion handling, but still relies on simple features, such
as color. A fully connected graphical model for represent-
ing articulations is proposed in [2], which also uses dis-
criminative part detectors. However, the method has sev-

eral restrictions, such as relying on absolute part orienta-
tions, which makes it applicable to people in upright poses
only. Moreover, the fully connected graph complicates in-
ference. Other work has focused on discriminative tree
models [16, 18], but due to the use of simple features, these
methods fall short in terms of performance. [25] proposes
a complex hierarchical model for pruning the space of valid
articulations, but also relies on relatively simple features. In
[5] discriminative training is combined with strong appear-
ance representation based on HOG features, however the
model is applied to detection only.

Discriminative part models have also been used in con-
junction with generative body models, as we do here.
[11, 21], for example, use them as proposal distributions
(“shouters”) for MCMC or nonparametric belief propaga-
tion. Our paper, however, directly integrates the part detec-
tors and uses them as the appearance model.

2. Generic Model for People Detection and
Pose Estimation

To facilitate reliable detection of people across a wide
variety of poses, we follow [4] and assume that the body
model is decomposed into a set of parts. Their configuration
is denoted as L = {l0, l1, . . . , lN}, where the state of part i
is given by li = (xi, yi, �i, si). xi and yi is the position of
the part center in image coordinates, �i is the absolute part
orientation, and si is the part scale, which we assume to be
relative to the size of the part in the training set.

Depending on the task, the number of object parts may
vary (see Figs. 2 and 3). For upper body detection (or pose
estimation), we rely on 6 different parts: head, torso, as well
as left and right lower and upper arms. In case of full body
detection, we additionally consider 4 lower body parts: left
and right upper and lower legs, resulting in a 10 part model.
For pedestrian detection we do not use arms, but add feet,
leading to an 8 part model.

Given the image evidence D, the posterior of the part
configuration L is modeled as p(L|D) � p(D|L)p(L),
where p(D|L) is the likelihood of the image evidence given
a particular body part configuration. In the pictorial struc-
tures approach p(L) corresponds to a kinematic tree prior.
Here, both these terms are learned from training data, ei-
ther from generic data or trained more specifically for the
application at hand. To make such a seemingly generic
and simple approach work well, and to compete with more
specialized models on a variety of tasks, it is necessary to
carefully pick the appropriate prior p(L) and an appropriate
image likelihood p(D|L). In Sec. 2.1, we will first intro-
duce our generative kinematic model p(L), which closely
follows the pictorial structures approach [4]. In Sec. 2.2,
we will then introduce our discriminatively trained appear-
ance model p(D|L).

2

prior on body poseslikelihood of observations 

posterior over body poses

[Andriluka,Roth,Schiele@cvpr09]

p(L|D) � p(D|L)p(L)
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Likelihood Model

• Assumption: 
‣ evidence (image features) for each part independent of all other parts: 

• assumption clearly not correct, but 
‣ allows efficient computation 

‣ works rather well in practice 

‣ training data for different body parts should cover “all” appearances

17

p(D|L) =
NY

i=0

p(di|li)
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Likelihood Model

• Build on recent advances in object detection: 
‣ state-of-the-art image descriptor: Shape Context                

[Belongie et al., PAMI’02; Mikolajczyk&Schmid, PAMI’05] 

‣ dense representation 

‣ discriminative model: AdaBoost classifier for each body part

18

- Shape Context: 96 dimensions   
(4 angular, 3 radial, 8 gradient 
orientations) 

- Feature Vector: concatenate the 
descriptors inside part bounding box 

- head: 4032 dimensions 
- torso: 8448 dimensions
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Likelihood Model

• Part likelihood derived from the boosting score:

19

p̃(di|li) = max
�⇤

t �i,tht(x(li))⇤
t �i,t

, ⇥0

⇥

part location

decision stump outputdecision stump weight

small constant to deal with part 
occlusions
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Likelihood Model

20

Upper leg

 [Ramanan,  
NIPS’06]

Our part  
likelihoods

Input image
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Part-Based Model: 
2D Human Pose Estimation

21

[Andriluka,Roth,Schiele@cvpr09]
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Pictorial Structures for Human Pose Estimation: 
What are Good Parts?

