

High Level Computer Vision

Deep Learning for Computer Vision Part 2

Bernt Schiele - schiele@mpi-inf.mpg.de Mario Fritz - mfritz@mpi-inf.mpg.de

https://www.mpi-inf.mpg.de/hlcv

Overview Today

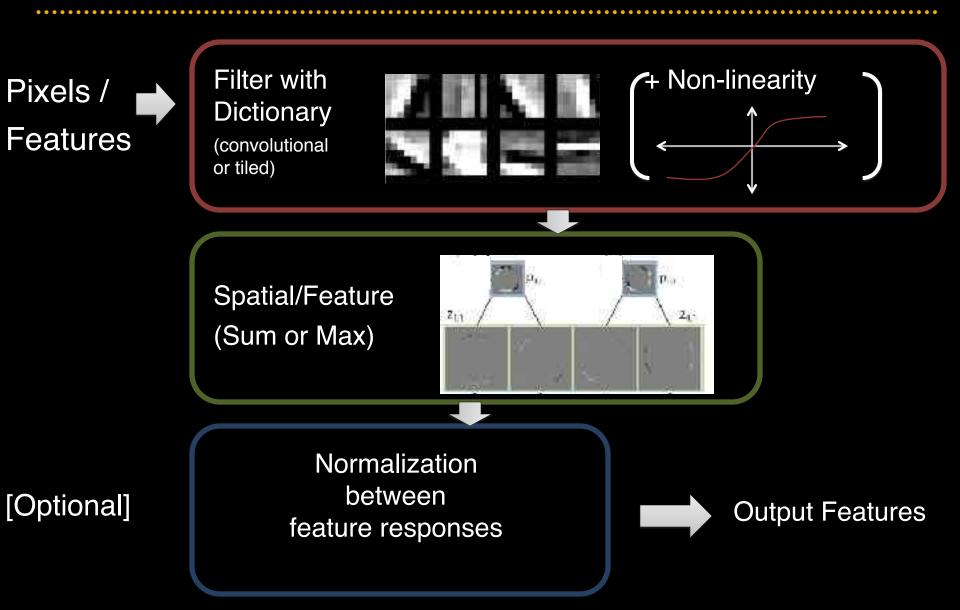
- ConvNet & Visualizations (left over from last lecture)
- Feature Generalization
 - "pre-training" on large dataset,
 "fine-tuning" on target dataset
- Object Detection
 - from image classification to object detection
- R-CNN Regions with CNN features
 - Region-based Convolutional Networks for Accurate Object Detection and Semantic Segmentation, R. Girshick, J. Donahue, T. Darrell, J. Malik (CVPR'14, accepted in May'15 for PAMI)
 - Region Proposal Method: Selective Search for Object Recognition, J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, A. W. M. Smeulders In IJCV'13.

Large Convnets for Image Classification

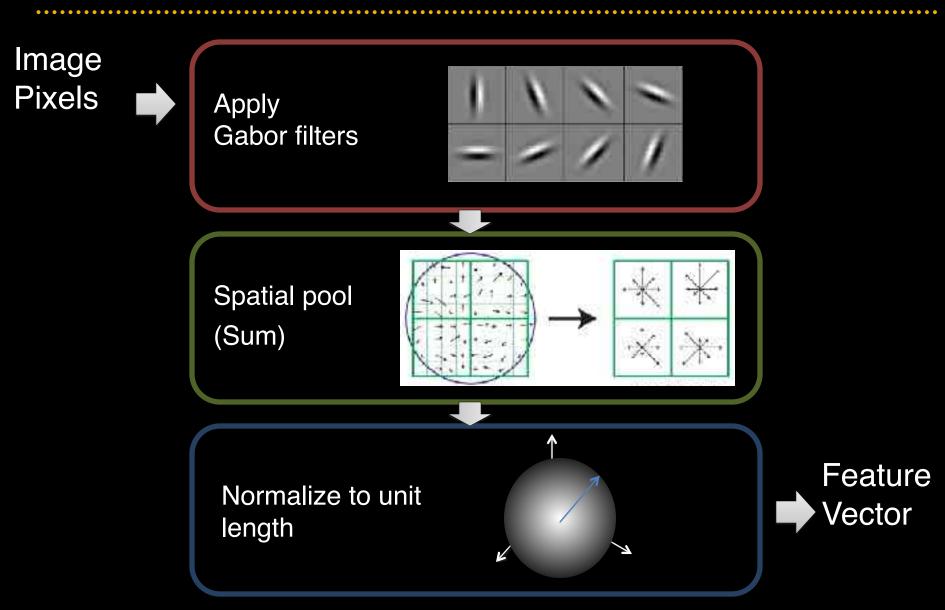
Large Convnets for Image Classification

- Operations in each layer
- Architecture
- Training
- Results

Components of Each Layer

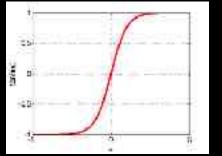


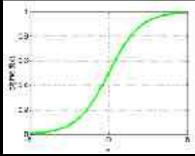
Compare: SIFT Descriptor

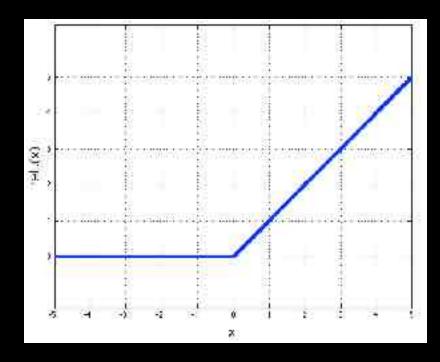


Non-Linearity

- Non-linearity
 - Per-feature independent
 - Tanh
 - Sigmoid: 1/(1+exp(-x))
 - Rectified linear
 - Simplifies backprop
 - Makes learning faster
 - Avoids saturation issues
 - \rightarrow Preferred option

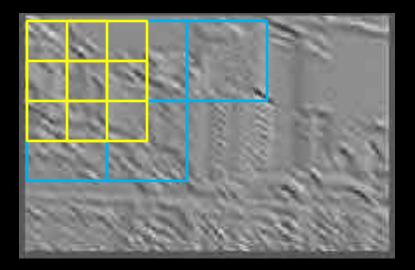






Pooling

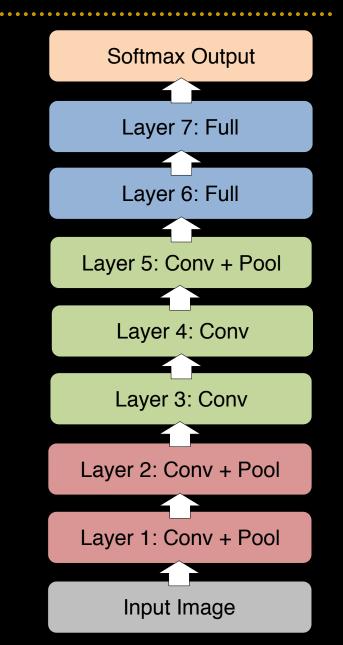
- Spatial Pooling
 - Non-overlapping / overlapping regions
 - Sum or max
 - Boureau et al. ICML'10 for theoretical analysis



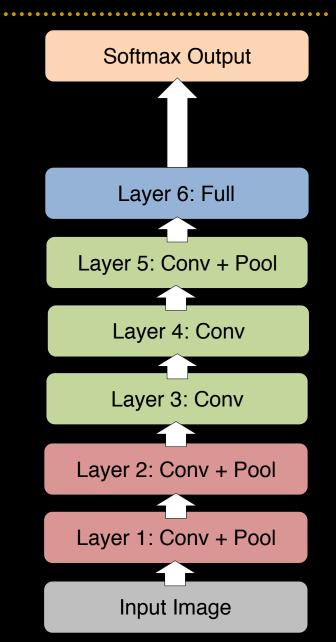
Architecture

Importance of Depth

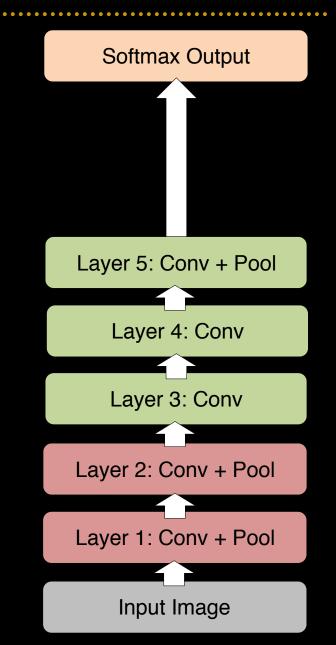
- 8 layers total
- Trained on Imagenet dataset [Deng et al. CVPR'09]
- 18.2% top-5 error
- Our reimplementation: 18.1% top-5 error



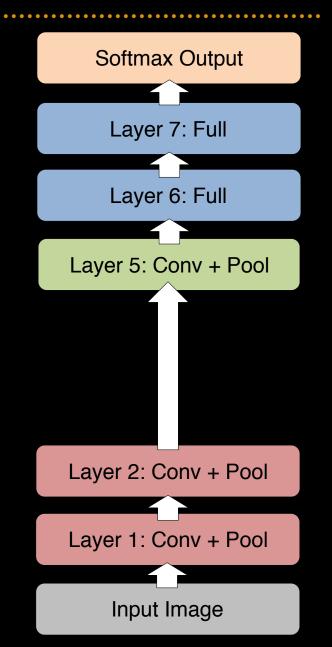
- Remove top fully connected layer
 – Layer 7
- Drop 16 million parameters
- Only 1.1% drop in performance!



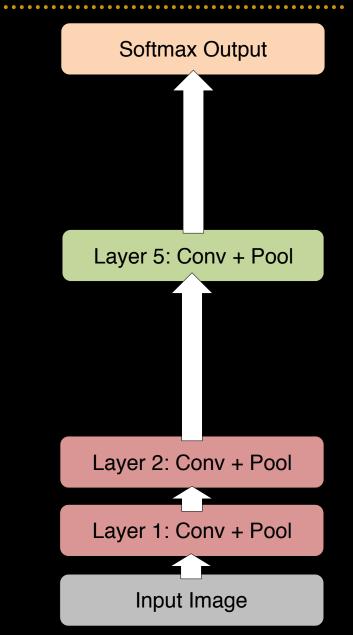
- Remove both fully connected layers
 - Layer 6 & 7
- Drop ~50 million parameters
- 5.7% drop in performance



- Now try removing upper feature extractor layers:
 - Layers 3 & 4
- Drop ~1 million parameters
- 3.0% drop in performance



- Now try removing upper feature extractor layers & fully connected: – Layers 3, 4, 6,7
- Now only 4 layers
- 33.5% drop in performance
- \rightarrow Depth of network is key

