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Overview Today
• VGG-network - alternative to AlexNet 

‣ Very Deep Convolutional Networks for Large-Scale Image Recognition, 
K. Simonyan, A. Zisserman, ICLR’15 

• Deep residual learning for image recognition 

‣ [He,Zhang,Ren,Sun@cvpr16] - https://arxiv.org/abs/1512.03385 

• From detection to segmentation 

‣ Main Reading: Semantic Image Segmentation with Deep Convolutional Nets and Fully 
Connected CRFs, Chen, Papandreou, Kokkins, Murphy, Yuille, ICLR’15 - https://arxiv.org/abs/
1412.7062 

‣ Also 

- Hypercolumns for object segmentation and fine-grained localization 
Bharath Hariharan, Pablo Arbeláez, Ross Girshick, Jitendra Malik, CVPR’15 
https://arxiv.org/abs/1411.5752 

- Fully Convolutional Networks for Semantic Segmentation 
John Long, Evan Shelhamer, Trevor Darelle, CVPR’15 
https://arxiv.org/abs/1411.4038 

• Cityscapes - https://www.cityscapes-dataset.com
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High Level Computer Vision - June o7, 2o17

1. Deep Residual Learning for Image Recognition

• Deep residual learning for image recognition 
He,Zhang,Ren,Sun@cvpr16 
https://arxiv.org/abs/1512.03385 

• Following slides from first authors of the paper: Kaiming He
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Deep Residual Learning  
for Image Recognition

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	Jian	Sun	

work	done	at	
Microsoft	Research	Asia



ResNet @ ILSVRC & COCO 2015 
Competitions

1st	places	in	all	five	main	tracks	
• ImageNet	Classification:	“Ultra-deep”	152-layer	nets		
• ImageNet	Detection:	16%	better	than	2nd	
• ImageNet	Localization:	27%	better	than	2nd	
• COCO	Detection:	11%	better	than	2nd	
• COCO	Segmentation:	12%	better	than	2nd

*improvements	are	relative	numbers

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.



Revolution of Depth
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Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.



PASCAL	VOC	2007	Object	Detec_on	mAP	(%)

HOG,	DPM AlexNet	
(RCNN)

VGG	
(RCNN)

ResNet	
(Faster	RCNN)*

86

66
58

34

shallow 8	layers
16	layers

101	layers

*w/	other	improvements	&	more	data

Engines	of	
visual	recognition

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.
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Revolution of Depth
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Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.
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Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.
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Revolution of Depth
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Revolution of Depth
ResNet,	152	

layers

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.



Is learning better networks 
as simple as stacking more 

layers?

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.



Simply stacking layers?
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• Plain	nets:	stacking	3x3	conv	layers…	
• 56-layer	net	has	higher	training	error	and	  

test	error	than	20-layer	net

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.



Simply stacking layers?
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• A	general	phenomenon,	observed	in	many	datasets
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Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.
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• Richer	solution	space	
• A	deeper	model	should	not	have	

higher	training	error	
• A	solution	by	construction:	

• original	layers:	copied	from	a	
learned	shallower	model	

• extra	layers:	set	as	identity	
• at	least	the	same	training	

error	
• Optimization	difficulties:	solvers	

cannot	find	the	solution	when	
going	deeper…

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.



Deep Residual Learning
• Plaint	net

any	two	
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Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.



Deep Residual Learning
• Residual	net
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Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.



Deep Residual Learning
• 	

• If	identity	were	optimal, 
easy	to	set	weights	as	0 

• If	optimal	mapping	is	closer	
to	identity,	easier	to	find	
small	fluctuations

weight	layer

weight	layer

relu

relu

	

	

		

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.



Network “Design”
• Keep	it	simple	

• Our	basic	design	(VGG-style)	
• all	3x3	conv	(almost)	
• spatial	size	/2		=>	#	filters	x2	
• Simple	design;	just	deep!

plain	net ResNet

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.



CIFAR-10 experiments
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Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.



ImageNet experiments
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Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.



ImageNet experiments
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Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.



“Features matter.”  
(quote [Girshick et al. 2014], the R-CNN paper)

task 2nd-place	
winner	 ResNets margin	

(relative)

ImageNet	Localization	
(top-5	error)

12.0 9.0 27%

ImageNet	Detection	
(mAP@.5)

53.6 62.1 16%

COCO	Detection	  
(mAP@.5:.95)

33.5 37.3 11%

COCO	Segmentation	
(mAP@.5:.95)

25.1 28.2 12%
• Our	results	are	all	based	on	ResNet-101	
• Our	features	are	well	transferrable

absolute	
8.5%	  
better!

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.



