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Discriminative deep learning

* Recipe for success
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2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- lan Goodfellow



Generative modeling

* Have training examples X ~ Pdata(X )

* Want a model that can draw samples: X ~
pmodeI(X )

* Where Pmodel ~ Pdata
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X ~ pdata(X ) X ~ pmodeI(X )

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- lan Goodfellow



Generative Adversarial
Networks (GANSs)

Ian Goodfellow, OpenAl Research Scientist
NIPS 2016 tutorial
Barcelona, 2016-12-4

UpenAl



(Generative Modeling

e Density estimation
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Why study generative models?

e Excellent test of our ability to use high-dimensional,
complicated probability distributions

e Simulate possible futures for planning or simulated RL
e Missing data

e Semi-supervised learning
e Multi-modal outputs

e Realistic generation tasks

(Goodfellow 2016)



Next Video Frame Prediction

Ground Truth MSE Adversarial

(Lotter et al 2016)



Single Image Super-Resolution

bicubic SRResNet SRGAN
9dB/0.6423)

.\%

(219

(Ledig et al 2016)

(Goodfellow 2016)



Image to Image Translation

Labels to Street Scene

input . output
P Aerial to Map P

output

(Isola et al 2016)

(Goodfellow 2016)



Roadmap

Why study generative modeling?

How do generative models work? How do GANSs compare to
others?

How do GANs work?
Tips and tricks
Research frontiers

Combining GANs with other methods

(Goodfellow 2016)



Maximum Likelihood Method

e Learning =
Estimation of parameter 0 X ={z1,%2,73,..., 2N}

(given data X) >
\ T

e Likelihood of 6 7

» defined as the probability of the data X has been generated from the
distribution with parameter 6

»  Likelihood L(6): L(6’) _ p(X‘Q)

| p B | poplanckinsiet High | evel Computer Vision - June 21, 2017 11



Maximum Likelihood Method

e (Calculation of Likelihood

»  asingle datapoint: p(ﬂfn ‘Q)
» assume: all N data points are independent
- data points are i.i.d = independent identically dlstrlbuted

L(0) =p(X|0) = Hp T,|0)

e often used is log-likelihood:
»  often easier to calculate and manipulate

E=—InL(0 Zlnp Tn|0)

e parameter estimation= learning
» maximize likelihood or log-likelihood or
»  minimize negative log-likelihood

| p B | poplanckinsiet High | evel Computer Vision - June 21, 2017

12



Maximum Likelihood

0" = arg ;nax Egrpyars 108 Pmodel (2 | 0)



Taxonomy of Generative Models

l Direct

Maximum Likelihood
/ \ GAN

Explicit density Implicit density

N\ o

Markov Chain
Tractable density || Approximate density ALEov

= : GSN
-Fully visible belief nets
‘NADE SN

MADE Variational | | Markov Chain

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

models (nonlinear ICA)

(Goodfellow 2016)



Fully Visible Belief Nets

o Explicit formula based on chain (Frey et al, 1996)
rule:

pmodel(w) — pmodel(ml) Hpmodel(wi | LlyeoeyLj— 1)

o ﬁngﬂ-

e O(n) sample generation cost

e Disadvantages:

P1xe1CNN elephants
e (Generation not controlled by a (van den Ord et al 2016)
latent code

(Goodfellow 2016)



Variational Autoencoder

(Kingma and Welling 2013, Rezende et al 2014)
log p(x) >log p(x) — Dkw (¢(2)[[p(z | ))
—E..., log (@, 2) + H(g)

Disadvantages:

-Not asymptotically
consistent unless ¢ is
perfect

-Samples tend to have lower

quality

CIFAR—lO samples
(Klngma et al 2016) (Goodfellow 2016)



(GANs

Use a latent code

Asymptotically consistent (unlike variational
methods)

No Markov chains needed
Often regarded as producing the best samples

e No good way to quantify this

(Goodfellow 2016)



Roadmap

Why study generative modeling?

How do generative models work? How do GANs compare to
others?

How do GANs work?

Tips and tricks
Research frontiers

Combining GANs with other methods

(Goodfellow 2016)



Adversarial nets framework

/EL\\ D tries to D tries to
output 1 output O
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2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- lan Goodfellow



(Generator Network
r = G(z;09))

-Must be differentiable

- No 1nvertibility requirement

O,
4
@ - Trainable for any size of z
- Some guarantees require z to have higher
dimension than z
- Can make x conditionally Gaussian given z but

need not do so

(Goodfellow 2016)



Training Procedure

e Use SGD-like algorithm of choice (Adam) on two
minibatches simultaneously:

A minibatch of training examples
A minibatch of generated samples

e Optional: run k steps of one player for every step of
the other player.

