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Discriminative deep learning
• Recipe for success
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Generative modeling

• Have training examples x ~ pdata(x )

• Want a model that can draw samples: x ~ 
pmodel(x )

• Where pmodel ≈ pdata
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x ~ pdata(x ) x ~ pmodel(x )
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Maximum Likelihood Method

• Learning =  
Estimation of parameter θ  
(given data X) 

• Likelihood of θ
‣ defined as the probability of the data X has been generated from the 

distribution with parameter θ  

‣ Likelihood L(θ):
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X = {x1, x2, x3, . . . , xN}

L(�) = p(X|�)
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Maximum Likelihood Method

• Calculation of Likelihood 
‣ a single datapoint: 

‣ assume: all N data points are independent 
- data points are i.i.d = independent identically distributed 

• often used is log-likelihood: 
‣ often easier to calculate and manipulate 

• parameter estimation= learning 
‣ maximize likelihood or log-likelihood or 
‣ minimize negative log-likelihood
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Adversarial nets framework
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Learning process
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In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.
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Poorly fit model After updating D After updating G Mixed strategy
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Data distribution
Model distribution
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Learning	What	and	Where	to	Draw
Scott	Reed1,3,	Zeynep	Akata2,	Santosh	Mohan1,		
Samuel	Tenka1,	Bernt	Schiele2,	Honglak	Lee1
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What	object	is	meant		to	be	drawn	here?	
Can	we	control	its	location?

Motivation
GAN	SamplesGT



1. Bounding	box	

1. Keypoints,	e.g.	15	parts	of	a	bird	

Idea:	condition	on	location	in	addition	to	text



Background:	 
Generative	Adversarial	Networks

[1]	Goodfellow,	Ian,	et	al.	"Generative	adversarial	nets."	Advances	in	
Neural	Information	Processing	Systems.	2014.



• The	discriminator	D	tries	to	distinguish	real	
training	data	from	synthetic	images.	

[1]	Goodfellow,	Ian,	et	al.	"Generative	adversarial	nets."	Advances	in	
Neural	Information	Processing	Systems.	2014.



• The	generator	G	tries	to	fool	D.	

[1]	Goodfellow,	Ian,	et	al.	"Generative	adversarial	nets."	Advances	in	
Neural	Information	Processing	Systems.	2014.



Text-conditional	GAN

• The	discriminator	D	tries	to	distinguish	real	
(text,	image)	pairs	from	synthetic.	

• The	generator	G	tries	to	fool	D.	



Text-conditional	GAN



Text-conditional	GAN



Text-conditional	GAN



Text-conditional	GAN



Conditioning	on	bounding	box



Conditioning	on	bounding	box



Conditioning	on	bounding	box



Conditioning	on	bounding	box



Conditioning	on	bounding	box



Conditioning	on	bounding	box



Conditioning	on	bounding	box



Conditioning	on	bounding	box



Conditioning	on	bounding	box



Conditioning	on	bounding	box



Conditioning	on	bounding	box



Moving	the	bird	around	with	bounding	box	(noize	z	fixed)



Moving	the	bird	around	with	bounding	box	(noize	z	fixed)



Moving	the	bird	around	with	bounding	box	(noize	z	fixed)



Moving	the	bird	around	with	bounding	box	(noize	z	fixed)



Moving	the	bird	around	with	bounding	box	(noize	z	fixed)



Moving	the	bird	around	with	key	points	(noize	z	fixed)



Moving	the	bird	around	with	key	points	(noize	z	fixed)



Moving	the	bird	around	with	key	points	(noize	z	fixed)



Moving	the	bird	around	with	key	points	(noize	z	fixed)



Comparison	to	text-only	conditional	GAN:



Comparison	to	text-only	conditional	GAN:

^	Text-only	64	x	64	GAN	samples.



Comparison	to	text-only	conditional	GAN:

^	Text-only	128	x	128	GAN	samples.



Comparison	to	text-only	conditional	GAN:

^	Ours,	with	fixed	keypoints.



Comparison	to	text-only	conditional	GAN:

^	Ours,	with	generated	keypoints.