Object Detection (brief)
• Simply	“Faster	R-CNN	+	ResNet”

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.	
Shaoqing	Ren,	Kaiming	He,	Ross	Girshick,	&	Jian	Sun.	“Faster	R-CNN:	Towards	Real-Time	Object	Detection	with	

Region	Proposal	Networks”.	NIPS	2015.

image

CNN

feature	
map

Region	Proposal	Net

proposals

classifier

RoI	pooling

Faster	R-CNN	
baseline mAP@.5 mAP@.5:.95

VGG-16 41.5 21.5
ResNet-101 48.4 27.2

COCO	detection	results	
(ResNet	has	28%	relative	gain)



Our	results	on	MS	COCO

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.	
Shaoqing	Ren,	Kaiming	He,	Ross	Girshick,	&	Jian	Sun.	“Faster	R-CNN:	Towards	Real-Time	Object	Detection	with	

Region	Proposal	Networks”.	NIPS	2015.

*the	original	image	is	from	the	COCO	dataset



Results	on	real	video.	Model	trained	on	MS	COCO	w/	80	categories.	
(frame-by-frame;	no	temporal	processing)

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.	
Shaoqing	Ren,	Kaiming	He,	Ross	Girshick,	&	Jian	Sun.	“Faster	R-CNN:	Towards	Real-Time	Object	Detection	with	

Region	Proposal	Networks”.	NIPS	2015.

this video is available online: https://youtu.be/WZmSMkK9VuA



More Visual Recognition Tasks
ResNets	lead	on	these	benchmarks	(incomplete	list):	
• ImageNet	classification,	detection,	localization	
• MS	COCO	detection,	segmentation	

• PASCAL	VOC	detection,	segmentation	
• VQA	challenge	2016	

• Human	pose	estimation	[Newell	et	al	2016]	
• Depth	estimation	[Laina	et	al	2016]	
• Segment	proposal	[Pinheiro	et	al	2016]	
• …

PASCAL	detection	
leaderboard

PASCAL	segmentation	
leaderboard

ResNet-101

ResNet-101



Potential Applications

ResNets	have	
shown	outstanding	or	
promising	results	on:

Visual	Recognition

Image	Generation	
(Pixel	RNN,	Neural	Art,	etc.)

Natural	Language	Processing	
(Very	deep	CNN)

Speech	Recognition	
(preliminary	results)

Advertising,	user	prediction	
(preliminary	results)

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.



Conclusions

• Deep	Residual	Learning:	
• Ultra	deep	networks	can	be	easy	to	train	
• Ultra	deep	networks	can	simply	gain	accuracy	from	depth	
• Ultra	deep	representations	are	well	transferrable	

• Follow-up	[He	et	al.	arXiv	2016]	
• 200	layers	on	ImageNet,	1000	layers	on	CIFAR

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Identity	Mappings	in	Deep	Residual	Networks”.	arXiv	2016.	
Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.



Resources
• Models	and	Code	

• Our	ImageNet	models	in	Caffe:	https://github.com/KaimingHe/deep-residual-networks	

• Many	available	implementations: 
(list	in	https://github.com/KaimingHe/deep-residual-networks)	

• Facebook	AI	Research’s	Torch	ResNet:	https://github.com/facebook/
fb.resnet.torch		

• Torch,	CIFAR-10,	with	ResNet-20	to	ResNet-110,	training	code,	and	curves:	code	
• Lasagne,	CIFAR-10,	with	ResNet-32	and	ResNet-56	and	training	code:	code	
• Neon,	CIFAR-10,	with	pre-trained	ResNet-32	to	ResNet-110	models,	training	code,	and	curves:	code	
• Torch,	MNIST,	100	layers:	blog,	code	
• A	winning	entry	in	Kaggle's	right	whale	recognition	challenge:	blog,	code	
• Neon,	Place2	(mini),	40	layers:	blog,	code	
• …....

Thank	You!

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

https://github.com/KaimingHe/deep-residual-networks
https://github.com/KaimingHe/deep-residual-networks
https://github.com/KaimingHe/deep-residual-networks
https://github.com/facebook/fb.resnet.torch
https://github.com/facebook/fb.resnet.torch
https://github.com/facebook/fb.resnet.torch
https://github.com/facebook/fb.resnet.torch
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2. From detection to segmentation

• Main Reading:  
‣ Semantic Image Segmentation with Deep Convolutional Nets and Fully 

Connected CRFs, Chen, Papandreou, Kokkins, Murphy, Yuille, ICLR’15 - 
https://arxiv.org/abs/1412.7062 

• Also 
‣ Hypercolumns for object segmentation and fine-grained localization 

Bharath Hariharan, Pablo Arbeláez, Ross Girshick, Jitendra Malik, 
CVPR’15 - https://arxiv.org/abs/1411.5752 

‣ Fully Convolutional Networks for Semantic Segmentation 
John Long, Evan Shelhamer, Trevor Darelle, CVPR’15 
https://arxiv.org/abs/1411.4038
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Sliding Window with ConvNet
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Sliding Window with ConvNet

Input Window

224 6
256

Conv Conv Conv Conv Conv Full Full

Feature Extractor16
7

240

1

No need to compute two separate windows 
Just one big input window, computed in a single pass

C  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“Hole” algorithm

• “Normal” Resolution 
‣ Black: Filter width = 3, Stride = 2 

• Increase Resolution by Factor of 2: 
‣ Magenta: same Filter with width 3, Stride = 1

57
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“Hole” algorithm

• skip subsampling  
‣ in their case for VGG-net: after the last two max-pooling layers) 