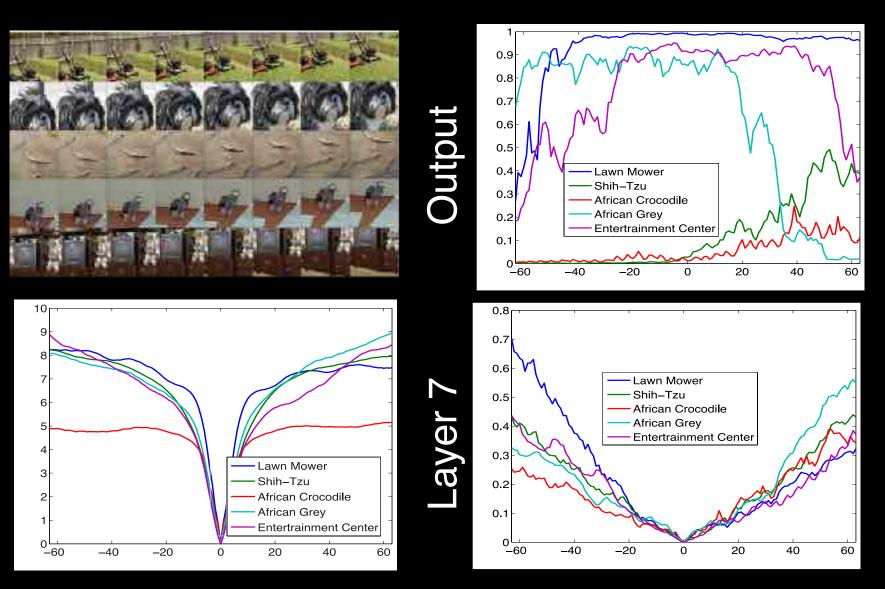


Tapping off Features at each Layer

Plug features from each layer into linear SVM or soft-max

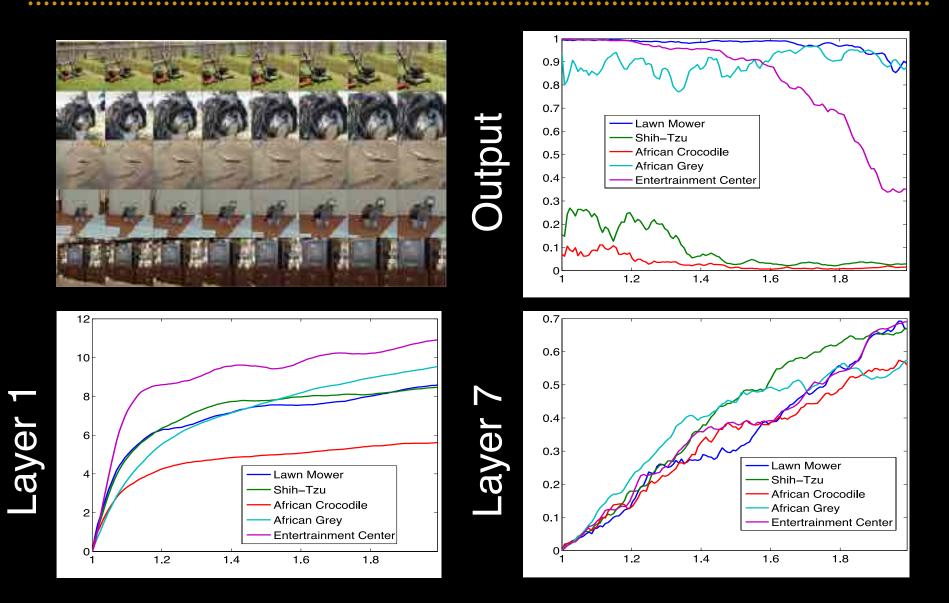
	Cal-101	Cal-256
	(30/class)	(60/class)
SVM (1)	44.8 ± 0.7	24.6 ± 0.4
SVM (2)	66.2 ± 0.5	39.6 ± 0.3
SVM (3)	72.3 ± 0.4	46.0 ± 0.3
SVM (4)	76.6 ± 0.4	51.3 ± 0.1
SVM (5)	86.2 ± 0.8	65.6 ± 0.3
SVM (7)	85.5 ± 0.4	71.7 ± 0.2
Softmax (5)	82.9 ± 0.4	65.7 ± 0.5
Softmax (7)	85.4 ± 0.4	$\textbf{72.6} \pm \textbf{0.1}$

Translation (Vertical)

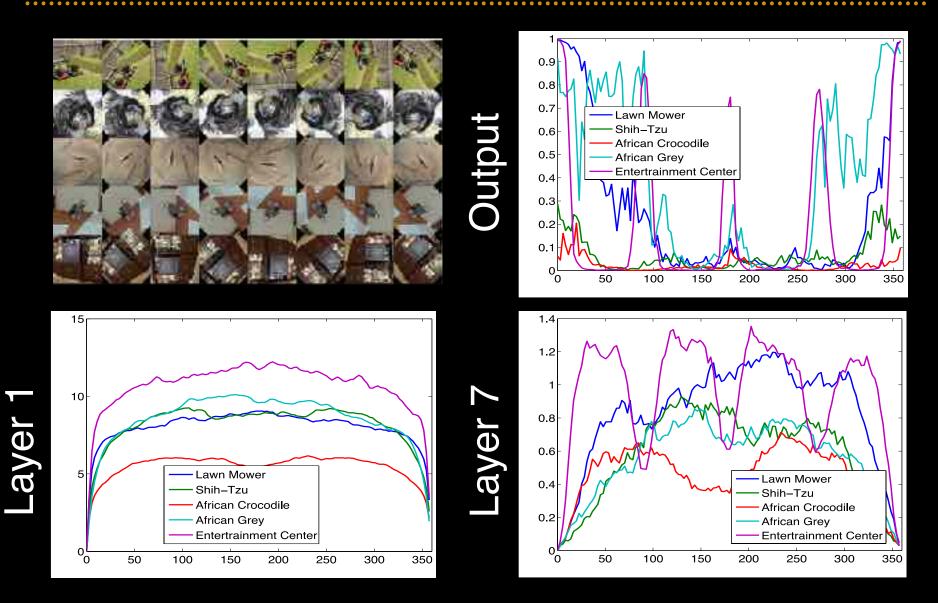


_ayer

Scale Invariance



Rotation Invariance



Visualizing ConvNets

Visualizing Convnets

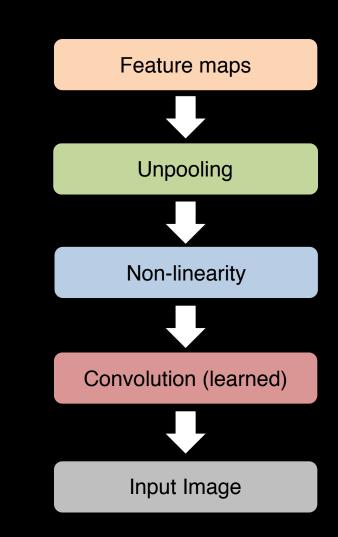
 Raw coefficients of learned filters in higher layers difficult to interpret

- Several approaches look to optimize input to maximize activity in a high-level feature
 - Erhan et al. [Tech Report 2009]
 - Le et al. [NIPS 2010]
 - Depend on initialization
 - Model invariance with Hessian about (locally) optimal stimulus

Visualization using Deconvolutional Networks

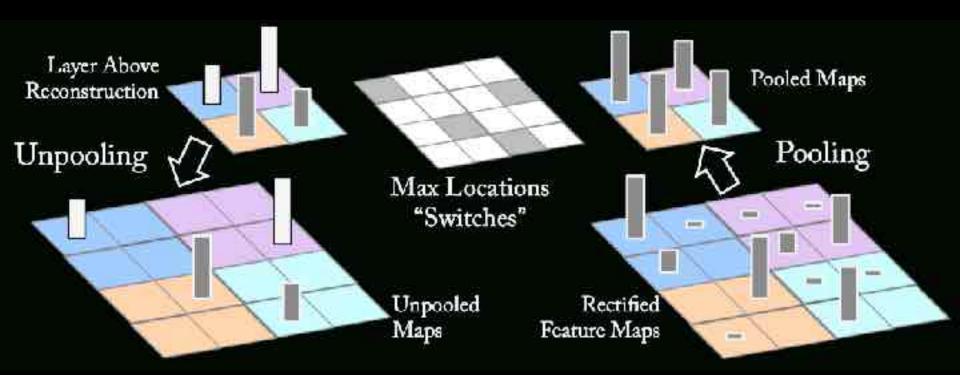
[Zeiler et al. CVPR'10, ICCV'11, arXiv'13]

- Provide way to map activations at high layers back to the input
- Same operations as Convnet, but in reverse:
 - Unpool feature maps
 - Convolve unpooled maps
 - Filters copied from Convnet
- Used here purely as a probe
 - Originally proposed as unsupervised learning method
 - No inference, no learning

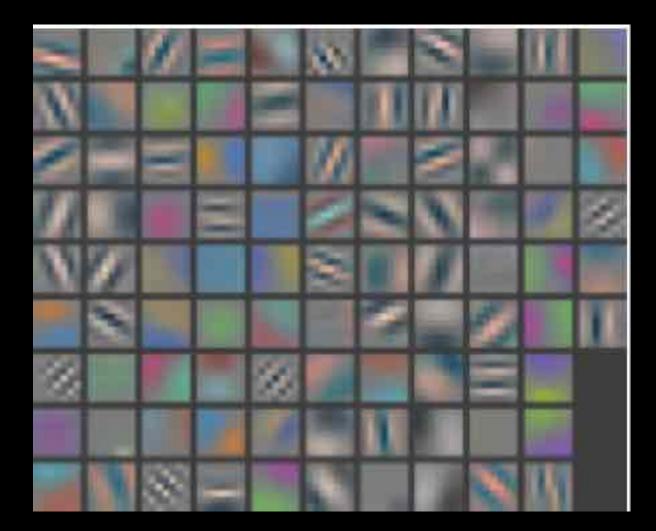


Deconvnet Projection from Higher Layers [Zeiler and Fergus. arXiv'13] Feature 0 $\mathbf{0}$ Map Filters **Filters** Layer 2 Reconstruction Layer 2: Feature maps econvne onvnet Layer 1 Reconstruction Layer 1: Feature maps Input Image Visualization

Unpooling Operation

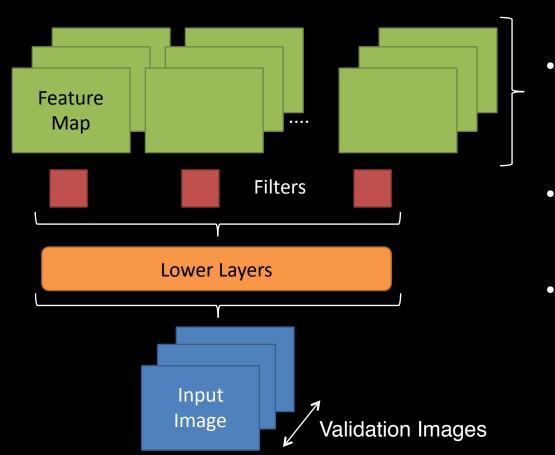


Layer 1 Filters



Visualizations of Higher Layers [Zeiler and Fergus. arXiv'13]

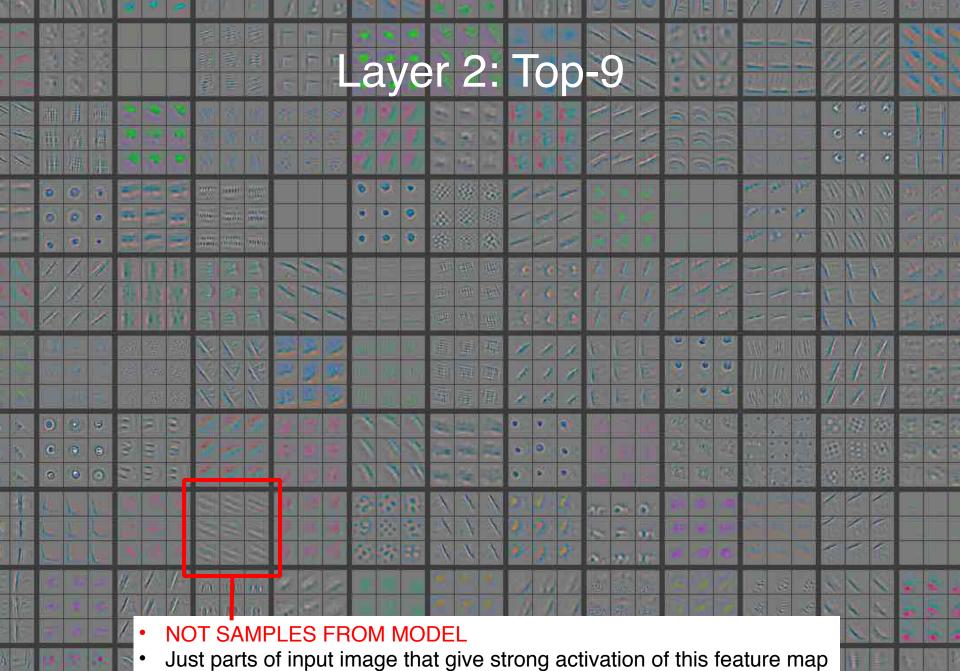
- Use ImageNet 2012 validation set
- Push each image through network



