

High Level Computer Vision

Adversarial Networks & Applications

Bernt Schiele - <u>schiele@mpi-inf.mpg.de</u> Mario Fritz - mfritz@mpi-inf.mpg.de

https://www.mpi-inf.mpg.de/hlcv

Discriminative deep learning

• Recipe for success

Generative modeling

- Have training examples $x \sim p_{data}(x)$
- Want a model that can draw samples: x ~
 pmodel(x)
- Where $p_{model} \approx p_{data}$

Generative Adversarial Networks (GANs)

Ian Goodfellow, OpenAI Research Scientist NIPS 2016 tutorial Barcelona, 2016-12-4

Generative Modeling

• Density estimation

• Sample generation

Why study generative models?

- Excellent test of our ability to use high-dimensional, complicated probability distributions
- Simulate possible futures for planning or simulated RL
- Missing data
 - Semi-supervised learning
- Multi-modal outputs
- Realistic generation tasks

Next Video Frame Prediction

(Lotter et al 2016)

Single Image Super-Resolution

(Ledig et al 2016)

Image to Image Translation

(Isola et al 2016)

Roadmap

- Why study generative modeling?
- <u>How do generative models work? How do GANs compare to</u> <u>others?</u>
- How do GANs work?
- Tips and tricks
- Research frontiers
- Combining GANs with other methods

Maximum Likelihood Method

 Learning = Estimation of parameter θ (given data X)

- Likelihood of θ
 - defined as the probability of the data X has been generated from the distribution with parameter θ
 - Likelihood $L(\theta)$:

$$L(\theta) = p(X|\theta)$$

Maximum Likelihood Method

- Calculation of Likelihood
 - a single datapoint:

$$p(x_n|\theta)$$

- assume: all N data points are independent
 - data points are i.i.d = independent identically distributed N

$$L(\theta) = p(X|\theta) = \prod_{n=1}^{n} p(x_n|\theta)$$

- often used is log-likelihood:
 - often easier to calculate and manipulate

$$E = -\ln L(\theta) = -\sum_{n=1}^{\infty} \ln p(x_n | \theta)$$

N

- parameter estimation= learning
 - maximize likelihood or log-likelihood or
 - minimize negative log-likelihood

Maximum Likelihood

Fully Visible Belief Nets

- Explicit formula based on chain (Frey et al, 1996) rule: $p_{\text{model}}(\boldsymbol{x}) = p_{\text{model}}(x_1) \prod_{i=2}^{n} p_{\text{model}}(x_i \mid x_1, \dots, x_{i-1})$
- Disadvantages:
 - O(n) sample generation cost
 - Generation not controlled by a latent code

PixelCNN elephants (van den Ord et al 2016)

Variational Autoencoder

(Kingma and Welling 2013, Rezende et al 2014)

$$\log p(\boldsymbol{x}) \ge \log p(\boldsymbol{x}) - D_{\mathrm{KL}} \left(q(\boldsymbol{z}) \| p(\boldsymbol{z} \mid \boldsymbol{x}) \right) \\ = \mathbb{E}_{\boldsymbol{z} \sim q} \log p(\boldsymbol{x}, \boldsymbol{z}) + H(q)$$

Disadvantages: -Not asymptotically consistent unless q is perfect -Samples tend to have lower quality

CIFAR-10 samples (Kingma et al 2016)

GANs

- Use a latent code
- Asymptotically consistent (unlike variational methods)
- No Markov chains needed
- Often regarded as producing the best samples
 - No good way to quantify this

Roadmap

- Why study generative modeling?
- How do generative models work? How do GANs compare to others?
- How do GANs work?
- Tips and tricks
- Research frontiers
- Combining GANs with other methods

Adversarial nets framework

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- Ian Goodfellow

Generator Network $\boldsymbol{x} = G(\boldsymbol{z}; \boldsymbol{\theta}^{(G)})$

-Must be differentiable

Z

 \boldsymbol{x}

- No invertibility requirement
- Trainable for any size of z
- Some guarantees require z to have higher dimension than x
- Can make x conditionally Gaussian given z but need not do so

Training Procedure

- Use SGD-like algorithm of choice (Adam) on two minibatches simultaneously:
 - A minibatch of training examples
 - A minibatch of generated samples
- Optional: run k steps of one player for every step of the other player.

Minimax Game

$$J^{(D)} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log \left(1 - D\left(G(\boldsymbol{z})\right)\right)$$
$$J^{(G)} = -J^{(D)}$$

-Equilibrium is a saddle point of the discriminator loss
-Resembles Jensen-Shannon divergence
-Generator minimizes the log-probability of the discriminator being correct

Exercise 1

$$J^{(D)} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log \left(1 - D\left(G(\boldsymbol{z})\right)\right)$$
$$J^{(G)} = -J^{(D)}$$

- What is the solution to D(x) in terms of p_{data} and $p_{\text{generator}}$?
- What assumptions are needed to obtain this solution?