• for the next layer filter: sparsely sample the feature map with 
“input stride” 2 (or 4 respectively)

58
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CRF - Conditional Random Field

• Energy function to be minimized 

‣ with unary terms obtained from the  CNN: 

‣ and pairwise terms (Potts model) 

- with
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Another fully convolutional network for semantic 
segmentation (without CRF)

66
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3. Cityscapes Dataset

• Dataset for semantic labeling and “understanding” 
‣ Cordts, Omaran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, 

Schiele @ cvpr16 

‣ https://www.cityscapes-dataset.net 

‣ http://arxiv.org/abs/1604.01685
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The Cityscapes Dataset  
for Semantic Scene Labeling and Understanding
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CVPR

#1595

CVPR

#1595

CVPR 2016 Submission #1595. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

The AnonymousName? Dataset for Semantic Urban Scene Understanding

Anonymous CVPR submission. ? Name changed for anonymity reasons.

Paper ID 1595

train – fine annotation – 2975 images train – coarse annotation – 20 000 images test – fine annotation – 1525 images

Abstract

Visual understanding of complex urban street scenes is
an enabling factor for a wide range of applications. Ob-
ject detection has benefited enormously from large-scale
datasets, especially in the context of deep learning. For
semantic urban scene understanding, however, no current
dataset adequately captures the complexity of real-world
urban scenes. To address this, we introduce Anonymous-
Name, a benchmark suite and large-scale dataset to train
and test approaches for pixel-level and instance-level se-
mantic labeling. AnonymousName is comprised of a large,
diverse set of stereo video sequences recorded in streets
from 50 different cities. 5000 of these images have high
quality pixel-level annotations; 20 000 additional images
have coarse annotations to enable methods that leverage
large volumes of weakly-labeled data. Crucially, our ef-
fort exceeds previous attempts in terms of dataset size, an-
notation richness, scene variability, and complexity. Our
accompanying empirical study provides an in-depth analy-
sis of the dataset characteristics, as well as a performance
evaluation of several state-of-the-art approaches based on
our benchmark.

1. Introduction
Visual scene understanding has moved from an elusive

goal to a focus of much recent research in computer vi-
sion [25]. Semantic reasoning about the contents of a scene
is thereby done on several levels of abstraction. Scene
recognition aims to determine the overall scene category
by putting emphasis on understanding its global properties,
e.g. [43, 72]. Scene labeling methods, on the other hand,
seek to identify the individual constituent parts of a whole

scene as well as their interrelations on a more local pixel-
and instance-level, e.g. [39, 63]. Specialized object-centric
methods fall somewhere in between by focusing on detect-
ing a certain subset of (mostly dynamic) scene constituents,
e.g. [5,10,11,14]. Despite significant advances, visual scene
understanding remains challenging, particularly when tak-
ing human performance as a reference.

The resurrection of deep learning [32] has had a major
impact on the current state-of-the-art in machine learning
and computer vision. Many top-performing methods in a
variety of applications are nowadays built around deep neu-
ral networks [28, 39, 60]. A major contributing factor to
their success is the availability of large-scale, publicly avail-
able datasets such as ImageNet [54], PASCAL VOC [13],
PASCAL-Context [42], and Microsoft COCO [36] that al-
low deep neural networks to develop their full potential.

Despite the existing gap to human performance, scene
understanding approaches have started to become essen-
tial components of advanced real-world systems. A par-
ticularly popular and challenging application involves self-
driving cars, which make extreme demands on system per-
formance and reliability. Consequently, significant research
efforts have gone into new vision technologies for under-
standing highly complex traffic scenes and situations that
autonomous vehicles have to cope with [3, 15–17, 53, 57].
Also in this area, research progress can be heavily linked to
the existence of datasets such as the KITTI Vision Bench-
mark Suite [18], CamVid [6], Leuven [33], and Daimler Ur-
ban Segmentation [56] datasets. These urban scene datasets
are often much smaller than the datasets addressing more
general settings. Moreover, we argue that they do not fully
capture the variability and complexity of real-world inner-
city traffic scenes. Both currently inhibits further progress
in visual understanding of street scenes. On this account, we
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KITTI [Geiger et al. ‘12] 
stereo video 
no official semantic labeling or 
instance labeling challenge

CamVid [Brostow et al., to appear] 
monocular video

Daimler Urban Scenes [Scharwächter et al. ‘14] 
stereo video 
limited number of classes / annotation density

2 T. Scharwächter, M. Enzweiler, U. Franke, S. Roth

Fig. 1: Di↵erent scene representation levels trading-o↵ specificity (object-centric) and
generality (region-centric). We advocate the use of a medium-level scene-centric model
to balance this trade-o↵ and gain e�ciency.

is based on pixel-level intensity, depth or motion discontinuities with only few
geometry or scene constraints leading to noise in the recovered scene models.
Furthermore, segmentation approaches are often computationally expensive and
the final representation, a pixel-wise image labeling, is overly redundant for many
real-world applications, e.g . mobile robotics or intelligent vehicles.