(Goodfellow 2016)



Minimax Game

1 1
J(D) _ ——Egmp,.. log D(x) — §Ez log (1 —D(G(z)))

-Equilibrium is a saddle point of the discriminator loss
-Resembles Jensen-Shannon divergence

-Generator minimizes the log-probability of the discriminator
being correct

(Goodfellow 2016)



Exercise 1

1 1
J(D) _ ——Egmp,.. log D(x) — §Ez log (1 —D(G(z)))

2
7(@) _ _ 7(D)

e What is the solution to D(x) in terms of pdata and
?

Pgenerator

e What assumptions are needed to obtain this

solution?

(Goodfellow 2016)



Solution

e Assume both densities are nonzero everywhere

e If not, some input values x are never trained, so

some values of D(z) have undetermined behavior.

e Solve for where the functional derivatives are zero:

J
0D(x)

JP) =0

(Goodfellow 2016)



Discriminator Strategy

Optimal D(x) for any pgata() and pmodel () is always

. pdata($)
D(x) B pdata(x) +pmodel<$)

Discriminator“ _— Data
\ .°, Model
------------- ke /

distribution

Estimating this ratio

using supervised learning is

.
° o )

the key approximation

mectanism wsed by GANs 77T\

(Goodfellow 2016)



Learning process

pp(data) Data distribution
l / Model distribution
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2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- lan Goodfellow



Learning process

pp(data) Data distribution
l / Model distribution
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Poorly fit model  After updating D

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- lan Goodfellow



Learning process

pp(data)
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2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- lan Goodfellow




Learning process

pp(data)

.
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Poorly fit model
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After updating D After updating G~ Mixed strategy
equilibrium

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- lan Goodfellow




Non-Saturating Game
1 1

JD) — o R e mopans, 10g D(X) — ) 2. log (1 — D (G(2)))
1
J&} — —5Ezlog D (G(2))

-Equilibrium no longer describable with a single loss
-Generator maximizes the log-probability of the discriminator
being mistaken

-Heuristically motivated; generator can still learn even when

discriminator successfully rejects all generator samples

(Goodfellow 2016)



DCGAN Architecture

Most “deconvs’ are batch normalized

256

b

i Stride 2
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Image

(Radford et al 2015)

(Goodfellow 2016)



DCGANS for LSUN Bedrooms
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(Radford et al 2015)

(Goodfellow 2016)



Mmlbatch GAN on CIFAR
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(Salimans et al 2016)



Minibatch GAN on ImageNet

(Salimans et a,]_ 20 ]_ 6) (Goodfellow 2016)



Cherry-Picked Results
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(Goodfellow 2016)



Problems with Perspective




This one 1s real

(Goodfellow 2016



Problems with Global
Structure




Plug and Play Generative
Models

e New state of the art generative model (Nguyen et al
2016) released days before NIPS

o Generates 227x227 realistic images from all
ImageNet classes

e Combines adversarial training, moment matching,

denoising autoencoders, and Langevin sampling

(Goodfellow 2016)



PPGN Samples

volcano

(Nguyen et al 2016)

(Goodfellow 2016)



Basic 1dea

e Langevin sampling repeatedly adds noise and
gradient of log p(x,y) to generate samples (Markov
chain)

e Denoising autoencoders estimate the required
gradient

e Use a special denoising autoencoder that has been
trained with multiple losses, including a GAN loss,
to obtain best results

(Goodfellow 2016)



Conclusion

GANs are generative models that use supervised learning to
approximate an intractable cost function

GANs can simulate many cost functions, including the one
used for maximum likelihood

Finding Nash equilibria in high-dimensional, continuous, non-

convex games is an important open research problem

GANSs are a key ingredient of PPGNs, which are able to
generate compelling high resolution samples from diverse
image classes

(Goodfellow 2016)



Learning What and Where to

Scott Reed!3, Zeynep Akata?, Santosh Mohan?,

Samuel Tenka?, Bernt Schiele?, Honglak Lee!
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Motivation

GT GAN Samples
OGN i T

a pitcher is pRI2S
about to throw

the ball to the
batter.

What object is meant to be drawn here?
Can we control its location?



Idea: condition on location in addition to text

1. Bounding box

Beak

8
ey = ..
x :

Right leg
This bird is bright blue.