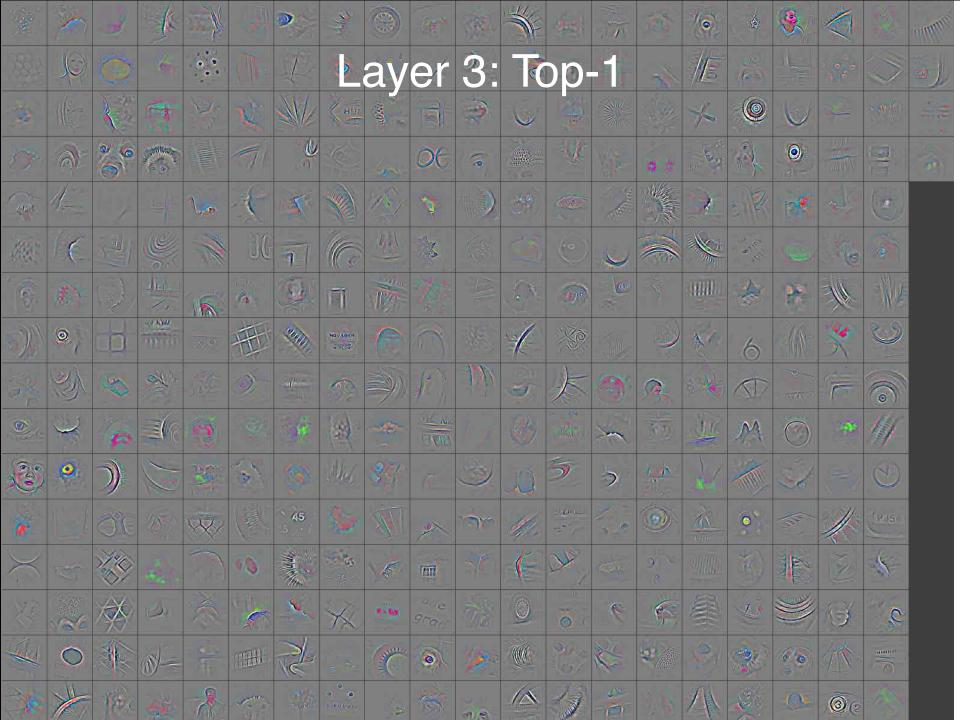
- Take max activation from feature map associated with each filter
- Use Deconvnet to project back to pixel space
- Use pooling "switches" peculiar to that activation