Comparison	to	text-only	conditional	GAN:



Deep Model Adaptation using 
Domain Adversarial Training 

Victor Lempitsky,  
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Deep Model Adaptation using Domain Adversarial Training 

Deep supervised neural networks 

•  are a “big thing” in computer vision and beyond 
• are hungry for labeled data 



Deep Model Adaptation using Domain Adversarial Training 

Where to get the data? 
Lots of modalities do not have large labeled data sets: 
• Biomedical 
• Unusual cameras / image types 
• Videos 
• Data with expert-level annotation (not mTurkable) 
• …. 
Surrogate training data often available: 
• Borrow from adjacent modality  
• Generate synthetic imagery (computer graphics) 
• Use data augmentation to amplify data (image-

based rendering, morphing, re-synthesis,….) 
 
Resulting training data are shifted. Domain 
adaptation needed. 

 
 



Deep Model Adaptation using Domain Adversarial Training 

Example: Internet images -> Webcam sensor 

[Saenko et al. ECCV2010] 



Deep Model Adaptation using Domain Adversarial Training 

Assumptions and goals 

• Lots of labeled data in the source domain 
(e.g. synthetic images)  

• Lots of unlabeled data in the target domain 
(e.g. real images) 

• Goal: train a deep neural net that does 
well on the target domain 

Large-scale deep unsupervised domain 
adaptation 



Deep Model Adaptation using Domain Adversarial Training 

Domain shift in a deep architecture 

When trained on source 
only, feature distributions 
do not match: 

feature extractor 
label predictor 



Deep Model Adaptation using Domain Adversarial Training 

Idea 1: domain-invariant features wanted 

Feature distribution 
without adaptation: 

Our goal (after 
adaptation): 



Deep Model Adaptation using Domain Adversarial Training 

Idea 2: measuring domain shift 

Domain loss low Domain loss high 

Domain classifier: 



Deep Model Adaptation using Domain Adversarial Training 

Learning with adaptation 

1. Build this network 
2. Train feature extractor + class predictor on 

source data 
3. Train feature extractor + domain classifier 

on source+target data 
4. Use feature extractor + class predictor at 

test time 



Deep Model Adaptation using Domain Adversarial Training 

Idea 3: minimizing domain shift 

Emerging features: 
• Discriminative (good for predicting y) 
• Domain-discriminative (good for predicting d) 



Deep Model Adaptation using Domain Adversarial Training 

Idea 3: minimizing domain shift 

Gradient reversal layer: 
• Copies data without change at forwardprop 
• Multiplies the gradient by -λ at backprop 



Deep Model Adaptation using Domain Adversarial Training 

Idea 3: minimizing domain shift 

Emerging features: 
• Discriminative (good for predicting y) 
• Domain-invariant (not good for predicting d) 



Deep Model Adaptation using Domain Adversarial Training 

Saddle point interpretation 

Similar idea for generative networks: 
[Goodfellow et al. Generative adversarial nets. 
In NIPS, 2014] 

Our objective (small label prediction loss + 
large domain classification loss wanted) 

The backprop converges to a saddle point: 



Deep Model Adaptation using Domain Adversarial Training 

Initial experiments: baselines 

Shallow adaptation baseline: [Fernando et al., 
Unsupervised visual domain adaptation using subspace 
alignment. ICCV, 2013] applied to the last-but-one layer 
 
Lower bound: training on source domain only 

Upper bound: training on target domain with labels 



Deep Model Adaptation using Domain Adversarial Training 

Example: from synthetic to real 

“House numbers” “Windows digits” 

0,83
0,84
0,85
0,86
0,87
0,88
0,89

0,9
0,91
0,92
0,93

No adapt Baseline Deep adapt Upper bound



Deep Model Adaptation using Domain Adversarial Training 

Office dataset 

[Saenko et al. ECCV2010] 



Deep Model Adaptation using Domain Adversarial Training 

Results on Office dataset 

[Tzeng et al. Deep domain confusion: Maximizing 
for domain invariance. CoRR, abs/1412.3474, 2014] 

Most similar approach (matches means of distributions): 



Deep Model Adaptation using Domain Adversarial Training 

Caveats 
• Domains should not be too far apart 
• Early on, the gradient from the domain 

classification loss should not be too strong 
• The trick used to obtain the results: gradually 

increase λ from 0 to 1  



Deep Model Adaptation using Domain Adversarial Training 

Conclusion 

• Scalable method for deep unsupervised 
domain adaptation 

• Based on simple idea. Takes few lines of code 
(+ defining a specific network architecture). 
Caffe implementation available. 

• State-of-the-art results 

• Unsupervised parameter tuning is easy (look at 
the domain classifier error) 

• Main challenge: initialization and stepsize 

http://sites.skoltech.ru/compvision/projects/grl/ 


