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Abstract. Graph-based methods are very popular in semi-supervised
learning due to their well founded theoretical background, intuitive in-
terpretation of local neighborhood structure, and strong performance
on a wide range of challenging learning problems. However, the success
of these methods is highly dependent on the pre-existing neighborhood
structure in the data used to construct the graph. In this paper, we use
metric learning to improve this critical step by increasing the precision of
the nearest neighbors and building our graph in this new metric space.
We show that learning of neighborhood relations before constructing
the graph consistently improves performance of two label propagation
schemes on three different datasets – achieving the best performance
reported on Caltech 101 to date. Furthermore, we question the predomi-
nant random draw of labels and advocate the importance of the choice of
labeled examples. Orthogonal to active learning schemes, we investigate
how domain knowledge can substantially increase performance in these
semi-supervised learning settings.

1 Introduction

Object recognition and scene classification are frequently addressed in computer
vision and state-of-the-art methods are dominated by purely supervised learning
methods [8, 7]. Yet, there is common agreement that unlabeled data conveys
important information of the global data distribution as well as the structure
of the classes themselves. Nevertheless, we rarely find approaches successfully
tapping into both types of sources that would be able to challenge the best
supervised approaches. In a previous investigation, we show that the success of
such methods critically depends on the neighborhood relations in the data [4].
This strongly suggests that learning should start before a neighborhood structure
is imposed on the data points in order to surpass the inherent limitations of
traditional semi-supervised learning schemes.

One might argue that with the availability of crowd sourcing services like Me-
chanical Turk the value of unlabeled data has shrunken and will ultimately loose
its significance. Evidently, there has been a big impact on the vision community
as data and labels seem now available in abundance. But recent data collection
efforts at those large scales have their own set of problems due to labeling errors
and ambiguities [21]. Also adding label information in an unstructured manner
will lead to redundant information yielding an inefficient learning scheme. While
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active learning has provided useful insights and improvements in this area, the
role of domain knowledge has gone largely overlooked.
Contributions: This paper is concerned with the question of how to make
better use of the provided labels already in the early stages of popular semi-
supervised learning methods. Therefore, our first main contribution is to em-
ploy a metric learning approach to improve the graph construction which leads
to a consistent improvement in performance. As second main contribution, we
propose methods of querying more informative labels based on domain knowl-
edge that are complimentary to traditional active learning settings. Our semi-
supervised learning schemes deliver consistent improvements across 3 dataset
and show state-of-the-art performance on Caltech-101.

2 Related work

Graph-based methods are a popular choice for semi-supervised learning (SSL) as
they are well understood and easy to implement. The way they exploit neighbor-
hood structure is intuitive and the computational demands are usually moderate.
One of the key issue of these methods is the construction of the graph. But this
critical aspect is often neglected [24] and meaningful neighborhood relations as
well as a class structure is assumed to be encoded in the distances of the raw
feature space. We have shown in a recent study [4] that for visual categories
those assumptions cannot be taken for granted and that the quality of the graph
is in fact highly correlated with performance. Thus it is surprising how little
attention graph construction [19, 13] has received in comparison to various al-
gorithmic contributions [22, 23]. In [19], the authors uses the neighboring data
points to reconstruct each data point from its neighbors. In [13], they propose
a method to balance a graph such that dominant nodes are weighted down. All
those methods do not use the information which are contained in the labels it-
self and they are all based on the limiting assumption that the initial feature
representation is sufficient for immediate graph construction.

In contrast, metric learning learns a representation better suited to the task
at hand. The proposed methods essentially differ in the parameterization of the
learned metric (including regularizers and constraints) and optimization pro-
cedures. Some methods learn a Mahalanobis distance [3, 14, 17, 9] often with
pairwise constraints, while other approaches maximize the inter-class distance
by a large margin approach [20]. Although, there are other works combining SSL
with some feature transformation [10, 18, 16], this work tightly interleaves a met-
ric learning scheme with label propagation. We use [3] and the follow-up work
[14] that show impressive improvements for Caltech 101. Beside the success, it
is scalable to large problems in particular in a high dimensional space and it
guarantees convergence to the global maximum.
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3 Improving neighborhood structure for SSL

As motivated above, we use metric learning [3] to improve our neighborhood
structure and apply a graph-based label propagation algorithm [22] on top of this
new metric space. Both methods are briefly explained in the following. As shown
in sec. 5 the proposed combination of these two techniques leads to improved
results over either technique alone, outperforming previously published results
e.g. for Caltech 101 using the same underlying image representation [14].