To balance this trade-o↵ between specificity (objects) and generality (re-
gions), as shown in Fig. 1, we consider the ideal model for visual semantic
scene understanding to be a medium-level scene-centric representation that
builds upon the strengths of both object-centric and region-centric models. The
framework we propose in this paper, called Stixmantics, is based on the Stixel
World [35], a compact environment representation computed from dense dispar-
ity maps. The key aspect that qualifies Stixels as a good medium-level represen-
tation is simply the fact that it is based on depth information and that it maps
the observed scene to a well-defined model of ground surface and upright stand-
ing objects. This makes it adhere more to boundaries of actual objects in the
scene than standard superpixels. Yet, in contrast to object-centric approaches,
the separation into thin stick-like elements (the Stixels) retains enough flexibil-
ity to handle complex geometry and partial occlusions. More precisely, a Stixel
models a part of an elevated (upright standing) object in the scene and is defined
by its 3D foot point, height, width and distance to the camera.

Image SGM / Stixels Proposal Regions

Point TracksScene ModelGround Truth

Fig. 2: System overview. A spatio-temporally regularized medium-level scene model
(bottom center) is estimated in real-time. This model represents the scene in terms
of 3D scene structure, 3D velocity and semantic class labels at each Stixel. Dense
stereo and Stixel visualization (top center) is color-encoded depending on distance.
Stixel-based proposal regions for classification are shown in false-color (top right). In
all other images, colors represent semantic object classes.
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Overview
Multimodal input 

2 MP automotive-grade CMOS cameras (OnSemi AR0331) 
1/3” sensor, 17Hz, rolling shutter 
16 bit linear intensity HDR 
+ 8-bit tonemapped LDR 

stereo setup (22cm baseline) 

30 frame video snippets (~2/3 of the dataset) 
+ long videos (remaining ~1/3)
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Overview
Multimodal input 

precomputed disparity
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Overview
Multimodal input 

in-vehicle odometry 
outside temperature 
GPS tracks
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Labels

8 categories — 30 classes 
instance-level annotations for all vehicles & humans 

19 classes evaluated 
rare cases excluded

77

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVPR

#1595

CVPR

#1595

CVPR 2016 Submission #1595. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

flat construction nature vehicle sky object human void

106

107

108

109

1010
1 instance-level annotations are available
2 ignored for evaluationro

ad
si

de
w

al
k

pa
rk

in
g2

ra
il

tra
ck

2

bu
ild

.
fe

nc
e

w
al

l
br

id
ge

2

tu
nn

el
2

gu
ar

d
ra

il2

ve
ge

t.

te
rr

ai
n ca

r1

bi
cy

cl
e1

bu
s1

tru
ck

1

tra
in

1

m
ot

or
cy

cl
e1

ca
ra

va
n1

,2

tra
ile

r1
,2

sk
y

po
le

tra
ffi

c
si

gn
tra

ffi
c

lig
ht

po
le

gr
ou

p2

pe
rs

on
1

rid
er

1

st
at

ic
2

gr
ou

nd
2

dy
na

m
ic

2

nu
m

be
ro

fp
ix

el
s

Figure 1. Number of finely annotated pixels (y-axis) per class and their associated categories (x-axis). The color scheme matches Fig. 4.

propose the AnonymousName benchmark suite and a corre-
sponding dataset, involving a much wider range of highly
complex inner-city street scenes that were recorded in 50
different cities. AnonymousName significantly exceeds
previous efforts in terms of size, annotation richness, and,
more importantly, regarding scene complexity and variabil-
ity. We go beyond pixel-level semantic labeling by also
considering instance-level semantic labeling in both our an-
notations and evaluation metrics. To facilitate research on
3D scene understanding, we also provide depth informa-
tion through stereo vision. Note that this paper goes sig-
nificantly beyond our dataset preannouncement presented
in [2]. Here, we provide an in-depth analysis of the final-
ized dataset, augment our evaluation protocols, and present
a thorough benchmark study of state-of-the-art approaches.

2. Dataset
Designing a large-scale dataset requires a multitude of

decisions, e.g. on the modalities of data recording, data
preparation, and the annotation protocol. Our choices were
guided by the ultimate goal of enabling significant progress
in the field of semantic urban scene understanding.

2.1. Data specifications

Our data recording and annotation methodology was
carefully designed to capture the high variability of outdoor
street scenes. Several hundreds of thousands of frames were
acquired from a moving vehicle during the span of several
months, covering spring, summer, and fall in 50 cities, pri-
marily in Germany but also in neighboring countries. We
deliberately did not record in adverse weather conditions,
such as heavy rain or snow, as we believe such conditions
to require specialized techniques and datasets [47].

Our camera system and post-processing reflect the cur-
rent state-of-the-art in the automotive domain. Images were
recorded with an automotive-grade 22 cm baseline stereo
camera setup using 1/3 inch CMOS 2MP sensors (OnSemi
AR0331) with rolling shutters at a frame-rate of 17Hz.
The sensors yield high-dynamic-range (HDR) images with
16 bits linear color depth. The camera system was mounted

behind the windshield at a height of 1.2m. Each 16 bit
stereo image pair was subsequently debayered and rectified.
We relied on [29] for extrinsic and intrinsic calibration. To
ensure calibration accuracy we re-calibrated on-site before
each recording session.