Solution

- Assume both densities are nonzero everywhere
 - If not, some input values x are never trained, so some values of D(x) have undetermined behavior.
- Solve for where the functional derivatives are zero:

$$\frac{\delta}{\delta D(\boldsymbol{x})} J^{(D)} = 0$$

Discriminator Strategy

Optimal $D(\boldsymbol{x})$ for any $p_{\text{data}}(\boldsymbol{x})$ and $p_{\text{model}}(\boldsymbol{x})$ is always $D(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{model}}(x)}$ Discriminator Data Model distribution Estimating this ratio using supervised learning is the key approximation T mechanism used by GANs

2014 NIPS Workshop on Perturbations, Optimization, and Statistics --- Ian Goodfellow

Poorly fit model After updating D After updating G

Non-Saturating Game

$$J^{(D)} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log (1 - D(G(\boldsymbol{z})))$$

$$J^{(G)} = -\frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log D(G(\boldsymbol{z}))$$

-Equilibrium no longer describable with a single loss -Generator maximizes the log-probability of the discriminator being mistaken

-Heuristically motivated; generator can still learn even when discriminator successfully rejects all generator samples

DCGAN Architecture

(Radford et al 2015)

DCGANs for LSUN Bedrooms

(Radford et al 2015)

Minibatch GAN on CIFAR

Training Data

Samples

(Salimans et al 2016)

Minibatch GAN on ImageNet

(Salimans et al 2016)

Cherry-Picked Results

Problems with Counting

Problems with Perspective

This one is real

Problems with Global

Structure

Plug and Play Generative Models

- New state of the art generative model (Nguyen et al 2016) released days before NIPS
- Generates 227x227 realistic images from all ImageNet classes
- Combines adversarial training, moment matching, denoising autoencoders, and Langevin sampling

PPGN Samples

redshank

monastery

(Nguyen et al 2016)

(Goodfellow 2016)

Basic idea

- Langevin sampling repeatedly adds noise and gradient of log p(x,y) to generate samples (Markov chain)
- Denoising autoencoders estimate the required gradient
- Use a special denoising autoencoder that has been trained with multiple losses, including a GAN loss, to obtain best results

Conclusion

- GANs are generative models that use supervised learning to approximate an intractable cost function
- GANs can simulate many cost functions, including the one used for maximum likelihood
- Finding Nash equilibria in high-dimensional, continuous, nonconvex games is an important open research problem
- GANs are a key ingredient of PPGNs, which are able to generate compelling high resolution samples from diverse image classes

Learning What and Where to Draw

Scott Reed^{1,3}, Zeynep Akata², Santosh Mohan¹, Samuel Tenka¹, Bernt Schiele², Honglak Lee¹

Motivation

GT GAN Samples

a pitcher is about to throw the ball to the batter.

What object is meant to be drawn here? Can we control its location?

Idea: condition on location in addition to text

1. Bounding box

This bird is completely black.

1. Keypoints, e.g. 15 parts of a bird

This bird is bright blue.

Background: Generative Adversarial Networks

[1] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in Neural Information Processing Systems. 2014.

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)} [\log D(x)] + \mathbb{E}_{z \sim p_{z}(z)} [\log(1 - D(G(z)))]$$

• The discriminator *D* tries to distinguish real training data from synthetic images.

[1] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in Neural Information Processing Systems. 2014.

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x \sim p_{data}(x)} [\log D(x)] + \mathbb{E}_{z \sim p_{z}(z)} [\log(1 - D(G(z)))]$$

• The generator *G* tries to fool *D*.

[1] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in Neural Information Processing Systems. 2014.

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{x,\mathbf{t} \sim p_{data}(x,\mathbf{t})} [\log D(x,\mathbf{t})] + \mathbb{E}_{z \sim p_{z}(z),\mathbf{t} \sim p_{data}(t)} [\log(1 - D(G(z,\mathbf{t})))]$$

- The discriminator *D* tries to distinguish real (text, image) pairs from synthetic.
- The generator *G* tries to fool *D*.

This flower has small, round violet petals with a dark purple center

This flower has small, round violet petals with a dark purple center

Discriminator Network

Caption

Caption

This bird has a black head, a long orange beak and yellow body

Caption

Translation

Caption

Moving the bird around with key points (noize *z* fixed)

Caption

This bird has a black head, a long orange beak and yellow body

Moving the bird around with key points (noize *z* fixed)

Caption

Moving the bird around with key points (noize *z* fixed)

Caption

Moving the bird around with key points (noize z fixed)

A small sized bird that has tones of brown and dark red with a short stout bill

This bird has a yellow breast and a dark grey face

The bird is solid black with white eyes and a black beak.

^ Text-only 64 x 64 GAN samples.

A small sized bird that has tones of brown and dark red with a short stout bill

This bird has a yellow breast and a dark grey face

The bird is solid black with white eyes and a black beak.

^ Text-only 128 x 128 GAN samples.

A small sized bird that has tones of brown and dark red with a short stout bill

This bird has a yellow breast and a dark grey face

The bird is solid black with white eyes and a black beak.