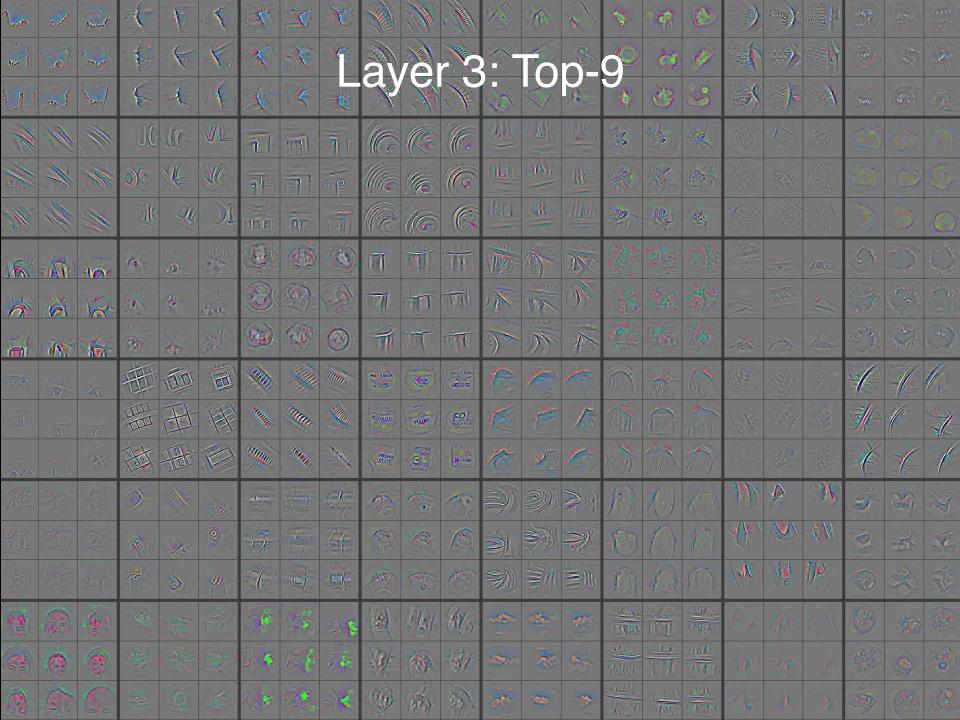
Layer 1: Top-9 Patches





Non-parametric view on invariances learned by model





Layer 3: Top-9 Patches

5

STATE

A

annon an

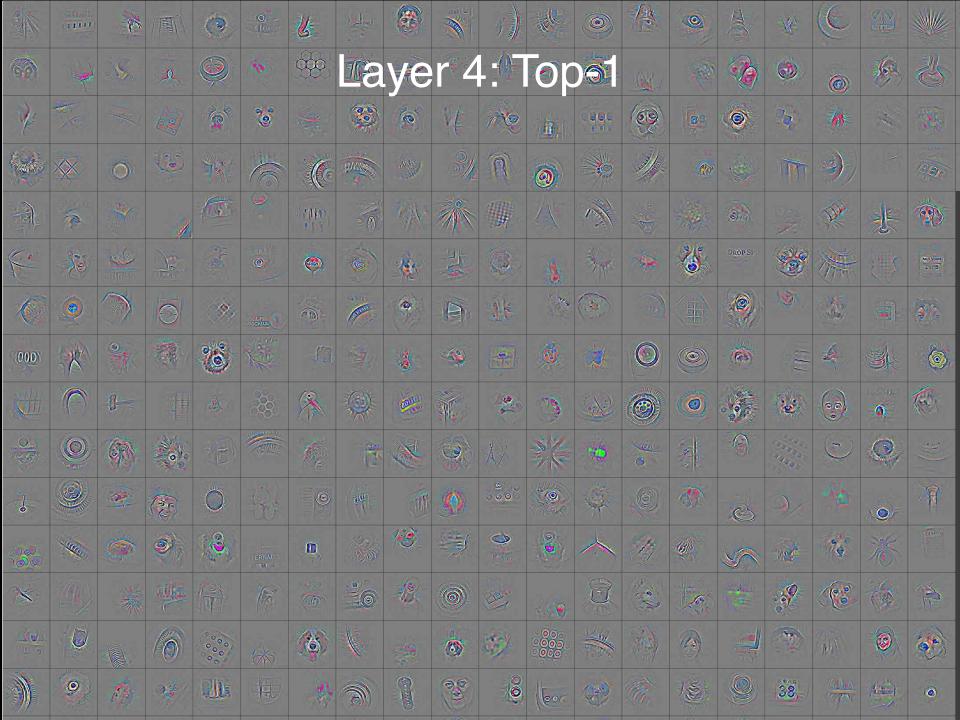
Motorci

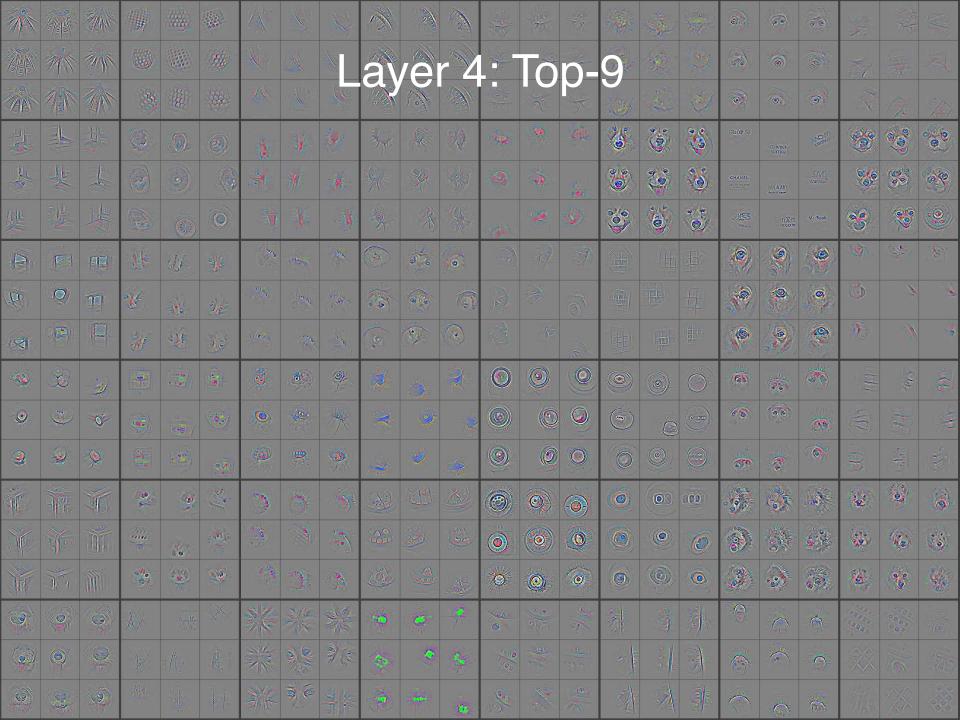
OUG

00:00

CHOICE

Ħ



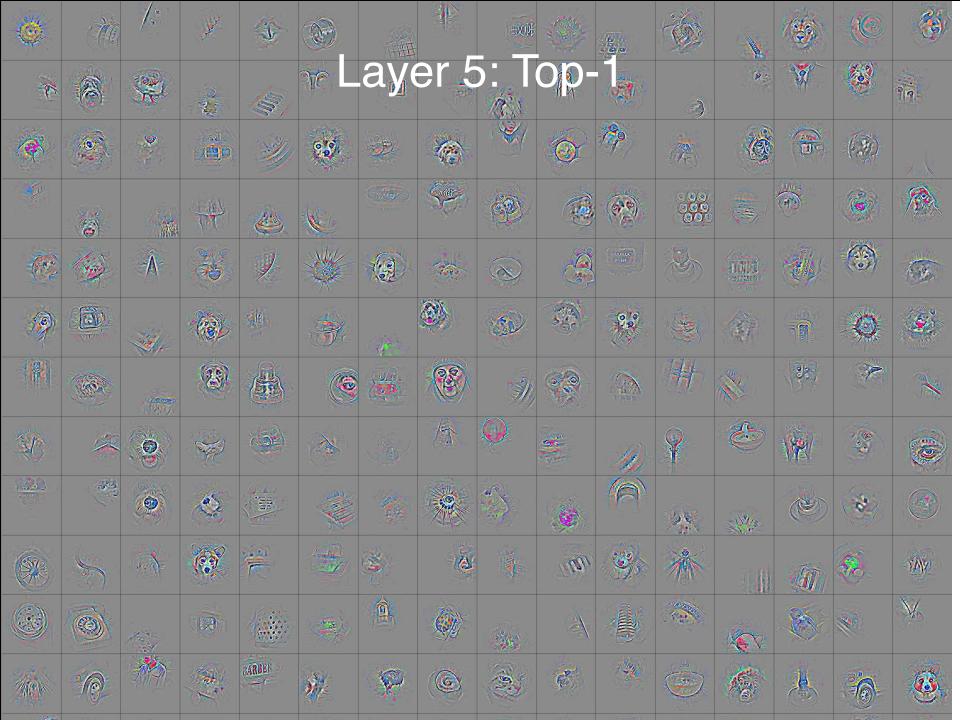


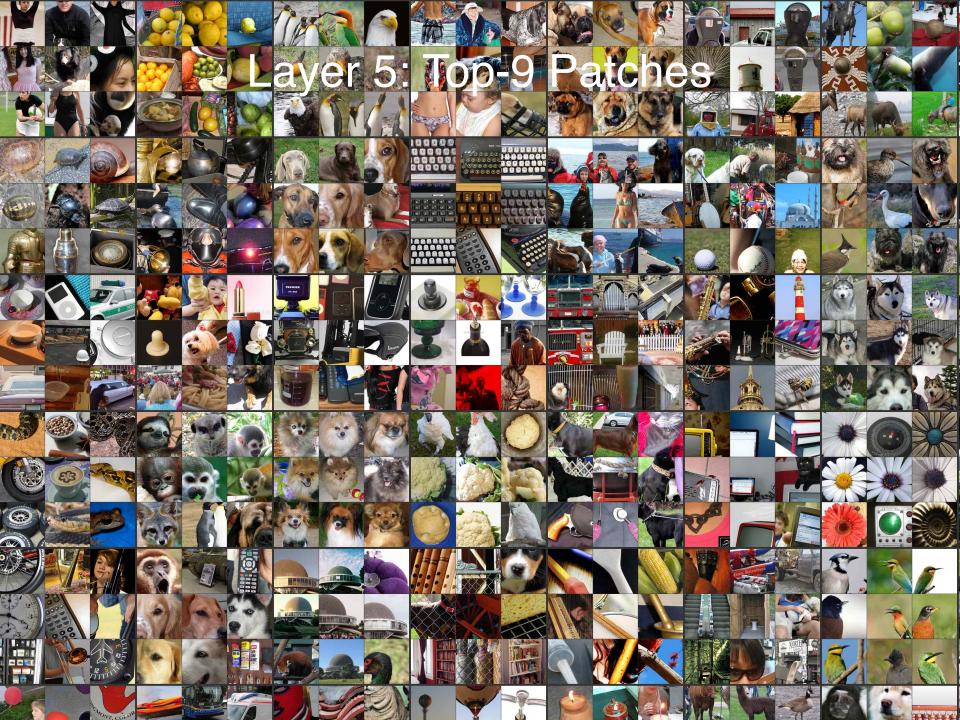
ayer 4 100-9 Patches

60

THE MARIN DEAT

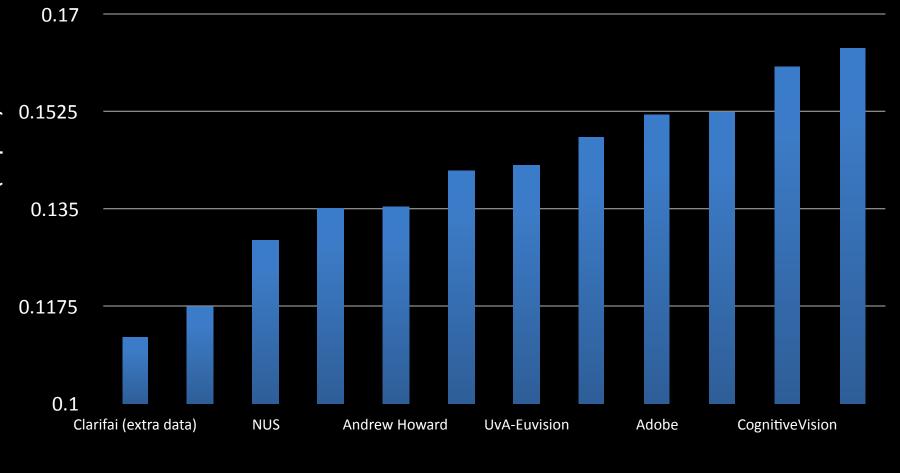
issagg





ImageNet Classification 2013 Results

• http://www.image-net.org/challenges/LSVRC/2013/results.php



Pre-2012: 26.2% error →

2012: 16.5% error → 2013: 11.2% error

Sample Classification Results

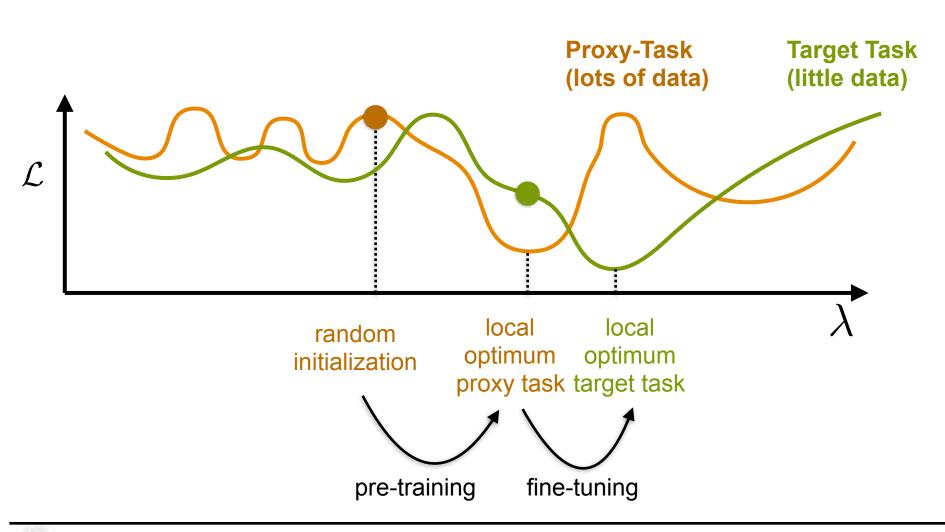
[Krizhevsky et al. NIPS'12]



Feature Generalization and Pretraining: Overview

- Typically we are lacking data
- But there are large datasets for some tasks
- Idea:
 - Can we use learnt features from other trasks?
 - How can we transfer learnt features from other tasks?
 - Can we still do end-to-end learning?

Feature Generalization and Pretraining: Overview



Feature Generalization

slides from: Rob Fergus, NIPS'13 tutorial

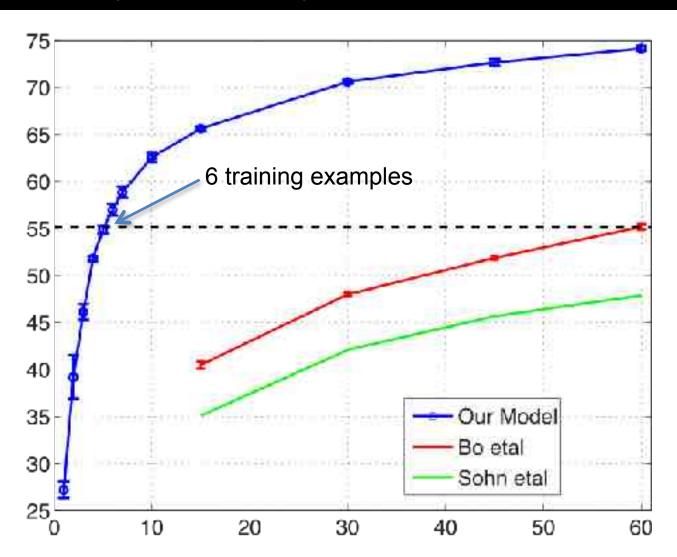
Training Features on Other Datasets

- Train model on ImageNet 2012 training set
- Re-train classifier on new dataset
 Just the softmax layer

Classify test set of new dataset

Caltech 256

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013



Caltech 256

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013

	Acc % 15/class	Acc % 30/class	Acc % 45/class	Acc % 60/class
Sohn et al. [16]	35.1	42.1	45.7	47.9
Bo et al. [3]	40.5 ± 0.4	48.0 ± 0.2	51.9 ± 0.2	55.2 ± 0.3
Non-pretr.	9.0 ± 1.4	22.5 ± 0.7	31.2 ± 0.5	38.8 ± 1.4
ImageNet-pretr.	65.7 ± 0.2	$\textbf{70.6} \pm \textbf{0.2}$	72.7 ± 0.4	$\textbf{74.2} \pm \textbf{0.3}$

[3] L. Bo, X. Ren, and D. Fox. Multipath sparse coding using hierarchical matching pursuit. In CVPR, 2013.

[16] K. Sohn, D. Jung, H. Lee, and A. Hero III. Efficient learning of sparse, distributed, convolutional feature representations for object recognition. In ICCV, 2011.

Object Detection

slides from: Rob Fergus, NIPS'13 tutorial

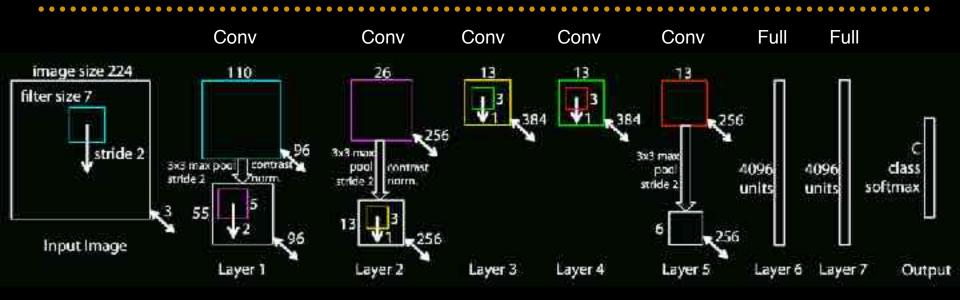
Detection with ConvNets

• So far, all about classification

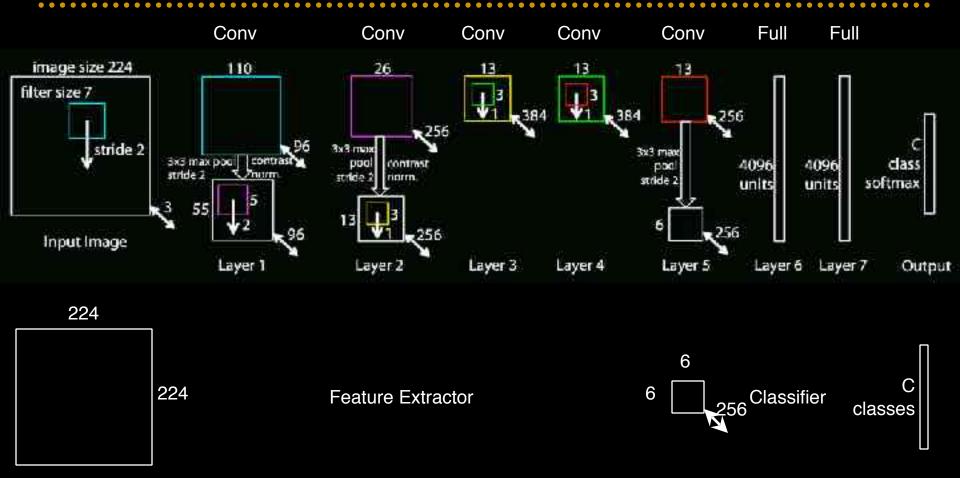
 What about localizing objects within the scene?