For comparability and compatibility with existing
datasets we also provide low-dynamic-range (LDR) 8 bit
RGB images that are obtained by applying a logarithmic
compression curve. Such tone mappings are common in
automotive vision, since they can be computed efficiently
and independently for each pixel. To facilitate highest an-
notation quality, we applied a separate tone mapping to each
image. The resulting images are less realistic, but visually
more pleasing and proved easier to annotate. 5000 images
were manually selected from 27 cities for dense pixel-level
annotation, aiming for high diversity of foreground objects,
background, and overall scene layout. The annotations (see
Sec. 2.2) were done on the 20th frame of a 30-frame video
snippet, which we provide in full to supply context informa-
tion. For the remaining 23 cities, a single image every 20 s
or 20m driving distance (whatever comes first) was selected
for coarse annotation, yielding 20 000 images in total.

In addition to the rectified 16 bit HDR and 8 bit LDR
stereo image pairs and corresponding annotations, our
dataset includes vehicle odometry obtained from in-vehicle
sensors, outside temperature, and GPS tracks.

2.2. Classes and annotations

We provide coarse and fine annotations at pixel level,
where the latter also contain instance-level labels for hu-
mans and vehicles.

Our 5000 fine pixel-level annotations consist of layered
polygons (à la LabelMe [55]) and were realized in-house
to guarantee highest quality levels. Annotation and quality
control required more than 1.5 h on average for a single im-
age. Annotators were asked to label the image from back to
front such that no object boundary was marked more than
once. Each annotation thus implicitly provides a depth or-
dering of the objects in the scene. Given our label scheme,
annotations can be easily extended to cover additional or

2

https://www.cityscapes-dataset.net



Bernt Schiele

Dense Labeling: 5,000 images
Large scale — 5000 images with dense labeling 

2975 training images 
500 validation images 
1525 test images (for benchmark) 

annotated 20th frame from every video snippet  

instance labels for dynamic classes
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Coarse Labeling: 20,000 images
Large scale — 20000 images with weak labeling 

all for weakly-supervised training 

annotated every 20th frame from long video
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Objective: Complexity

Complex, real-world scenes
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Objective: Diversity
50 cities  

across all of Germany 
+ Zürich + Strasbourg 
KITTI, CamVid & DUS: 1 city only 

3 seasons 
spring, summer, fall 
winter purposely excluded 

fair weather 
rain & snow are excluded 
daytime only
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Figure 3. Histogram of object distances in meters for class vehicle.

700 frames [21, 27, 30, 31, 53, 59, 68, 70]. We map those
labels to our high-level categories and analyze this consol-
idated set. In comparison, AnonymousName provides sig-
nificantly more annotated images, i.e. 5000 fine and 20 000
coarse annotations. Moreover, the annotation quality and
richness is notably better. As AnonymousName provides
recordings from 50 different cities, it also covers a signifi-
cantly larger area than previous datasets that contain images
from a single city only, e.g. Cambridge for CamVid, Heidel-
berg for DUS, and Karlsruhe for KITTI.

In terms of absolute and relative numbers of semanti-
cally annotated pixels (training, validation, and test data),
AnonymousName compares favorably to CamVid, DUS,
and KITTI with up to two orders of magnitude more pixels
annotated, c.f . Table 1. The majority of all annotated pix-
els in the AnonymousName datset arises from our coarse
annotations. We consider these annotations as extremely
valuable given that each pixel can be regarded as an indi-
vidual (but correlated) training sample.

Figures 1 and 2 compare the distribution of annotations
across individual object classes and their associated higher-
level categories. Notable differences stem from the inher-
ently different configurations of the datasets. Anonymous-
Name involves dense inner-city traffic with wide roads and
large intersections, whereas KITTI, for example, is com-
posed of less busy suburban traffic scenes. As a result,
KITTI exhibits significantly fewer flat ground structures,
fewer humans, and more nature. In terms of overall compo-
sition, DUS and CamVid seem more aligned with Anony-
mousName. The only exceptions are an abundance of sky
pixels in CamVid due to its particular camera setup with a
comparably large vertical field-of-view, as well as the ab-
sence of certain categories in DUS, i.e. nature and object.

Out of the datasets considered for our analysis of pixel-
wise annotations, only AnonymousName and KITTI also
provide instance-level annotations for humans and vehi-
cles. We additionally compare to the Caltech Pedestrian
Dataset [10], which only contains annotations for humans
and none for vehicles. Further, KITTI and Caltech only
provide instance-level annotations in terms of axis-aligned
bounding boxes. As the partition of (non-public) test anno-
tations into humans and vehicles is not known for KITTI,

#pixels [109] annot. density [%]

Ours (fine) 9.41 97.0
Ours (coarse) 26.0 67.5
CamVid 0.62 96.2
DUS 0.14 63.0
KITTI 0.23 88.9

Table 1. Absolute number and density of annotated pixels for
AnonymousName, DUS, KITTI, and CamVid (upscaled to 1280⇥
720 pixels to obtain the original aspect ratio).