Information theoretic metric learning (ITML): [3] optimizes the Maha-
lanobis distance between each point pair xi, xj ∈ Rd

dA(xi, xj) = (xi − xj)TA(xi − xj) (1)

Eq. (1) reduces to a simple euclidean distance if A = I. To learn matrix A,
the algorithm minimizes the logdet divergence between a matrix A and an initial
matrix A0 with respect to pairwise similarity and dissimilarity constraints:

min Dld(A,A0)
s.t. dA(xi, xj) ≤ bu (i, j) ∈ S (2)

dA(xi, xj) ≥ bl (i, j) ∈ D

bu and bl are upper and lower bound of similarity and dissimilarity con-
straints. S and D are sets of similarity and dissimilarity constraints based on
the labeled data. To make this optimization feasible, a slack parameter γ is intro-
duced to control the trade-off between satisfying the constraints and minimizing
Dld(A,A0). The larger γ the more constraints are ignored. The optimization is
done by repeatedly Bregman projections of a single constraint per iteration.

One benefit of this optimization scheme is the efficient kernelization withK =
XTAX. A proof can be found in [3]. The kernel version has several advantages.
The run time depends only on the number of constraints nc and not on the
dimensions d that is critical in a high dimensional space. We can subsample the
number of constraints such that nc � d which reduces the costs from O(d2)
to O(n2

c). Finally, we can easily compute the at most violated constraint per
iteration since only matrix additions (Kii + Kjj − 2Kij) is required and no
complex multiplications as in eq. (1) leading to faster convergence.

Label propagation (LP): We use the common and robust method by [22].
Given a labeled set {(x1, y1), ..., (xl, yl)} and an unlabeled set {xl+1, ..., xl+u}
with n = l+u data xi ∈ Rd and l labels yi ∈ L = {1, ..., c} , we build a k-nearest

neighbor graph P̂ij =

{
1 if dA(xi, xj) is one of the smallest k distances of i
0 otherwise

that is symmetric, e.g., Pij = max(P̂ij , P̂ji), and weighted with a Gaus-

sian kernel Wij = Pij exp
(
−dA(xi,xj)

2σ2

)
. Based on this graph a normalized graph

Laplacian S = I −D−1/2WD−1/2 with Dij =

{∑
jWij if i = j

0 otherwise
is built.
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Fig. 1. Left: ETH, middle: C-PASCAL (column 5-8), and right: Caltech 101

For the learning, we split our multi-class problem into c binary problems and
get a prediction vector for each class by an iterative procedure

Y (t+1)
m = αSY (t)

m + (1− α)Y (0)
m (3)

with 1 ≤ m ≤ c and Y ∗m the limit of this sequence. Parameter α ∈ (0, 1]
controls the overwriting of the original labels. The final prediction is obtained
by Ŷ = argmax1≤m≤cY

∗
m.

4 Datasets and representation

We analyze three datasets with increasing number of object classes and different
difficulty. Some of the images are shown in Fig. 1.

ETH-80 (ETH) [15] contains 3,280 images divided in 8 object classes and 10
instances per class. Each instance is photographed from 41 viewpoints in front
of a uniform background.

We propose Cropped PASCAL (C-PASCAL) in [4] where we use the bound-
ing box annotations of the PASCAL VOC challenge 2008 training set [5] to
extract the objects such that classification can be evaluated in a multi-class
setting. The resulting data set contains 4,450 images of aligned objects from
20 classes but with varying object poses, challenging appearances, background
clutter, and truncation. For the data representation of both datasets, we also
use a HOG [2] representation with cells of 8× 8 pixels.

Caltech 101 [6] is a dataset with 9,144 images and 101 object classes. Objects
are located in the middle of the image, but there is still background clutter and a
large intra-class variability. As a representation we use the same kernel as in [12]
(obtained from the authors), which uses an average of four kernels: two kernels
based on the geometric blur descriptor, Pyramid Match Kernel (PMK) and the
Spatial PMK using SIFT features [11].