Background:
Generative Adversarial Networks

[1] Goodfellow, lan, et al. "Generative adversarial nets." Advances in
Neural Information Processing Systems. 2014.



min max V(D,G) =
G D

<C‘x’\’pda.ta.(x) [log D(:E)] —I_

Oznp-(2) [108(1 = D(G(2)))]

* The discriminator D tries to distinguish real
training data from synthetic images.

[1] Goodfellow, lan, et al. "Generative adversarial nets." Advances in
Neural Information Processing Systems. 2014.



min max V(D,G) = Eqwpy,u([log D(@)]+

* The generator G tries to fool D.

[1] Goodfellow, lan, et al. "Generative adversarial nets." Advances in
Neural Information Processing Systems. 2014.



Text-conditional GAN

min max V(D, G) = By ivp ey (e, [l0g D@, )]+
E.mp. (2) t~paaia ) 108(1 — D(G(z,1)))]

* The discriminator D tries to distinguish real
(text, image) pairs from synthetic.
* The generator G tries to fool D.



Text-conditional GAN

This flower has small, round violet
petals with a dark purple center

S E—
]
:~ 0.

Generator Network



Text-conditional GAN

This flower has small, round violet
petals with a dark purple center

.......

Generator Network



Text-conditional GAN

This flower has small, round violet
petals with a dark purple center

.......

Generator Network

This flower has small, round violet
petals with a dark purple center

L



Text-conditional GAN

This flower has small, round violet This flower has small, round violet
petals with a dark purple center petals with a dark purple center

L

...............

Generator Network Discriminator Network



Conditioning on bounding box

A
A red bird
with a black face

Generator Network



Conditioning on bounding box

Spatial replicate,
crop to bbox

/=
A

A red bird
with a black fa

Generator Network



Conditioning on bounding box

Spatial replicate,
crop to bbox

ST
1 16
/& =
A red bird '

with a black face

i\
2~ N(0,1)

Generator Network



Conditioning on bounding box

Spatial replicate,
crop to bbox

/=
A

16
A red bird ' /
with a black face
ﬂ f Local {6
16

2~ N(0, 1)N. Global fs

Generator Network




Conditioning on bounding box

Sptl eplicate,
rop to bhox —
%&
rop
Ar db rd to bb
with a black fac
f. Local {6
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2~ N(0,1) . Global fe

Generator Network



Conditioning on bounding box

Spatial replicate,
crop to bbox

/=
1 16
% crop concat

A red bird ' to bbo \

with a black face ﬂ
_ [om ; -*
ﬂ % — 16
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Generator Network

16
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Conditioning on bounding box

Spatial replicate,
crop to bbox
% —) I 1/
1 16 1 ﬁ
% e depth Arred bird

Local s

crop concat '
A red bird ' to bbo \ with a black
o ‘-,:, y .

with a black face ﬂ

w5
= 16
2~ N(0, 1)%. Global fs -

Generator Network Discriminator Network




Conditioning on bounding box

Spatial replicate,
crop to bbox replicate

% l spatial
— “ ————> i
1 % 16 - ﬁ 18

16 A red bird

with a black face
ﬂ Local s

crop toneat with a black
Ared bird o b \
. )

m( . (9
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2~ N(0,1) Global fs -

Generator Network Discriminator Network



Conditioning on bounding box

Spatial replicate,
crop to bbox
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Conditioning on bounding box

Spatial replicate,
crop to bbox
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Conditioning on bounding box

Spatial replicate,
crop to bbox

/=
A

16

crop
A red bird to bbo

with a black face ﬂ
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Generator Network

Local

16

16

Global

16

"

16

replicate
spatial
::> 16
i 1 ﬁ 16
A red bird depth " crop to
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Moving the bird around with bounding box (noize z fixed)

Caption GT

This bird has
a black head, \
alongorange go® LY
beak and £
yellow body




Moving the bird around with bounding box (noize z fixed)

Caption

This bird has
a black head, !
a long orange
beak and
yellow body




Moving the bird around with bounding box (noize z fixed)

Caption GT Translation

This bird has
a black head,
along orange
beak and
yellow body




Moving the bird around with bounding box (noize z fixed)

Caption GT

This bird has
a black head, !
a long orange
beak and
yellow body




Moving the bird around with bounding box (noize z fixed)

Caption Translation Stretching

This bird has D o N e AT ~ : - Dy .
a black head, e G 7 r . j

along orange
beak and
yellow body

This large
black bird has
a pointy beak
and black eyes

This small blue
bird has a
short pointy
beak and
brown patches §52
on its wings




Moving the bird around with key points (noize z fixed)

Caption

This bird has
a black head, !

beak and
yellow body




Moving the bird around with key points (noize z fixed)

Caption

This bird has
a black head, !