GAWWN Key points given

^ Ours, with fixed keypoints.

A small sized bird that has tones of brown and dark red with a short stout bill

This bird has a yellow breast and a dark grey face

The bird is solid black with white eyes and a black beak.

GAWWN Key points generated

^ Ours, with generated keypoints.

Deep Model Adaptation using Domain Adversarial Training

Victor Lempitsky, joint work with Yaroslav Ganin

Skolkovo Institute of Science and Technology (Skoltech) Moscow region, Russia

Deep supervised neural networks

are a "big thing" in computer vision and beyond
are hungry for labeled data

Where to get the data?

Lots of modalities do not have large labeled data sets:

- Biomedical
- Unusual cameras / image types
- Videos
- Data with expert-level annotation (not mTurkable)

Surrogate training data often available:

- Borrow from adjacent modality
- Generate synthetic imagery (computer graphics)
- Use data augmentation to amplify data (*image-based rendering, morphing, re-synthesis,....*)

Resulting training data are shifted. *Domain adaptation* needed.

Example: Internet images -> Webcam sensor

[Saenko et al. ECCV2010]

Assumptions and goals

- Lots of *labeled* data in the *source domain* (e.g. synthetic images)
- Lots of *unlabeled* data in the *target domain* (e.g. real images)
- Goal: train a deep neural net that does well on the target domain

Large-scale deep unsupervised domain adaptation

Domain shift in a deep architecture

 $\mathbf{f} = G_f(\mathbf{x}; \theta_f)$

feature extractor

X

When trained on source only, feature distributions do not match:

 $y = G_y(\mathbf{f}; \theta_y)$

 $S(\mathbf{f}) = \{G_f(\mathbf{x}; \theta_f) | \mathbf{x} \sim S(\mathbf{x})\}$ $T(\mathbf{f}) = \{G_f(\mathbf{x}; \theta_f) | \mathbf{x} \sim T(\mathbf{x})\}$

Idea 1: domain-invariant features wanted

Feature distribution without adaptation:

Our goal (after adaptation):

Idea 2: measuring domain shift

Learning with adaptation

- 1. Build this network
- 2. Train feature extractor + class predictor on source data

 Train feature extractor + domain classifier on source+target data
 Use feature extractor + class predictor at

test time

Idea 3: minimizing domain shift

• Domain-discriminative (good for predicting *d*)

Idea 3: minimizing domain shift

• Multiplies the gradient by $-\lambda$ at backprop

Idea 3: minimizing domain shift

• Domain-invariant (not good for predicting *d*)

Saddle point interpretation

Our objective (small label prediction loss + large domain classification loss wanted)

$$E(\theta_f, \theta_y, \theta_d) = \sum_{\substack{i=1..N\\d_i=0}} L_y^i(\theta_f, \theta_y) - \lambda \sum_{\substack{i=1..N\\i=1..N}} L_d^i(\theta_f, \theta_d)$$

The backprop converges to a saddle point: $(\hat{\theta}_f, \hat{\theta}_y) = \arg\min_{\theta_f, \theta_y} E(\theta_f, \theta_y, \hat{\theta}_d)$ $\hat{\theta}_d = \arg\max_{\theta_d} E(\hat{\theta}_f, \hat{\theta}_y, \theta_d).$

Similar idea for generative networks: [Goodfellow et al. Generative adversarial nets. In NIPS, 2014]

Initial experiments: baselines

Upper bound: training on target domain with labels

Shallow adaptation baseline: [Fernando et al., Unsupervised visual domain adaptation using subspace alignment. ICCV, 2013] applied to the last-but-one layer

Lower bound: training on source domain only

Example: from synthetic to real

Office dataset

[Saenko et al. ECCV2010]

Results on Office dataset

Method	Source	Amazon	DSLR	WEBCAM
	TARGET	WEBCAM	WEBCAM	DSLR
GFK(PLS, PCA) (Gong et al., 2012)		.197	.497	.6631
SA^* (Fernando et al., 2013)		.450	.648	.699
DLID (Chopra et al., 2013)		.519	.782	.899
DDC (Tzeng et al., 2014)		.618	.950	.985
DAN (Long and Wang, 2015)		.685	.960	.990
SOURCE ONLY		.642	.961	.978
DANN		.730	.964	.992

Most similar approach (matches means of distributions): [Tzeng et al. Deep domain confusion: Maximizing for domain invariance. CoRR, abs/1412.3474, 2014]

Caveats

- Domains should not be too far apart
- Early on, the gradient from the domain classification loss should not be too strong
- The trick used to obtain the results: gradually increase λ from 0 to 1

Conclusion

- Scalable method for deep unsupervised domain adaptation
- Based on simple idea. Takes few lines of code (+ defining a specific network architecture).
 Caffe implementation available.
- State-of-the-art results
- Unsupervised parameter tuning is easy (look at the domain classifier error)
- Main challenge: initialization and stepsize

http://sites.skoltech.ru/compvision/projects/grl/