5 Evaluation of metric learning for label propagation
In this section, we show first the performance on all three datasets and compare
our results with the k-nearest neighbors results (KNN) given by [14]. Next, we
give some insight in the learned metric and the resulting neighborhood structure.
Based on these observations, we propose a new propagation scheme – Interleaved
Metric Learning and Propagation (IMLP) – by continuously adding unlabeled
data. Finally, we show results on Caltech 101 that outperform the state-of-the-
art for 5 training samples.
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Fig. 2. Overall accuracy for different number of training samples. left: ETH, middle:
C-PASCAL, and right: Caltech 101

Metric learning for label propagation: In all experiments, we use the ker-
nelized version of ITML with a gaussian kernel. Only for ETH we report plain
metric learning as we didn’t observe any increased performance. Parameter σ
for the kernel and the slack parameter γ are set empirically. For the number
of nearest neighbor k we choose always the best for each algorithm. All experi-
ments were repeated 5 times with random splits. In tab. 1, results for k nearest
neighbor classifier before (KNN) and after (KNN+ITML) metric learning, and
label propagation before (LP) and after (LP+ITML) are shown for 5 training
samples per class. First, KNN+ITML (col. 3) is always better than KNN (col. 2).
Moreover, there is an increase from 39.1% to 52.2% for Caltech 101. Second, LP
(col. 4) is consistently improved by LP+ITML (col. 5), i.e., for Caltech 101 from
47.1% to 54.5%. Finally, all LP+ITML results are better than KNN+ITML due
to the additional information from the unlabeled data. This leads to an improve-
ment of 2.3% for Caltech 101 in comparison to [14]. The same observation holds
true when we vary the number of training examples as in fig. 2. The light blue
curve (LP+ITML) is for all 3 datasets above all other curves. It is noteworthy
to mention that both LP curves are above all KNN results for ETH.

Discussion and analysis: In fact, the precision of our neighborhood struc-
ture increases. This is also illustrated in fig. 3 for C-PASCAL. The first nearest
neighbors of a query image (1st col.) are shown before ITML (first row) and af-
ter ITML (second row). True positives are outlined with green. Indeed, training
examples of a class are pushed close together. But ITML tends to overfit to the
training samples. This is more obvious when we split the quality of k nearest
neighors into labeled (NNL) and unlabeled (NNU ) quality, i.e., the number of
true positives within the k nearest neighbors. Fig. 4 shows these qualities for
different number of neighbors k. In particular for C-PASCAL and Caltech 101,
where we use a Gaussian kernel, NNL increases up to 95% − 100% for k = 1
while the effect on NNU is substantially smaller.

dataset KNN KNN+ITML LP LP+ITML
ETH 61.0± 2.6 69.3± 0.8 65.3± 4.7 71.4± 3.0
C-PASCAL 15.8± 2.6 23.0± 1.6 21.5± 1.6 24.2± 2.7
Caltech 101 39.1± 1.1 52.2± 0.5 47.1± 0.6 54.5± 1.7

Table 1. Overall accuracy for all datasets and 5 training samples
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Query

Query train train train train

Fig. 3. First nearest neighbors of a query image (1st column) of C-PASCAL. Top:
before ITML and bottom: after ITML. True positives are outlined with green and
training samples are marked with “train”.

Interleaved Metric Learning and Propagation (IMLP): Based on this
observation, we address the lack of generalization by incorporating few predic-
tions from unlabeled data. We propose an iterative procedure with interleaved
metric learning and label propagation. This improves incrementally the nearest
neighbor precision with the condition that the manifold structure given by the
unlabeled data is taken into account. The resulting procedure is as follows:

1. metric learning to get kernel K
2. label propagation with kernel K to obtain predictions Ŷ of unlabeled data
3. choose m = m+ ns data points xi such that |ỹ1| ≥ ... ≥ |ỹi| ≥ |ỹi+1| ≥ ... ≥
|ỹm| with Ỹ = max1≤j≤c Y

∗
j and l < i <= u

4. construct new sets of similarities S and dissimilarities D from l labels and
m predicted labels, and go to step 1.