#humans
[103]

#vehicles
[103]

#h/image #v/image

Ours (fine) 24.2 49.1 7.0 14.1
KITTI 6.1 30.3 0.8 4.1
Caltech 1921 - 1.5 -

Table 2. Absolute and average number of instances for Anony-
mousName, KITTI and Caltech (1 via interpolation) on the respec-
tive training and validation datasets.

we only take the training and validation data of Anony-
mousName, KITTI, and Caltech into account in our follow-
ing analysis, where those statistics are readily available.

In absolute terms, AnonymousName exhibits signifi-
cantly more object instance annotations than KITTI, see Ta-
ble 2. Being a specialized benchmark, the Caltech dataset
provides the most annotations for humans by a margin. The
major share of those labels was obtained, however, by in-
terpolation between a sparse set of manual annotations re-
sulting in significantly degraded label quality. The relative
statistics emphasize the much higher complexity of Anony-
mousName, as the average numbers of object instances per
image notably exceeds those of KITTI and Caltech.

Using stereo data, we analyze the distribution of object
distances to the camera, illustrated using vehicle instance
annotations. From Figure 3 we observe, that in comparison
to KITTI, AnonymousName covers a larger distance range.
We attribute this to both our higher-resolution imagery and
the careful annotation procedure. As a consequence, algo-
rithms are challenged to take a larger range of scales and
object sizes into account to score well in our benchmark.

3. Semantic Labeling

The first AnonymousName task involves predicting a
per-pixel semantic labeling of the image without consider-
ing higher-level object instance or boundary information.

3.1. Tasks and metrics

To assess performance, we rely on the standard Jaccard
Index, commonly known as the PASCAL VOC intersection-
over-union metric IoU = TP

TP+FP+FN [13], where TP, FP, and
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700 frames [21, 27, 30, 31, 53, 59, 68, 70]. We map those
labels to our high-level categories and analyze this consol-
idated set. In comparison, AnonymousName provides sig-
nificantly more annotated images, i.e. 5000 fine and 20 000
coarse annotations. Moreover, the annotation quality and
richness is notably better. As AnonymousName provides
recordings from 50 different cities, it also covers a signifi-
cantly larger area than previous datasets that contain images
from a single city only, e.g. Cambridge for CamVid, Heidel-
berg for DUS, and Karlsruhe for KITTI.

In terms of absolute and relative numbers of semanti-
cally annotated pixels (training, validation, and test data),
AnonymousName compares favorably to CamVid, DUS,
and KITTI with up to two orders of magnitude more pixels
annotated, c.f . Table 1. The majority of all annotated pix-
els in the AnonymousName datset arises from our coarse
annotations. We consider these annotations as extremely
valuable given that each pixel can be regarded as an indi-
vidual (but correlated) training sample.

Figures 1 and 2 compare the distribution of annotations
across individual object classes and their associated higher-
level categories. Notable differences stem from the inher-
ently different configurations of the datasets. Anonymous-
Name involves dense inner-city traffic with wide roads and
large intersections, whereas KITTI, for example, is com-
posed of less busy suburban traffic scenes. As a result,
KITTI exhibits significantly fewer flat ground structures,
fewer humans, and more nature. In terms of overall compo-
sition, DUS and CamVid seem more aligned with Anony-
mousName. The only exceptions are an abundance of sky
pixels in CamVid due to its particular camera setup with a
comparably large vertical field-of-view, as well as the ab-
sence of certain categories in DUS, i.e. nature and object.

Out of the datasets considered for our analysis of pixel-
wise annotations, only AnonymousName and KITTI also
provide instance-level annotations for humans and vehi-
cles. We additionally compare to the Caltech Pedestrian
Dataset [10], which only contains annotations for humans
and none for vehicles. Further, KITTI and Caltech only
provide instance-level annotations in terms of axis-aligned
bounding boxes. As the partition of (non-public) test anno-
tations into humans and vehicles is not known for KITTI,

#pixels [109] annot. density [%]

Ours (fine) 9.41 97.0
Ours (coarse) 26.0 67.5
CamVid 0.62 96.2
DUS 0.14 63.0
KITTI 0.23 88.9

Table 1. Absolute number and density of annotated pixels for
AnonymousName, DUS, KITTI, and CamVid (upscaled to 1280⇥
720 pixels to obtain the original aspect ratio).

#humans
[103]

#vehicles
[103]

#h/image #v/image

Ours (fine) 24.2 49.1 7.0 14.1
KITTI 6.1 30.3 0.8 4.1
Caltech 1921 - 1.5 -

Table 2. Absolute and average number of instances for Anony-
mousName, KITTI and Caltech (1 via interpolation) on the respec-
tive training and validation datasets.

we only take the training and validation data of Anony-
mousName, KITTI, and Caltech into account in our follow-
ing analysis, where those statistics are readily available.