Groundtruth: tv or monitor tv or monitor (2) tv or monitor (3) person remote control remote control (2)

Sliding Window with ConvNet

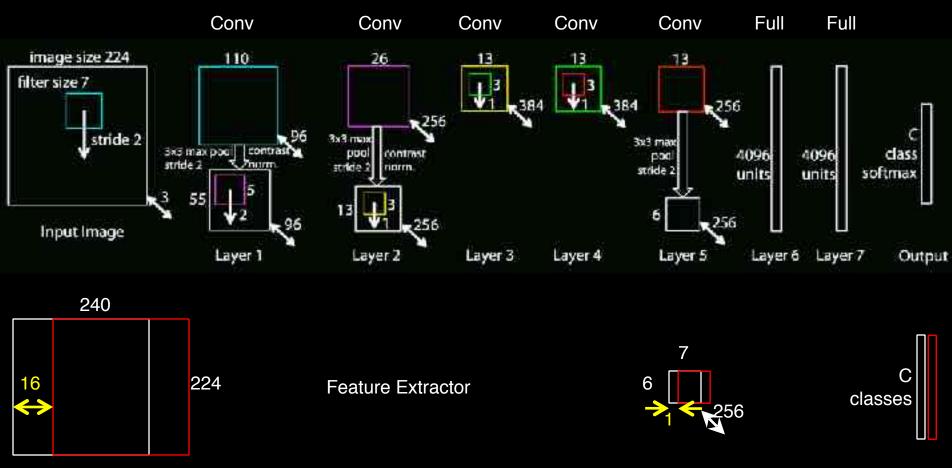


Sliding Window with ConvNet



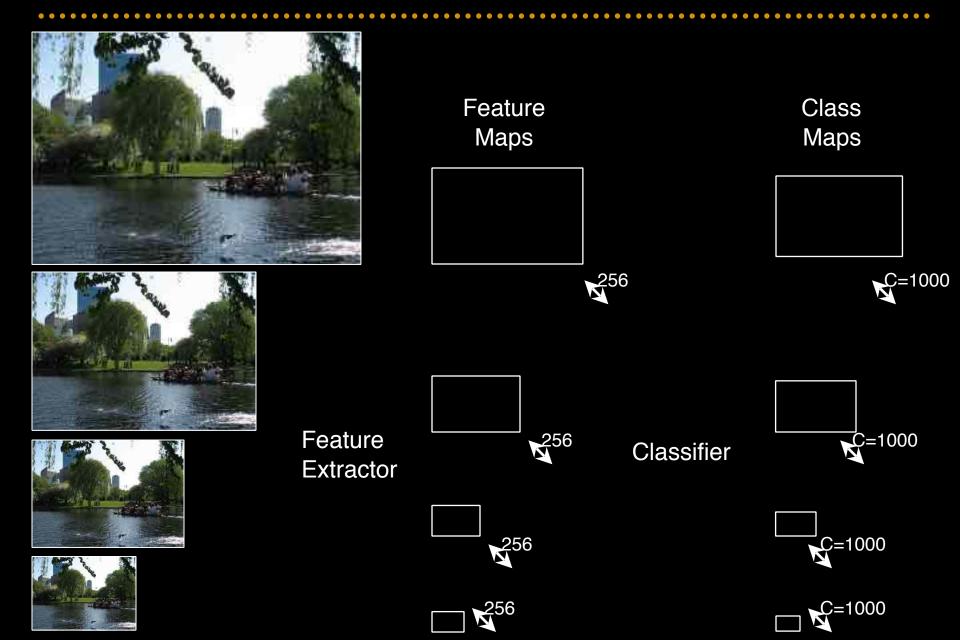
Input Window

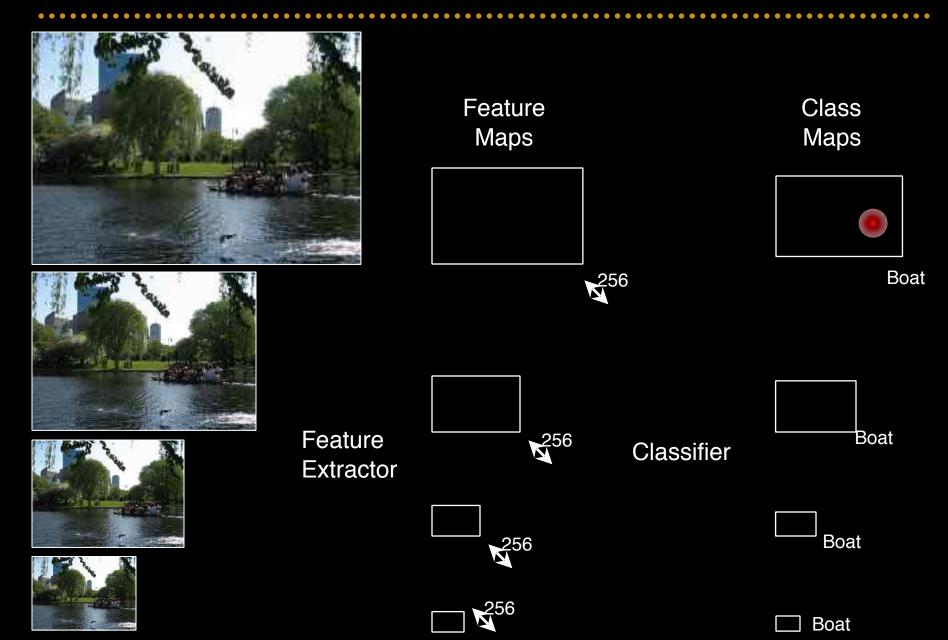
Sliding Window with ConvNet

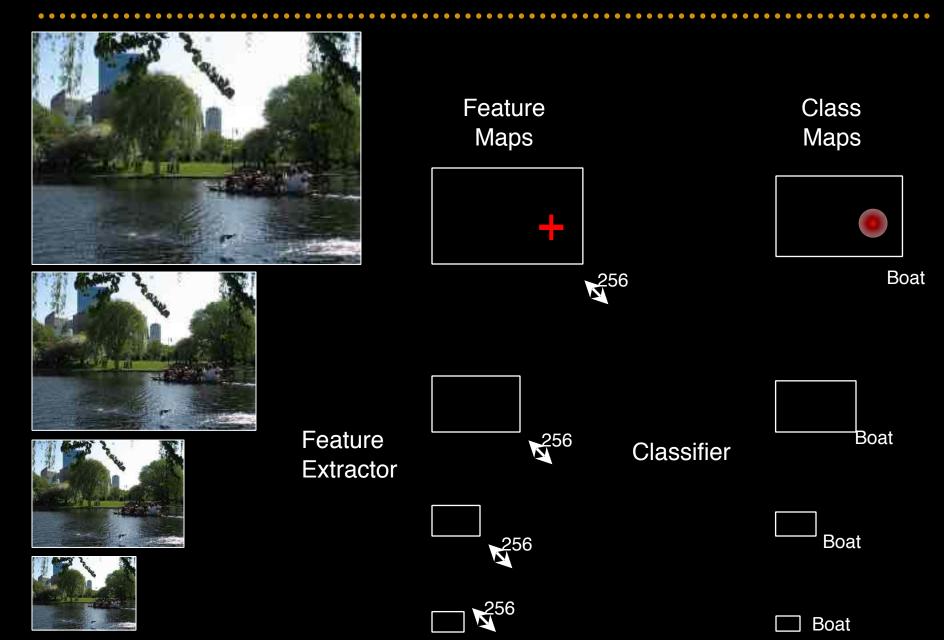


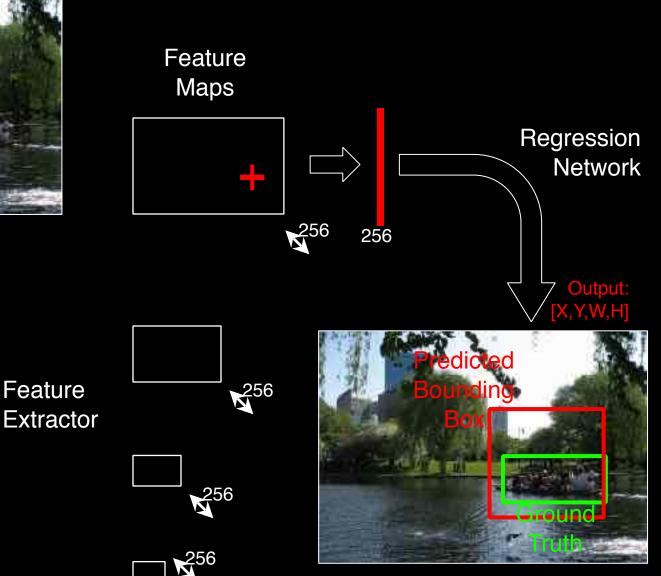
Input Window

No need to compute two separate windows Just one big input window, computed in a single pass









Bounding Box prediction example

[Sermanet et al. CVPR'14]

Detection Results

[Sermanet et al. CVPR'14]

Top predictions: tv or monitor (confidence 11.5) person (confidence 4.5) miniskirt (confidence 3.1)

15y 102012_val_00000119_16G

Groundtruth: tv or monitor tv or monitor (2) tv or monitor (3) person remote control remote control (2)

Detection Results

[Sermanet et al. CVPR'14]

Top predictions: trombone (confidence 26.8) oboe (confidence 17.5) oboe (confidence 11.5) and the state of the second states

Groundtruth: person hat with a wide brim hat with a wide brim (2) hat with a wide brim [3] phoe oboe (2) saxophone trombone person [2] person [3]

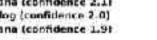
person [4]

10.00

Top prodictions: watercraft (confidence 72.2) watercraft (confidence 2.1)

spectral account. No

Top predictions: tennis ball (confidence 3.5) banana (confidence 2.4) banana (confidence 2.1) hotdog (confidence 2.0) benana (confidence 1.9)



Groundtruth watercraft watercraft (2)

Groundtruth: strawberry strawberry (2) strawberry (3) strawberry (4) Strawberry (5) strawberry (6) strawberry (7) strawberry (8) strawberry (9) strawberry (10) apple apple (2) apple (3)

Top predictions: microwave (confidence 5.6) refrigerator (confidence 2.5) Annual of the other

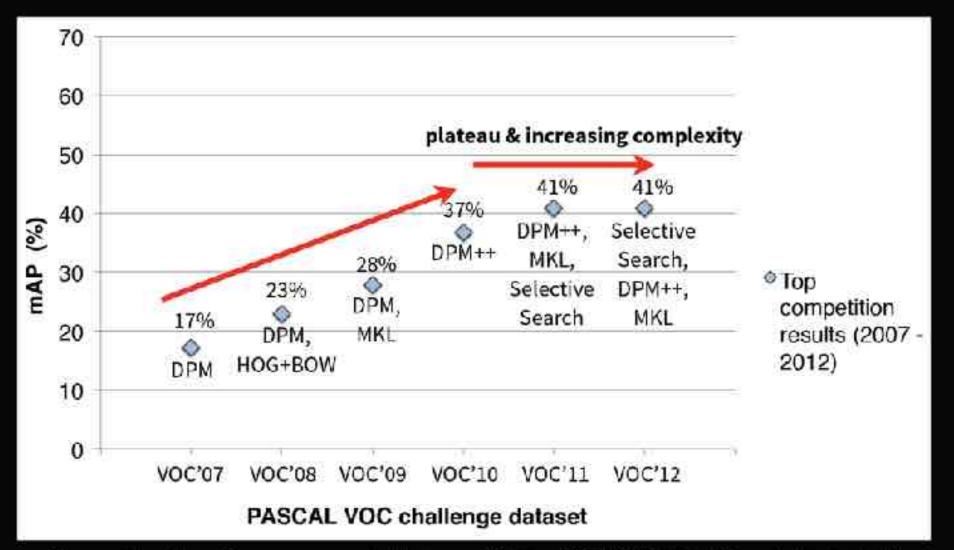
Groundtruth. bowl nsicrowave

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik **EECS** Berkeley

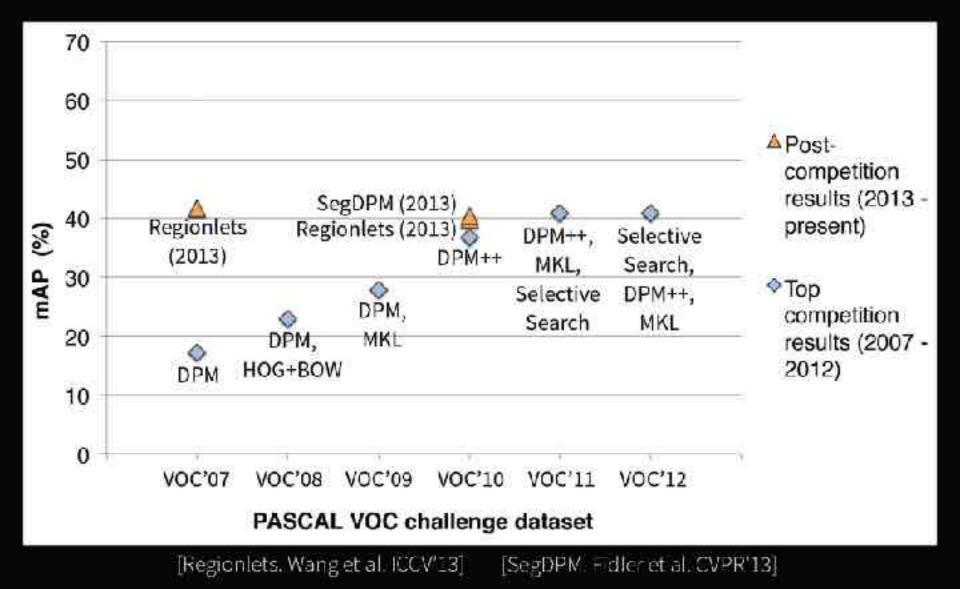
slides from: Ross Girschick - CVPR'14 talk