Tab. 2 shows results for Caltech 101, 5 training samples, and ns = 200. We
improve our results of LP+ITML to 58.7% that goes beyond existing best known
numbers of 56.9% by Boiman[1] and 54.2% by Gehler[8]. Also, the performance
of KNN+ITML increases to 59.1%. The better performance in comparison to
LP+ITML can be explained by incorporating more structure from unlabeled
data. Finally, we also get a small improvement for C-PASCAL even though
not as much as for Caltech 101 due to lower prediction quality, and almost no
improvement for ETH.

6 Selection of training data based on domain knowledge

While the previous section was concerned with algorithmic improvements, we
now want to shift the focus to the importance of selecting good training examples

ETH C-PASCAL Caltech 101

Fig. 4. Nearest neighbor quality splitted into labeled and unlabeled quality
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dataset KNN+ITML LP+ITML
original 52.2± 0.5 54.5± 1.7
with predictions 59.1± 0.7 58.7± 0.8

Table 2. Overall accuracy for Caltech 101 and 5 training samples on our original
setting and with predictions

for semi-supervised learning algorithms. As those methods tend to operate in a
regime where only a few labels are available, a random strategy can easily pick
a set of atypical examples or simply provide poor coverage of the class and/or
viewpoint variation. We illustrate these issues in fig. 5, where we provide a more
detailed analysis for the class “car” from our C-PASCAL experiment. The first
column shows the best random draw w.r.t. average precision (PASCAL VOC
criteria) of the retrieved unlabeled examples. We observe a good coverage of
intra-class variation and view-points. The next column shows the worst draw.
Atypical examples, less viewpoint variation, and truncation have lead to a drop
in precision from 28.6% to 13.7%! Next we selected 5 prototypical examples by
hand to convey our domain knowledge of cars, which results in a performance
of 22.4%, right in between the best and worst results of a random draw. To
take a step towards an automated approach, we also seek prototypical examples
in a statistical sense by finding modes in the distribution of the car examples.
Please note that this is best-case type analysis as we are finding the modes for
the cars isolated from the other classes. However, this leads to a performance
of 35% which is over 6% better than the best random draw we have and over
20% better than the worst one. This large margin emphasizes the potential of
selecting appropriate labeled examples opposed to a random draw. The last two
columns represent draws from a method we are going to present in this section,
that almost recover the best-case performance. In the following, we address the
sampling process in an unsupervised manner by using graph properties. The
results on all 3 datasets show an improvement for both precision and robustness.
In the last experiment, we look at ETH where we use the viewpoint information
to obtain better distributed and more representative training examples.
Towards indentifying prototypical instances: In our first experiment, we
build a graph based on our kernels and use the intrinsic graph structure to iden-
tify highly connected nodes or nodes with a high weight. The intuition behind
is that representative images for a class are usually well integrated in the graph
and form almost a clique with other similar images, e.g., these nodes have many
edges (� k) with high weights. Our goal is to find such key images. To eliminate
images that have many neighbors but only with low weights, we normalize this
term by the number of edges: ∑

iWij∑
i Pij

> thresh (4)

We set thresh in our experiments to 0.6. For C-PASCAL, this reduces the
number of possible selected images from 222 on average to 136 images per
class. Tab. 3 shows the performance with and without thresholding for all three
datasets (row 1-2) and 5 training examples. Again, we have an improvement for
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random:
best

AP=28.6%

random:
worst

AP=13.7%

prototype

AP=22.4%

best case

AP=35.0%

thresh:
best

AP=33.0%

thresh:
worst

AP=29.7%

Fig. 5. Training samples of C-PASCAL: random best and worst seed (column 1-2),
prototypical selection, and best case estimation (4th column), and with threshold on
the graph structure for best and worst seed (column 5-6). AP is the average precision
for this class calculated by the PASCAL VOC criteria.

all datasets. For C-PASCAL, we increase the performance of LP+ITML from
24.2% to 25.6% while decreasing the standard deviation from 2.7% to 2.0%. Fig.
5 shows the according training samples for the best and the worst seed in the
last two columns. It stands out that the average precision (AP) of the worst seed
of thresholded sampling is higher with 29.7% than the best random sampling
AP with 28.6%.