In absolute terms, AnonymousName exhibits signifi-
cantly more object instance annotations than KITTI, see Ta-
ble 2. Being a specialized benchmark, the Caltech dataset
provides the most annotations for humans by a margin. The
major share of those labels was obtained, however, by in-
terpolation between a sparse set of manual annotations re-
sulting in significantly degraded label quality. The relative
statistics emphasize the much higher complexity of Anony-
mousName, as the average numbers of object instances per
image notably exceeds those of KITTI and Caltech.

Using stereo data, we analyze the distribution of object
distances to the camera, illustrated using vehicle instance
annotations. From Figure 3 we observe, that in comparison
to KITTI, AnonymousName covers a larger distance range.
We attribute this to both our higher-resolution imagery and
the careful annotation procedure. As a consequence, algo-
rithms are challenged to take a larger range of scales and
object sizes into account to score well in our benchmark.

3. Semantic Labeling

The first AnonymousName task involves predicting a
per-pixel semantic labeling of the image without consider-
ing higher-level object instance or boundary information.

3.1. Tasks and metrics

To assess performance, we rely on the standard Jaccard
Index, commonly known as the PASCAL VOC intersection-
over-union metric IoU = TP

TP+FP+FN [13], where TP, FP, and
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700 frames [21, 27, 30, 31, 53, 59, 68, 70]. We map those
labels to our high-level categories and analyze this consol-
idated set. In comparison, AnonymousName provides sig-
nificantly more annotated images, i.e. 5000 fine and 20 000
coarse annotations. Moreover, the annotation quality and
richness is notably better. As AnonymousName provides
recordings from 50 different cities, it also covers a signifi-
cantly larger area than previous datasets that contain images
from a single city only, e.g. Cambridge for CamVid, Heidel-
berg for DUS, and Karlsruhe for KITTI.

In terms of absolute and relative numbers of semanti-
cally annotated pixels (training, validation, and test data),
AnonymousName compares favorably to CamVid, DUS,
and KITTI with up to two orders of magnitude more pixels
annotated, c.f . Table 1. The majority of all annotated pix-
els in the AnonymousName datset arises from our coarse
annotations. We consider these annotations as extremely
valuable given that each pixel can be regarded as an indi-
vidual (but correlated) training sample.

Figures 1 and 2 compare the distribution of annotations
across individual object classes and their associated higher-
level categories. Notable differences stem from the inher-
ently different configurations of the datasets. Anonymous-
Name involves dense inner-city traffic with wide roads and
large intersections, whereas KITTI, for example, is com-
posed of less busy suburban traffic scenes. As a result,
KITTI exhibits significantly fewer flat ground structures,
fewer humans, and more nature. In terms of overall compo-
sition, DUS and CamVid seem more aligned with Anony-
mousName. The only exceptions are an abundance of sky
pixels in CamVid due to its particular camera setup with a
comparably large vertical field-of-view, as well as the ab-
sence of certain categories in DUS, i.e. nature and object.

Out of the datasets considered for our analysis of pixel-
wise annotations, only AnonymousName and KITTI also
provide instance-level annotations for humans and vehi-
cles. We additionally compare to the Caltech Pedestrian
Dataset [10], which only contains annotations for humans
and none for vehicles. Further, KITTI and Caltech only
provide instance-level annotations in terms of axis-aligned
bounding boxes. As the partition of (non-public) test anno-
tations into humans and vehicles is not known for KITTI,

#pixels [109] annot. density [%]

Ours (fine) 9.41 97.0
Ours (coarse) 26.0 67.5
CamVid 0.62 96.2
DUS 0.14 63.0
KITTI 0.23 88.9

Table 1. Absolute number and density of annotated pixels for
AnonymousName, DUS, KITTI, and CamVid (upscaled to 1280⇥
720 pixels to obtain the original aspect ratio).

#humans
[103]

#vehicles
[103]

#h/image #v/image

Ours (fine) 24.2 49.1 7.0 14.1
KITTI 6.1 30.3 0.8 4.1
Caltech 1921 - 1.5 -

Table 2. Absolute and average number of instances for Anony-
mousName, KITTI and Caltech (1 via interpolation) on the respec-
tive training and validation datasets.

we only take the training and validation data of Anony-
mousName, KITTI, and Caltech into account in our follow-
ing analysis, where those statistics are readily available.

In absolute terms, AnonymousName exhibits signifi-
cantly more object instance annotations than KITTI, see Ta-
ble 2. Being a specialized benchmark, the Caltech dataset
provides the most annotations for humans by a margin. The
major share of those labels was obtained, however, by in-
terpolation between a sparse set of manual annotations re-
sulting in significantly degraded label quality. The relative
statistics emphasize the much higher complexity of Anony-
mousName, as the average numbers of object instances per
image notably exceeds those of KITTI and Caltech.

Using stereo data, we analyze the distribution of object
distances to the camera, illustrated using vehicle instance
annotations. From Figure 3 we observe, that in comparison
to KITTI, AnonymousName covers a larger distance range.
We attribute this to both our higher-resolution imagery and
the careful annotation procedure. As a consequence, algo-
rithms are challenged to take a larger range of scales and
object sizes into account to score well in our benchmark.