Complexity and the plateau

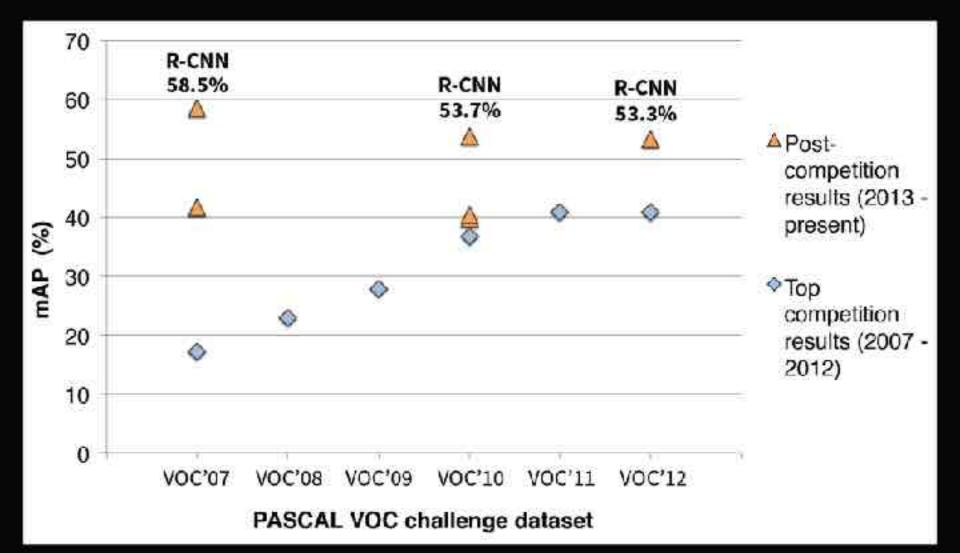


[Source: http://pascallin.ecs.socon.ac.uk/challenges/VOC/voc20{07,08,09,10,11,12}/results/index.html]

SIFT, HOG, LBP, ...

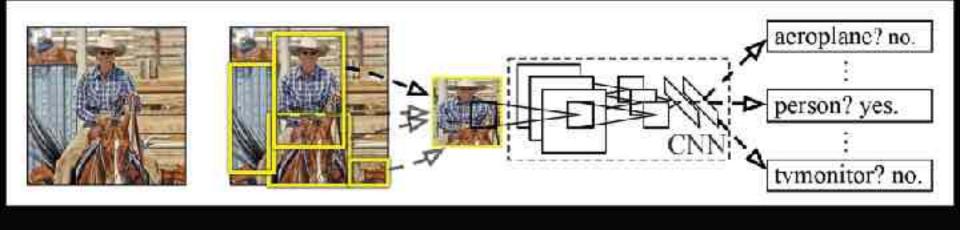


R-CNN: Regions with CNN features



Can we break through the PASCAL plateau with feature learning?

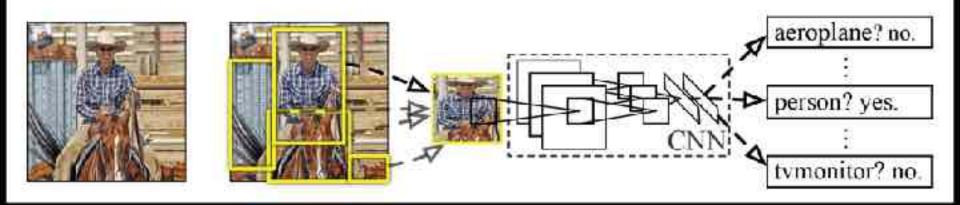
R-CNN: Regions with CNN features



Input	Extract region
image	proposals (~2k / image)

Compute CNN features Classify regions (linear SVM)

R-CNN at test time: Step 1



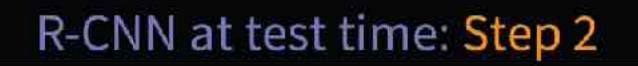
Input Extract region image proposals (-2k / image)

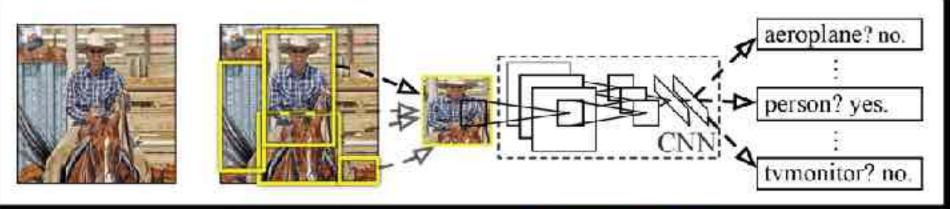
Proposal-method agnostic, many choices

- Selective Search [van de Sande, Uijlings et al.] (Used In this work)
- Objectness [Alexe et al.]
- Category independent object proposals [Endres & Hoiem]
- CPMC [Carreira & Sminchisescu]

Active area, at this CVPR

- BING [Ming et al.] fast
- MCG [Arbelaez et al.] high-quality segmentation



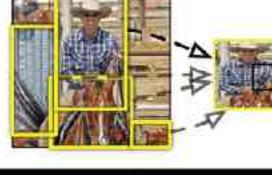


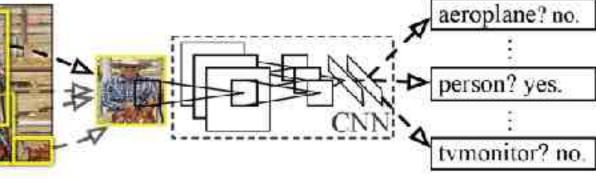
Input Extract region image proposals (~2k / image) Compute CNN features

Dilate proposal

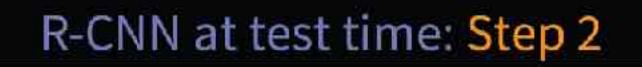
Extract region Input proposals (~2k / image) image

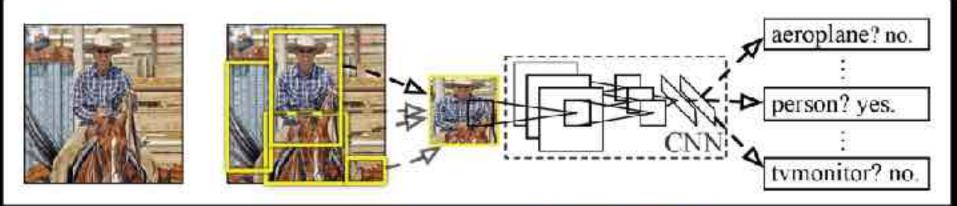
Compute CNN features



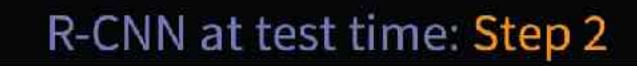


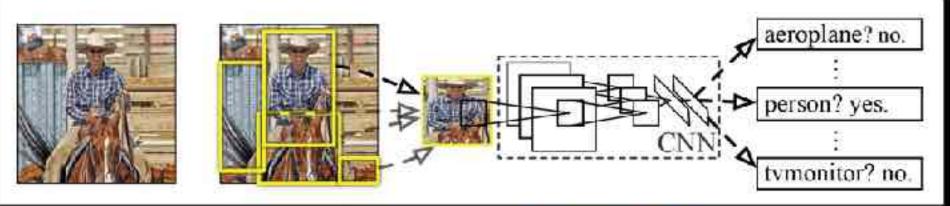
R-CNN at test time: Step 2





Input Extract region image proposals (~2k / image) Compute CNN features

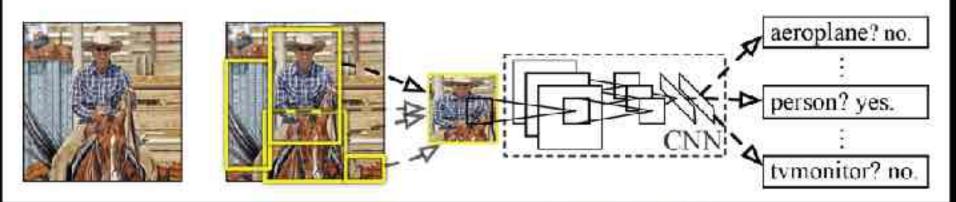




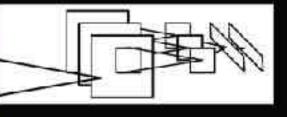
Input Extract region image proposals (~2k / image) Compute CNN features

227 x 227

R-CNN at test time: Step 2

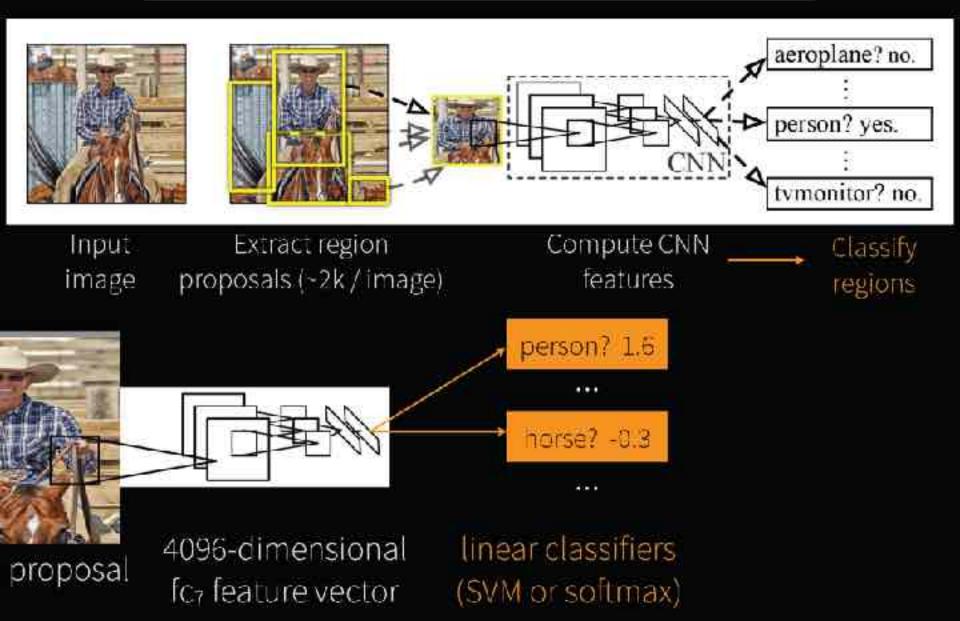


Input Extract region image proposals (~2k / image) Compute CNN features



c. Forward propagate Output: "fc-" features

R-CNN at test time: Step 3



Step 4: Object proposal refinement

Linear regression

on CNN features

Original proposal Predicted object bounding box

Bounding-box regression

R-CNN results on PASCAL

	VOC 2007	VOC 2010
DPM v5 (Girshick et al. 2011)	33.7%	29.6%
UVA sel. search (Uijlings et al. 2013)		35.1%
Regionlets (Wang et al. 2013)	41.7%	39.7%
SegDPM (Fidler et al. 2013)		40.4%

Reference systems

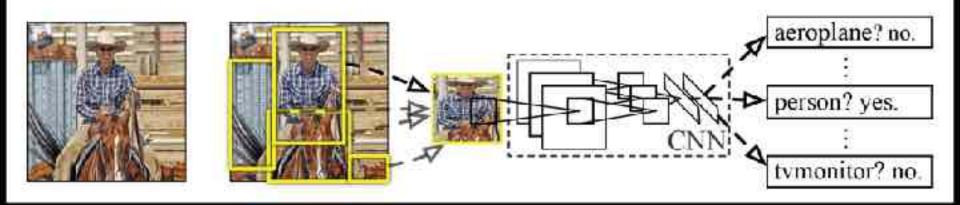
metric: mean average precision (higher is better)