• Parts of the Pictorial Structures Model 
‣ “parts” = semantic body parts 

‣ pose estimation = estimation  
of body part configuration 

‣ semantic body parts allow to use  
motion capture data, etc.  
to improve kinematic tree prior 

‣ non-semantic parts (e.g. in the ISM-model) are more difficult to generalize across 
human body poses

22
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Part-Based Models - Overview Today

• Last Week: 
‣ Part-Based based on Manual Labeling of Parts  

- Detection by Components, Multi-Scale Parts 

‣ The Constellation Model  
- automatic discovery of parts and part-structure 

‣ The Implicit Shape Model (ISM) 
- star-model of part configurations, parts obtained by clustering interest-points 

• Today: 
‣ Pictorial Structures Model 

‣ Learning Object Model from CAD Data 

‣ Deformable Parts Model (DPM)  

‣ Discussion Semantic Parts vs. Discriminative Parts
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Back to the Future: 
Learning Shape Models from 3D CAD Data

24

• 3D Computer Aided Design (CAD) Models 
‣ Computer graphics, game design 

‣ Polygonal meshes + texture descriptions 

‣ semantic part annotations (may) exist 

• Can we learn Object Class Models directly from 3D CAD data?  
‣ Issue: Transition between 3D CAD models and 2D real-world images

[Stark,Goesele,Schiele@bmvc10]
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Constellation Model

• Joint model for appearance and structure (=shape) 
‣ X: positions, A: part appearance, S: scale 

‣ h: Hypothesis = assignment of features (in the image) to  
parts (of the model)

25

Gaussian shape pdf
Prob. of  
detection

Gaussian part appearance pdf

Gaussian  
relative scale pdf

Log(scale)

Weber, Welling, Perona, ’00;  
Fergus, Zisserman, Perona, 03
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1. Shape-based appearance abstraction 
‣ Non-photorealistic rendering 

‣ Local shape + global geometry 

2. Discriminative part detectors 
‣ Robust local shape features 

‣ AdaBoost classifiers 

3. Powerful spatial model 
‣ Full covariance 

‣ Efficient DDMCMC inference

Three Tools to Meet the Challenge

26
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[Stark,Goesele,Schiele@bmvc10]
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Shape-based Appearance Abstraction 
➸ Non-Photorealistic Rendering

• Learn shape models from rendered images 
‣ we do NOT render photo-realistically / texture 

‣ But focus on 3D CAD model edges (mimic real-world image edges) 
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[Stark,Goesele,Schiele@bmvc10]
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• Part-based object class representation 
‣ Semantic parts from 3D CAD models: left front wheel, left front door, etc.

Shape - Local Shape + Global Geometry
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Qualitative Results

29

Back-right

Right

• Three strongest true positive detections per viewpoint model 

• Observations 
‣ Accurate part localization 

‣ Predicted viewpoints do match

[Stark,Goesele,Schiele@bmvc10]
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Shape Model learned from 3D CAD-Data 
What are Good Parts?

• Parts of the Shape Model: 
‣ “parts” = just means to enable correspondence across 3D-models 

‣ semantics of parts: 
- in our case: yes - because of the employed 3D models 

- but: semantics neither necessary nor important

30
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Part-Based Models - Overview Today

• Last Week: 
‣ Part-Based based on Manual Labeling of Parts  

- Detection by Components, Multi-Scale Parts 

‣ The Constellation Model  
- automatic discovery of parts and part-structure 

‣ The Implicit Shape Model (ISM) 
- star-model of part configurations, parts obtained by clustering interest-points 

• Today: 
‣ Pictorial Structures Model 

‣ Learning Object Model from CAD Data 

‣ Deformable Parts Model (DPM)  

‣ Discussion Semantic Parts vs. Discriminative Parts
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slide curtesy: Pedro Felzenszwalb
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Starting Point: Sliding Window Method

• Sliding Window Based People Detection:

35

Two Important Questions: 
1) which feature vector 
2) which classifier

‘slide’ detection window over 
all positions & scales

Scan 
Image

Extract  
Feature Vector

Classify  
Feature Vector

Non-Maxima 
Suppression

For example:  

- HOG Pedestrian Detector 
- HOG descriptor 
- linear SVM
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Histogram of Oriented Gradients (HOG):  
Static Feature Extraction
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Input Image

Detection Window
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F · �(p,H) < 0

F · �(p,H) > 0
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Efficient Computation 

• Overall score: 

• Maximization can be done separately:
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score(p0, . . . , pn) =
nX

i=0

Fi · �(H, pi)�
nX

i=1

di · (dx2
i , dy

2
i )

score(p0) = max

p1,...,pn

score(p0, . . . , pn)

= F0 · �(H, p0)+

max

pn

�
Fn · �(H, pn)� dn · (dx2

n, dy
2
n)
�

max

p1

�
F1 · �(H, p1)� d1 · (dx2
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SVM training

• Classifier scores and example x using: 

‣ model parameter: 

‣ feature vector: 

• Linear SVM: 
‣ objective: maximize margin 

(for best generalization)
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f(x) = � · �(x)

�(x)

�

margin
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SVM training

• Training data: 

• Constraints: 

• Training error:

52

margin

D = (hx1, y1i, . . . , hxn, yni) with yi 2 {�1, 1}

f(xi) � +1 for yi = +1

f(xi)  �1 for yi = �1

) yif(xi) � +1

) 0 � 1� yif(xi)

nX

i=1

max (0, 1� yif(xi))
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SVM training

• Two objectives: 
‣ maximize margin: 

‣ minimize  training error: 

• Therefore minimize (primal formulation) 

• Hinge loss: 
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min
1

2
||�||2

min

nX

i=1

max (0, 1� yif(xi))

L(�) = min

�

 
1

2

||�||2 +
nX

i=1

max (0, 1� yif(xi))

!

H(z) = max(0, 1� z)

z0
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sudo
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slides from Dan Huttenlocher
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Part-Based Models - Overview Today

• Last Week: 
‣ Part-Based based on Manual Labeling of Parts  

- Detection by Components, Multi-Scale Parts 

‣ The Constellation Model  
- automatic discovery of parts and part-structure 

‣ The Implicit Shape Model (ISM) 
- star-model of part configurations, parts obtained by clustering interest-points 

• Today: 
‣ Pictorial Structures Model 

‣ Learning Object Model from CAD Data 

‣ Deformable Parts Model (DPM)  

‣ Discussion Semantic Parts vs. Discriminative Parts
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What are Ideal Parts for  
Part-Based Object Models?

• Parts can/may 
‣ be semantic body parts - e.g. for articulated  

human body pose estimation 

‣ be feature clusters (typically many clusters)  
(e.g. ISM, constellation model, BoW) 

‣ support learnability of  
discriminant appearance (e.g. DPM model) 

‣ enable correspondence  
across 3D models 

‣ ... 

• in all those cases: the most important property is that  
“parts” facilitate correspondence across object instances
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What are Ideal Parts for  
Part-Based Object Models?

• Multiple motivations for part based models exist: 
‣ intuitiveness: semantic meaning of parts/attributes is attractive  

(e.g. enables use of language sources) 

‣ learnability: sharing of parts/attributes across instances/classes  

‣ scalability: transferability of parts/attributes across classes 

‣ ... 

• in general, parts support learnability and scalability when they 
facilitate correspondence  
‣ across object instances 

‣ across object classes 

‣ across modalities (e.g. from language to visual appearance) 

‣ and semantics is only a secondary concern (for “intuitiveness”)
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What are Ideal Parts for  
Part-Based Object Models?  

 
the Good, the Bad, and the Ugly

thanks to: Micha Andriluka, Bastian Leibe, Sandra Ebert,  
Mario Fritz, Diane Larlus, Marcus Rohrbach, Paul Schnitzspan,  

Stefan Roth, Michael Stark, Michael Goesele 