3. Semantic Labeling

The first AnonymousName task involves predicting a
per-pixel semantic labeling of the image without consider-
ing higher-level object instance or boundary information.

3.1. Tasks and metrics

To assess performance, we rely on the standard Jaccard
Index, commonly known as the PASCAL VOC intersection-
over-union metric IoU = TP

TP+FP+FN [13], where TP, FP, and

4

histogram of 
vehicle distances

CamVid & DUS: no instance annotations  
KITTI: only bboxes



Control experiments
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image

static prediction from coarse labels  
10.3% (5.0%)

annotation

static prediction from fine labels 
10.1% (4.8%)

IoU (iIoU)

GT segm. + coarse static prediction 
10.9% (6.4%)

GT segm. + fine static prediction 
10.1% (6.4%)



Baselines
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fully convolutional network  
[Long et al. CVPR‘15]

CRF as RNN  
[Zheng et al. ICCV‘15]

“Adelaide” [Lin et al. CVPR’16] deepLab [Papandreou et al. ICCV’15]

deep parsing network  
[Liu et al. ICCV‘15]

SegNet  
[Badrinarayanan et al. arXiv]



FCN Results
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FCN Results
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Baselines - Quantitative Results
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~3,500  finely annotated images

  500  finely annotated images
20,000 coarsely annotated images

Yu & Koltun @ ICLR’16
Lin et al. @ CVPR’16
Papandreou et al @ ICCV’15
Chen et al. @ ICLR’15
Zheng et al @ ICCV’15
Liu et al @ ICCV’15
Badrinarayanan et al. @ arXiv’15
Badrinarayanan et al. @ arXiv’15

https://www.cityscapes-dataset.net



Cross-Dataset Generalization
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Figure 4. Qualitative examples of best performing baselines. From top to bottom: image with stereo depth maps partially overlayed,
annotation, deepLab [44], FCN-8s [39], and Adelaide [35].

Dataset Best reported result Our result

Camvid [6] 62.9 [3] 72.6
KITTI [53] 61.6 [3] 70.9
KITTI [59] 82.2 [65] 81.2

Table 5. Quantitative results (avg. recall in percent) of our
half-resolution FCN-8s model trained on AnonymousName
images and tested on Camvid and KITTI.

better match the target datasets, but we do not apply any
specific training or finetuning. In all cases, we follow the
evaluation protocols of the respective dataset to be able to
compare to previously reported results [3,65]. The obtained
results in Table 5 show that our large-scale dataset enables
to train models that equalize or even outperform methods
that are specifically trained on another benchmark and spe-
cialized for its test data. Further, our analysis shows that our
new dataset integrates well with existing ones and allows for
cross-dataset research.

4. Instance-Level Semantic Labeling
The segmentation aspect in the pixel-level labeling task

(c.f . Sec. 3) does not consider the boundaries between ob-
ject instances. In this second task we focus on simulta-
neously detecting objects and segmenting them. This is
an extension to both traditional object detection, since per-
instance segments must be provided, and semantic labeling,
since each instance is treated as a separate label.

Our dataset is particularly biased towards busy and clut-

tered scenes, where many, often highly occluded, objects
occur (c.f . Sec. 2). Together with the provided high quality
annotations, we believe our dataset to be particularly suited
for benchmarking this challenging task.

4.1. Tasks and metrics

For instance-level semantic labeling, algorithms are re-
quired to deliver a set of detections of traffic participants
in the scene, each associated with a confidence score and a
per-instance segmentation mask.

To assess instance-level performance, we compute the
average precision on the region level (AP [22]) for each
class and average it across a range of overlap thresholds to
avoid a bias towards a specific overlap value. Specifically,
we follow [36] and use 10 different overlaps ranging from
0.5 to 0.95 in steps of 0.05. The overlap is computed at
the region level, making it equivalent to the IoU of a sin-
gle instance. We penalize multiple predictions of the same
ground truth instance as false positives. To obtain a sin-
gle, easy to compare compound score, we report the mean
average precision AP, obtained by also averaging over the
class label set. As minor scores, we add AP50 and AP75 for
overlap values of 50% and 75%, respectively.

4.2. State of the art

As detection results have matured (70% mean AP on
PASCAL VOC2012 [12, 51]), the last years have seen a
rising interest in more difficult settings. Detections with
pixel-level segments rather than traditional bounding boxes
provide a richer output and allow (in principle) for better

7

FCN [Long et al. CVPR’15] trained on Cityscapes

https://www.cityscapes-dataset.net
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Cityscapes: Conclusions

Cityscapes is the largest and most  diverse datasets for semantic 
segmentation of urban street scenes 

aim is to become the standard dataset for  
scene labeling (urban scenarios) 

instance segmentation (people, cars, etc) 

planned as dynamic entity which will be expanded & adapted 

Recent CNNs approaches: 
already achieve very good results  
impressive cross-dataset generalization 
using coarse annotations only leads to reduced performance
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https://www.cityscapes-dataset.net