R-CNN results on PASCAL

	VOC 2007	VOC 2010
DPM v5 (Girshick et al. 2011)	33.7%	29.6%
UVA sel. search (Uijlings et al. 2013)		35.1%
Regionlets (Wang et al. 2013)	41.7%	39,7%
SegDPM (Fidler et al. 2013)		40.4%
R-CNN	54.2%	50.2%
R-CNN + bbox regression	58.5%	53.7%

metric: mean average precision (higher is better)

R-CNN at test time: Step 1



Input Extract region image proposals (-2k / image)

Proposal-method agnostic, many choices

- Selective Search [van de Sande, Uijlings et al.] (Used In this work)
- Objectness [Alexe et al.]
- Category independent object proposals [Endres & Hoiem]
- CPMC [Carreira & Sminchisescu]

Active area, at this CVPR

- BING [Ming et al.] fast
- MCG [Arbelaez et al.] high-quality segmentation

Segmentation as Selective Search for Object Recognition

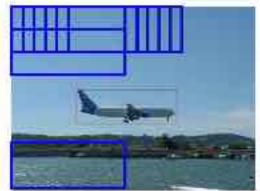
K. van de Sande¹, J. Uijlings², T. Gevers¹, and A. Smeulders¹ University of Amsterdam¹ and University of Trento²

Reading Group presentation by Esa Rahtu

(material taken from van de Sande's ICCV paper and PASCAL presentations)

Motivation

- Most current approaches use exhaustive search
 - Visit every location in an image



- Imposes computational constraints on
 - Number of possible locations -> grid/fixed aspect ratio)
 - Evaluation cost per location -> simple features/classifiers
- To go beyond this, we need something more sophisticated

Viola IJCV 2004 Dalal CVPR 2005 Felzenszwalb TPAMI 2010 Vedaldi ICCV 2009

Main design criteria

High recall

- We do not want to lose any objects, since they cannot be recovered later.
- Coarse locations are sufficient
 - Accurate delineation is not necessary for recognition
 - In contrary, nearby context might be useful
 - -> use bounding boxes
- Fast to compute
 - Necessary when operating with large datasets
 - -> <10s/image

How to obtain high recall?

Images are intrinsically hierarchical

Segmentation at single scale are not enough
 -> hypotheses based on hierarchical grouping

Start by oversegmenting the input image

"Efficient graph-based image segmentation" Felzenszwalb and Huttenlocher, IJCV 2004

Method

 compute similarity measure between all adjacent region pairs a and b (e.g.) as:

$$S(a,b) = \alpha S_{zize}(a,b) + \beta S_{color}(a,b)$$

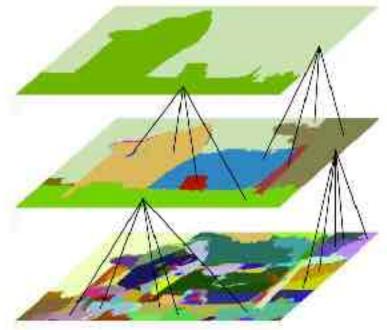
with
$$S_{size}(a,b) = 1 - \frac{\text{size}(a) + \text{size}(b)}{\text{size}(image)}$$

encourages small regions to merge early

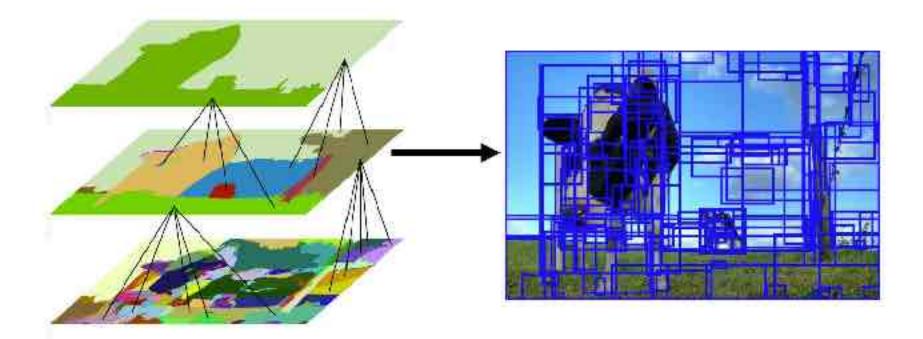
and $S_{color}(a,b) = \sum_{k=1}^{n} \min(a^k,b^k)$

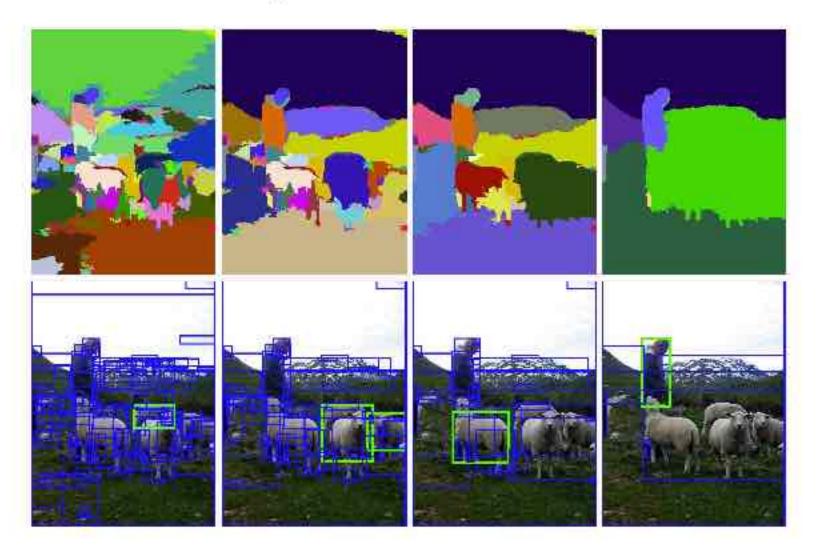
 a^k, b^k are color histograms, encouraging "similar" regions to merge for slightly more elaborated similarities see their IJCV-paper

- 1. Merge two most similar regions based on S.
- Update similarities between the new region and its neighbors.
- Go back to step 1. until the whole image is a single region.



 Take bounding boxes of all generated regions and treat them as possible object locations.





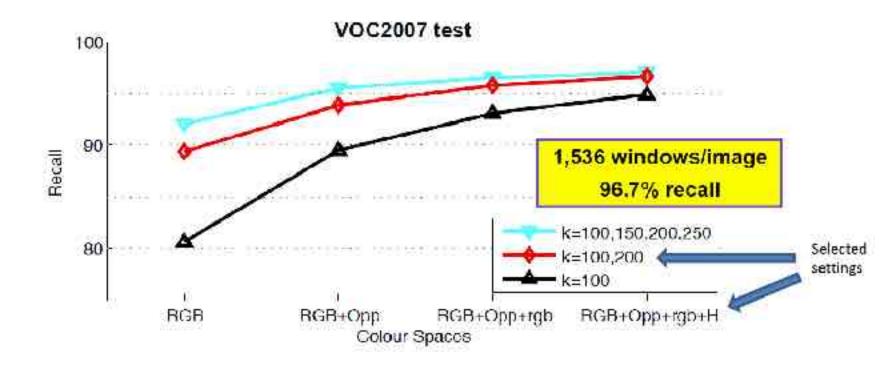
High recall revisited

- No single segmentation works for all cases
 -> diversify the set of segmentations
- Use different color spaces
 - RGB, Opponent color, normalized RGB, and hue
- Use different parameters in Felzenswalb method

- k = [100, 150, 200, 250] (k = threshold parameter)

Evaluation of object hypotheses

 Recall is a proportion of objects that are covered by some box with >0.5 overlap

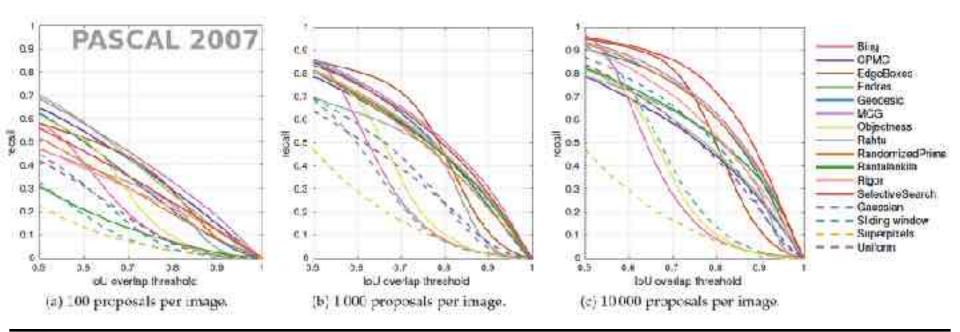


An Evaluation of Region Proposal Methods

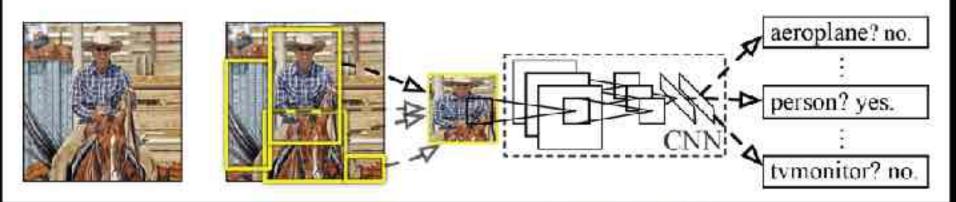
- Hosang, Benenson, Dollar, Schiele @ Pami'15
- Recall (of ground truth bounding boxes) as a function of
 - proposal method

trata planes undata:

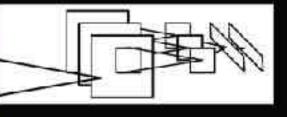
- IoU (intersection over union)
- number of proposals per image



R-CNN at test time: Step 2

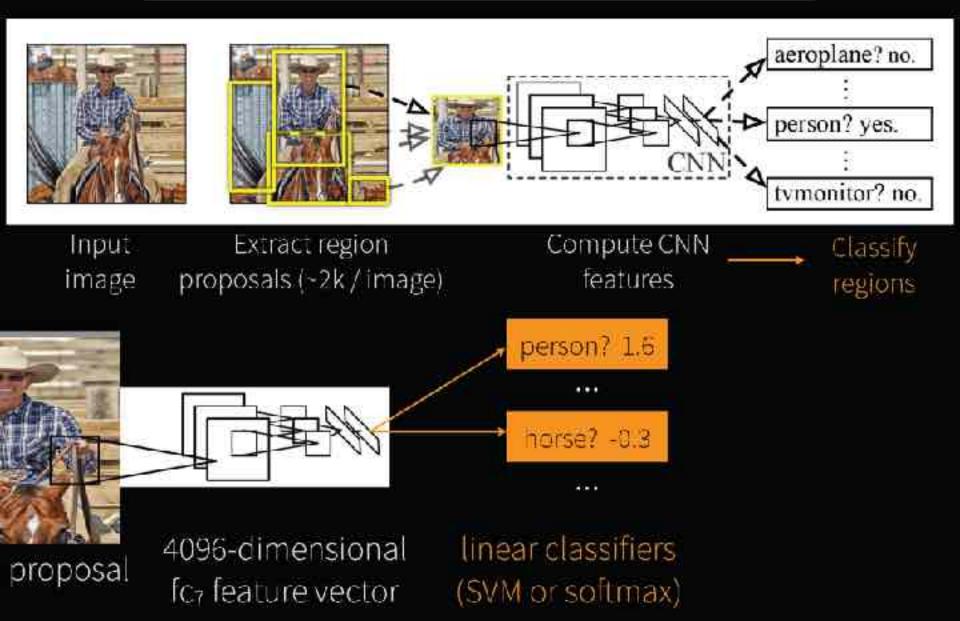


Input Extract region image proposals (~2k / image) Compute CNN features



c. Forward propagate Output: "fc-" features

R-CNN at test time: Step 3



Training R-CNN

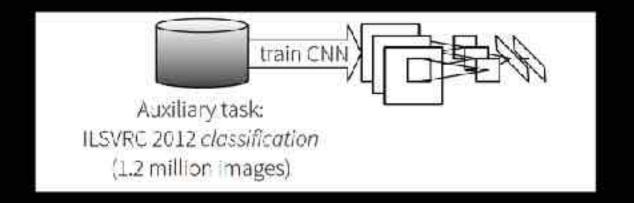
Bounding-box labeled detection data is scarce