To get an idea what we can achieve in an almost best case scenario, we build a
graph with k = 50, and calculate for each node the number of correct neighbors.
We apply k-means clustering for each class to get 5 clusters. Finally, we choose
for each cluster the image with the highest nearest neighbor accuracy. This
procedure ensures both class coverage and high precision. The results are shown
in tab. 3 last row and the corresponding training examples for C-PASCAL are in

dataset sampling KNN KNN+ITML LP LP+ITML
ETH random 61.0± 2.6 65.3± 4.7 69.3± 0.8 71.3± 3.0

threshold 63.8± 2.0 67.4± 1.0 72.9± 2.8 73.0± 3.3
best case 68.5 73.5 81.1 82.6

C-PASCAL random 15.8± 2.6 21.5± 1.6 23.0± 1.6 24.2± 2.7
threshold 19.0± 1.1 23.5± 1.0 24.7± 1.9 25.6± 2.0
best case 30.1 30.4 36.2 36.4

Caltech 101 random 39.1± 1.1 47.1± 0.6 52.2± 0.5 54.5± 1.7
threshold 40.3± 0.6 47.3± 1.1 53.3± 1.2 55.5± 0.9
best case 45.7 53.9 57.9 59.9

Table 3. Overall accuracy of different sampling methods – random sampling, with
threshold, and a best case estimate – for 5 training samples.
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long. width KNN KNN+ITML LP LP+ITML
random random 61.0± 2.6 65.3± 4.7 69.3± 0.8 71.3± 3.0
90◦ 360◦/5 64.0± 2.2 65.5± 3.5 74.9± 2.6 74.2± 3.6
68◦ − 90◦ 63.7± 2.8 66.2± 2.3 73.9± 2.5 74.4± 3.1
45◦ − 90◦ 65.4± 2.3 68.3± 2.7 73.3± 1.7 75.2± 2.4
35◦ − 90◦ 64.3± 1.9 68.2± 1.5 73.6± 2.2 76.5± 2.0
22◦ − 90◦ 62.2± 3.5 67.1± 3.1 69.8± 3.1 71.8± 3.6

Table 4. Overall accuracy of ETH for different viewpoint sampling methods in com-
parison to our random baseline (first line)

fig. 5 (col. 4). It is obvious that there is a huge potential in selecting the “right”
training samples. While we improve the performance of LP+ITML of C-PASCAL
from 24.2% to 36.4%, we also increase the difference to KNN+ITML from 2.7%
to 6% that suggests a large unused potential in the underlying structure.

Towards indentifying prototypical viewpoints: For our second experiment,
we use domain knowledge in terms of viewpoint information. Each object in
ETH is captured from 41 different viewpoints with varying degrees on both the
longitudinal axis from 0◦ to 90◦ and the width axis with 360◦. We split the width
axis with 360◦ into 5 parts and sample one example from each of these areas.
Additional, we increase the radius on the longitudinal axis starting from 90◦ to
22◦. The larger the range the more objects from above are sampled.

In Tab. 4 are the results in comparison to our random baseline (first line).
All sampling methods based on domain knowledge (row 2-6) lead to a higher
performance and a lower standard deviation in comparison to the baseline with
71.3% that contains many images photographed from above. Our best result for
LP+ITML with viewpoint information is 76.5%.

7 Conclusion

In this work, we use metric learning to enhance our nearest neighborhood struc-
ture that is key for graph-based algorithms and their performance. We show
a consistent and significant improvement on three different datasets, and give
insights into the learned metric space. We propose a second label propagation
scheme – Interleaved Metric Learning and Propagation (IMLP) – that leads to
the best published performance on Caltech 101 to date. Finally, we use domain
knowledge to sample training data for the semi-supervised framework, and point
out the potential in comparison to the common random sampling strategy.

In future work, we intend to make this approach scalable to large image col-
lections like ImageNet since we have not yet exploited all information contained
in massive data sets. It would also be interesting to explore other domain-specific
or structure knowledge to get better and more representative training samples
that require less supervision.
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