beak and
yellow body




Moving the bird around with key points (noize z fixed)

Caption GT

v

Thisbirdhas __*JP (}"

ablackhead, W NASHE
i

alongorange " LS
beak and 4&”’ 2

yellowbody [ ﬁ :

Stretching

_—




Moving the bird around with key points (noize z fixed)

Caption inki Translation

This bird has
a black head,
along orange
beak and
yellow body

This large
black bird has
a pointy beak
and black eye

This small blue
bird has a
short pointy
beak and
brown patches
on its wings



Comparison to text-only conditional GAN:

A small sized bird that Cre .
G:'l(:qnd- hastorias sE B aRd This bird has a yellow Thg hird is solid black with
t":n cime daik o with ahiit breast and a dark grey white eyes and a black

face beak.

caption stout hill




Comparison to text-only conditional GAN:

A small sized bird that
has tones of brown and
dark red with a short

stout hill

The bird is solid black with
white eyes and a black
heak.

Ground-
truth image
and text
caption

This bird has a yellow
breast and a dark grey

GAN-INT-CLS
(Reed et. al,
2016b)

A Text-only 64 x 64 GAN samplxes.



Comparison to text-only conditional GAN:

A small sized bird that . :
Gfl‘l".‘“d' has tones of brown and This bird has a yellow TI;E bird s SOlclld b;?CRkWh
e el dark red with a short lf)reast and a dark grey ‘k/)\;alze eyESANE.a Nk
caption stout bill ace -

GAWWN _
trained 4" 5% & \p o A% AP O 5
without key 8- %l 4 v e E . 4 AN !
points B Vs A % -' <4 |
o y X > b o -
» 4y . \

A Text-only 128 x 128 GAN samples.



Comparison to text-only conditional GAN:

A small sized bird that

Ground- This bird has a yellow The bird is solid black with
: has tones of brown and y .

th
tr:ndltI::tg v dark red with a short lf’;':’:“ and a dark grey ‘k’)‘glt(e eyes and a black

caption stout hill




Comparison to text-only conditional GAN:

A small sized bird that e .
Gfl‘l".‘“d' has tones of brown and This bird has a yellow Tl;ﬁ bird s SOlclld bl?CRkwh
tr:ndltI::tg v dark red with a short lf)reast and a dark grey ‘k/;;alze eyes and a blac
caption stout hill ace :

GAWWN
Key points
generated




Comparison to text-only conditional GAN:

A small sized bird that

trgz.l?lilr?l:-ge 3 has tones of brown and ¢+ § Thishirdhasayellow J xﬁt}?g d ;: zzlclldabé?:i(kwh
andtext | darkredwithashort — [NGGEw@l Dreastandadarkgrey SEUQH i
caption stout bill L face P '

GAN-INT-CLS

(Reed et. al,

2016b)

GAWWN
trained
without key
points

GAWWN
Key points
generated



Deep Model Adaptation using
Domain Adversarial Training

Victor Lempitsky,
Joint work with Yaroslav Ganin

Skolkovo Institute of Science and Technology ( Skoltech )
Moscow region, Russia



Deep supervised neural networks

PIIIIIIIIIISTIVIVITVID

e area “bigthing” in computer vision and beyond
» are hungry for labeled data -

Deep Model Adaptation using Domain Adversarial Training



Where to get the data?

Lots of modalities do not have large labeled data sets:

* Biomedical

* Unusual cameras [image types

* Videos

* Data with expert-level annotation (not mTurkable)

Surrogate training data often available:

* Borrow from adjacent modality

* Generate synthetic imagery (computer graphics)

* Use data augmentation to amplify data (image-
based rendering, morphing, re-synthesis,....)

Resulting training data are shifted. Domain
adaptation needed.

Deep Model Adaptation using Domain Adversarial Training




Example: Internet images -> Webcam sensor

Deep Model Adaptation using Domain Adversarial Training



Assumptions and goals

* Lots of labeled data in the source domain
(e.g. synthetic images)
* Lots of unlabeled data in the target domain

(e.g. real images)
* Goal: train a deep neural net that does

well on the target domain

Large-scale deep unsupervised domain
adaptation

Deep Model Adaptation using Domain Adversarial Training




Domain shift in a deep architecture

f =Gr(x;6
X f( f) ysz(f,Hy)

:ﬁﬁmﬁtﬁ HEEX

= label predictor

feature extractor

When trained on source
only, feature distributions
do not match:

T(f) = {G¢(x;0¢) | x~T'(x)}




ldea 1: domain-invariant features wanted

Feature distribution
without adaptation:

»i»i»i»

Our goal (after
adaptation):

Deep Model Adaptation using Domain Adversarial Training



ldea 2: measuring domain shift

»i»i»i»lj[

Domain classifier: || ©)

<
—
\
TTTY

Deep Model Adaptation using Domain Adversarial Training




Learning with adaptation

¢>m:>m¢> ¢>i¢>[¢>[

&

g
Ty

1. Build this network -4 B4

2. Train feature extractor + class predictor on
source data

3. Train feature extractor + domain classifier
on source+target data

4. Use feature extractor + class predictor at

test time
Deep Model Adaptation using Domain Adversarial Training




Ildea 3: minimizing domain shift

0L, oL,
Ploo] 0 i,
iiﬁ@ﬁ:ﬁﬁiﬁ BT
X aLd = %
aef v o ed
? loss Ly

Emerging features:
* Discriminative (good for predicting y)
* Domain-discriminative (good for predicting d)

Deep Model Adaptation using Domain Adversarial Training




Ildea 3: minimizing domain shift

oL, oL,
Pl e,

g
II@III

> Qo ¢>fﬁ>[¢>[
ijLdE v\/ L

(’90f
loss Ly

Gradient reversal layer:
» Copies data without change at forwardprop
* Multiplies the gradient by -A at backprop

Deep Model Adaptation using Domain Adversarial Training




Ildea 3: minimizing domain shift

oL, oL,
Pl e,

g
II@III

iﬁﬁ@ﬁ:ﬁ@iﬁ[ﬁ[
X aLd ~
) 4 d

(’99f
loss Ly

Emerging features:
* Discriminative (good for predicting y)
* Domain-invariant (not good for predicting d)

Deep Model Adaptation using Domain Adversarial Training




Saddle point interpretation

Our objective (small label prediction loss +
large domain classification loss wanted)

E(0,0,,00) = > Ly(67,6,) =X > Ly(0y,04)
Zjl_(])\f 1=1..N

The backprop converges to a saddle point:

(éf, éy) — arg gnigl E(6¢,0,, éd)
sy

0y = arg I%&XE(éf, 0,,64) .

Similar idea for generative networks:
[Goodfellow et al. Generative adversarial nets.

In NIPS, 2014]




Initial experiments: baselines

iﬁ@ﬁ@ﬁ@ SEILY

—

Upper bound: training on target domain with labels

Shallow adaptation baseline: [Fernando et al.,
Unsupervised visual domain adaptation using subspace
alignment. ICCV, 2013] applied to the last-but-one layer

Lower bound: training on source domain only

Deep Model Adaptation using Domain Adversarial Training




Example: from synthetic to real

00 o I3
ﬂ—;ﬂ —

"Windows digits” "House numbers”

0,93
0,92

0,91

0,9
0,89
0,88
0,87
0,86
0,85

0,84
0183 ;

No adapt Baseline Deep adapt Upper bound

Deep Model Adaptation using Domain Adversarial Training




Office dataset

P ;
== (®HELLOKITTY ®

Deep Model Adaptation using Domain Adversarial Training



Results on Office dataset

SOURCE | AMAZON DSLR WEBCAM
METHOD

TARGET | WEBCAM WEBCAM DSLR
GFK(PLS, PCA) (Gong et al., 2012) 197 497 6631
SA* (Fernando et al., 2013) ‘ 450 648 .699
DLID (Chopra et al., 2013) 519 782 .899
DDC (Tzeng et al., 2014) ‘ 618 950 085
DAN (Long and Wang, 2015) 685 960 .990
SOURCE ONLY ‘ 042 961 978
DANN 730 964 992

Most similar approach (matches means of distributions):
[Tzeng et al. Deep domain confusion: Maximizing

for domain invariance. CoRR, abs/1412.3474, 2014]

Deep Model Adaptation using Domain Adversarial Training




Caveats

* Domains should not be too far apart

 Early on, the gradient from the domain
classification loss should not be too strong

* The trick used to obtain the results: gradually
increase Afromotoz

oL, OLy
89f «— aQy
m 3 A BEE
X OL =
B I N

loss Ly

Deep Model Adaptation using Domain Adversarial Training




Conclusion

Scalable method for deep unsupervised
domain adaptation

Based on simple idea. Takes few lines of code
(+ defining a specific network architecture).
Caffe implementation available.

State-of-the-art results

Unsupervised parameter tuning is easy (look at
the domain classifier error)

Main challenge: initialization and stepsize

http://sites.skoltech.ru/compvision/projects/grl/

Deep Model Adaptation using Domain Adversarial Training