Key insight:

Use *supervised* pre-training on a data-rich auxiliary task and *transfer* to detection

R-CNN training: Step 1

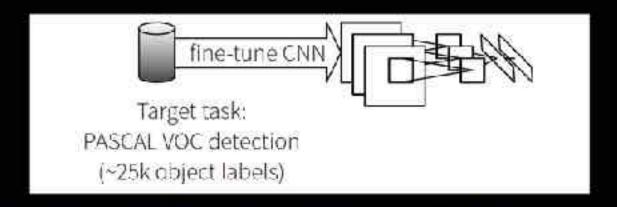
Supervised pre-training Train a SuperVision CNN* for the 1000-way ILSVRC image classification task



"Network from Krizhevsky, Sutskever & Hinton. NIPS 2012 Also called "AlexNet"

R-CNN training: Step 2

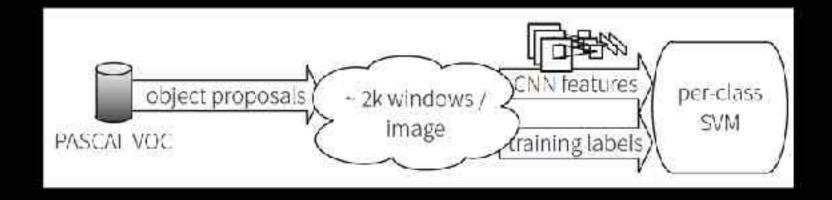
Fine-tune the CNN for detection Transfer the representation learned for ILSVRC classification to PASCAL (or ImageNet detection)



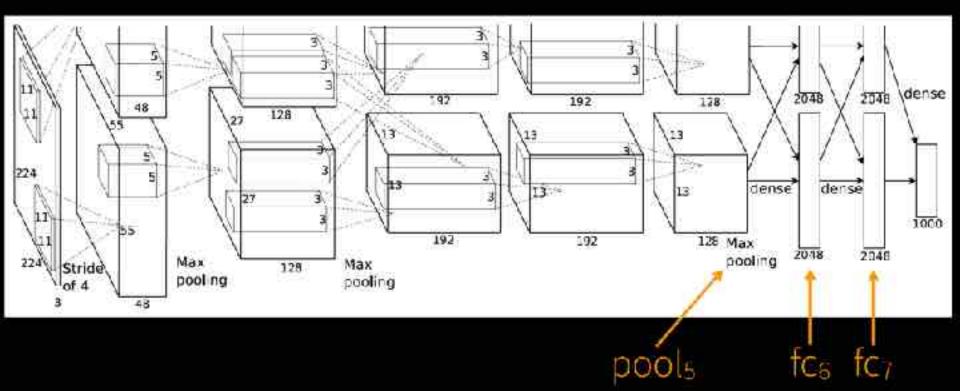
Try Caffe! http://caffe.berkeleyvision.org - Clean & fast CNN library in C++ with Python and MATLAB interfaces - Used by R-CNN for training, fine-tuning, and feature computation

R-CNN training: Step 3

Train detection SVMs (With the softmax classifier from fine-tuning mAP decreases from 54% to 51%)



Ablation: skip fine-tuning



Pre-trained CNN + SVMs (no FT)

	VOC 2007	VOC 2010
Regionlets (Wang et al. 2013)	41.7%	39.7%
SegDPM (Fidler et al. 2013)		40.4%
R-CNN pools	44,2%	
R-CNN fc₀	46.2%	
R-CNN fc7	44.7%	

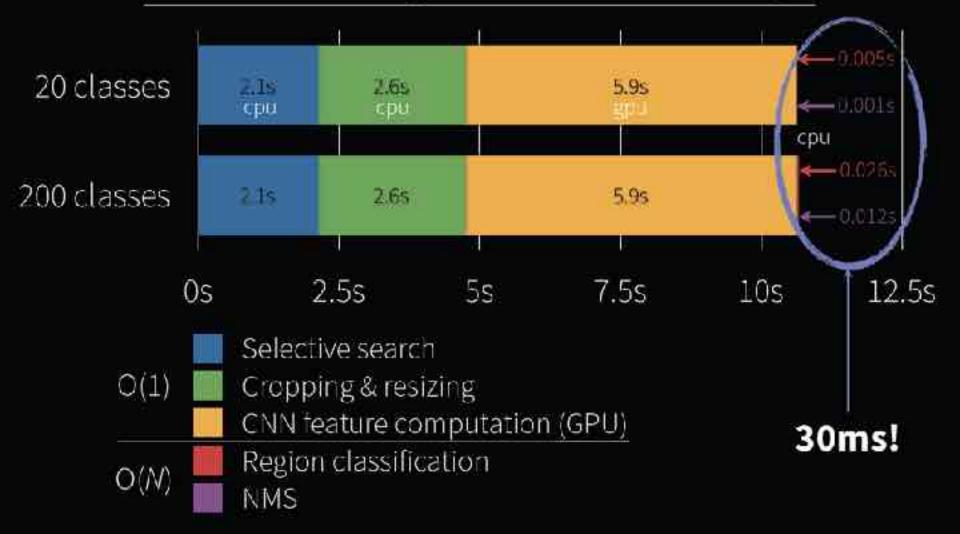
metric: mean average precision (higher is better)

Compare with fine-tuned R-CNN

		VOC 2007	VOC 2010
Regionlets (Wang et	t al. 2013)	41.7%	39.7%
SegDPM (Fidler et a	l. 2013)		40.4%
R-CNN pools		44.2%	
R-CNN fc ₆		46.2%	
R-CNN fc7		44.7%	
R-CNN FT pools		47.3%	
R-CNN FT pools R-CNN FT fc6 R-CNN FT fc7		53.1%	
R-CNN FT fc7		54.2%	50.2%

metric: mean average precision (higher is better)

Detection speed & scalability



Hardware: Intel Core 17-3930K 3.2Ghz and NV DIA Tesla K20c We thank NVIDIA for generous hardware donations.

Top bicycle FPs (AP = 72.8%)

bicycle (loc): or .0.41 1-r.0.04

Dicycle (car): 0x=0.00 1 r=L.56

ktyola (loc): ov~0.46 1 -r=0.45

bicycle (loc): ev_C.35 1-r_0.81

Dicycle (loc): 0/wC,10 1 rw0.45

bryde (log) ov=0.55 1-1-0.47

bicycie (loc). ov=0.42 1-r=0.45

bicycle (loc): ov=0.44 1-r=0.57

bievolo (bgi: ov=0.00 T-r=0

bicycle (bg): ov=0.00 1-r=0.44

Top bicycle FPs (AP = 72.8%)

bitycle (loc): ov.0.41 1-r.0.04

DRIVER REPLECTED OF T IN-LESS

toyota (loc): ov=0.46 | -r=0.45

bicycle (loc): ev_C.35 1-r_0.81

bicycle (loc): ov=0.15 1-r=0.59

No.6-1-1 35.0-you (col) elayoid

bicycle (loc): ov=0:42 1=r=0.45

bicycic (loc): ov=0.44 1-r=0.5

CO.0-vic (ipd) oldvoid 1-1-0.

bicycle (loc): ey=0.10 1 r=0.45

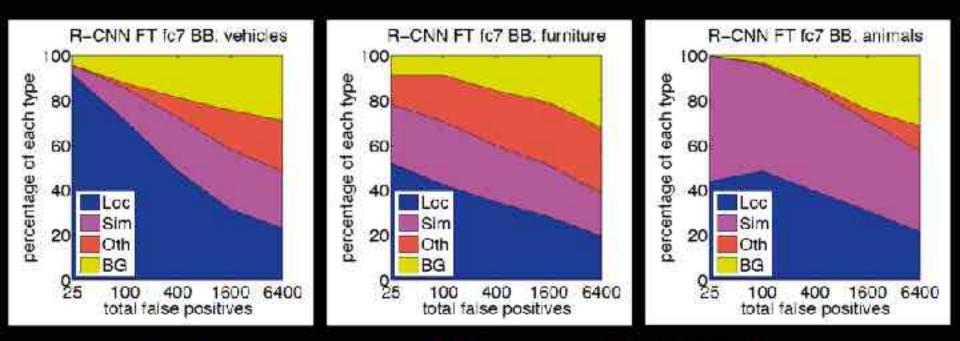
False positive #15

bicycle (bg): ov=0.00 1-r=0.44

(zoom)

Unannotated bicycle

False positive type distribution



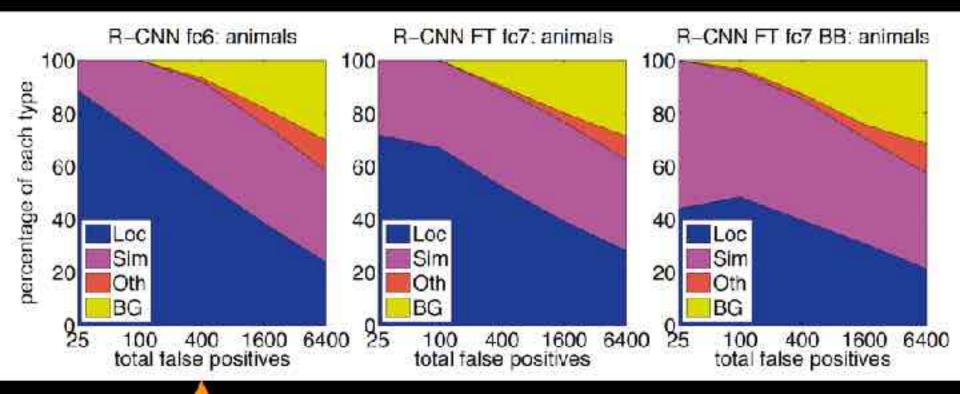
Loc = localization Sim = similar classes

Oth = other / dissimilar classes

BG = background

Analysis software: D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing Error in Object Detectors. ECCV, 2012.

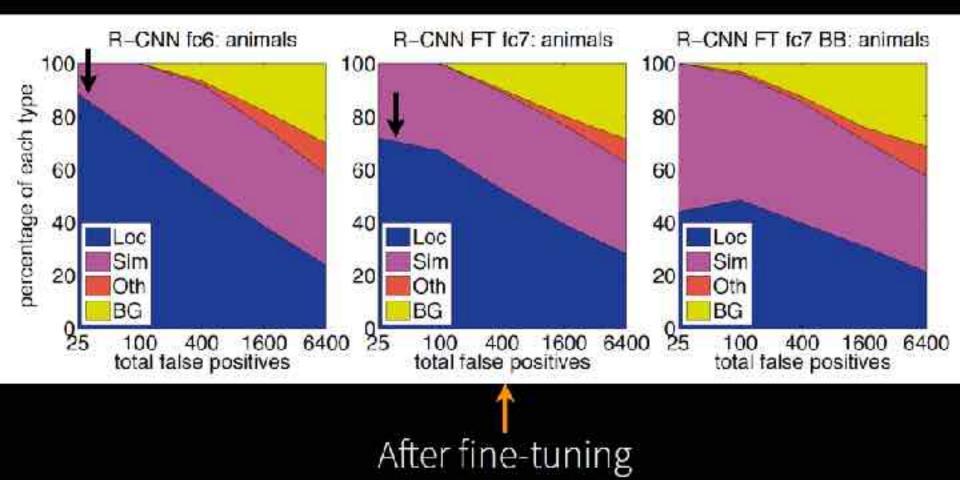
False positive analysis



No fine-tuning

Analysis software: D. Hoiem, Y. Chodpathumwan, and Q. Dai. "Diagnosing Error in Object Detectors." ECCV, 2012.

False positive analysis



False positive analysis

