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Abstract. Many computer vision methods rely on annotated image sets
without taking advantage of the increasing number of unlabeled images
available. This paper explores an alternative approach involving unsu-
pervised structure discovery and semi-supervised learning (SSL) in im-
age collections. Focusing on object classes, the first part of the paper
contributes with an extensive evaluation of state-of-the-art image repre-
sentations underlining the decisive influence of the local neighborhood
structure and its direct consequences on SSL results and the importance
of developing powerful object representations. In a second part, we pro-
pose and explore promising directions to improve results by looking at
the local topology between images and feature combination strategies.

Key words: object recognition, semi-supervised learning

1 Introduction

Supervised learning is the de facto standard for many computer vision tasks
such as object recognition or scene categorization. Powerful classifiers can ob-
tain impressive results but require sufficient amounts of annotated training data.
However, supervised methods have important limitations: Annotation is expen-
sive, prone to error, often biased, and does not scale. Obtaining the required
training data representing all relevant aspects of a given category is difficult but
key to success for supervised methods. Facing these limitations we argue that
the computer vision community should move beyond supervised methods and
more seriously tap into the vast collections of images available today.

In particular, we look at the local structure of the data (links between im-
ages here) in an unsupervised way. For larger datasets, this local neighborhood
becomes more reliable: Two semantically similar images (belonging to the same
class) have a higher probability to be also similar in image representation space
for increasing database sizes (see Fig. 1). Semi-supervised learning (SSL), the
second direction explored here, uses such local neighborhood relations and few
labeled images to predict the label of new images. The local structure has in
both cases a strong influence on the overall performance of such approaches.
∗This work was supported by a Google Research Award
†both first authors contributed equally
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Fig. 1. (Left) For each image, we look at the most similar image (L1 distance NN) to
see how often these couples belong to the same class. This increases for larger sets.
(Right) Top: ETH, middle: our Cropped PASCAL, bottom: AwA datasets.

This paper is organized in two parts. First, we contribute a study of differ-
ent representations and SSL algorithms on three image collections of increasing
size and difficulty for image categorization (Sec. 3). We show that the results
depend on the neighborhood structure induced by object representations and
on the graph structure parameters rather than on the particular SSL algorithm
employed. We also show that results obtained on the local neighborhood directly
transfer to SSL results. Motivated by these conclusions, the second part of the
paper presents different ways of improving the connections between images in
the local neighborhood structure. Among the considered strategies: the topology
of the dataset is used to refine the existing connections (Sec. 4), and different fea-
tures are combined (Sec. 5). Results show improvements for both the structure
and the SSL predictions on all datasets.

Related Work. The use of large image collections is obviously not a novel
idea. [1] directly discovers image clusters, while other approaches aim to globally
partition the database in image sets sharing more general concepts [2]. Multi
instance learning methods deal with weak or incomplete annotations [3]. Some
methods use the web as an external source of information to get many but noisy
annotations [4]. Active learning methods aim to identify missing annotations [5].
Finally, attempts are made to make the annotation process more appealing [6].
None of this prior work however systematically analyzes the suitability of today’s
image and object representations for unsupervised local structure extraction.

Semi-supervised learning (SSL) has been applied to several computer vision
problems. Partial labeling of pixels is used as an input for segmentation [7].
Image level annotations are used to find object parts [8]. But only a couple of
methods apply SSL to predict labels at the image level from a few annotated im-
ages. Of particular interest are [9] using random forests and [10] using boosting,
both in an SSL framework. Closer to our work, [11] focuses on graph based prop-
agation algorithms and proposes efficient approximations to scale SSL methods
to large datasets. In machine learning, SSL-methods have been used with success
for many tasks (e.g. digit recognition, text classification, or speech recognition,
see [12] for a survey). Among SSL, graph-based methods play an important role
as they concentrate on the local structure of data [13, 14]. Most approaches how-
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ever focus on SSL-algorithms rather than on the underlying structure. In this
work, we analyze in detail the local neighborhood to improve the performance
of SSL graph based-algorithms for image data.

There are very few studies comparing SSL methods on images. [12] contains
a single small image-set and [15] considers digits and faces. In both cases, repre-
sentations are different from commonly used image descriptors for recognition.
Therefore, this paper focuses on the important problem of how well standard
representations are suited for unsupervised structure discovery as well as SSL
and how the structure can be improved such that also SSL can benefit.

2 Datasets and Image Representations

We consider three datasets with increasing number of object classes, number of
images, and difficulty. Some of the images are shown in Fig. 1.

ETH-80 (ETH) [16] contains 3,280 images divided in 8 object classes and 10
instances per class. Each instance is photographed from 41 view-points in front
of a uniform background. This controlled dataset ensures that a strong local
structure exists between images making it a perfect toy dataset for our task.

Cropped PASCAL (C-PASCAL) is based on the PASCAL VOC challenge
2008 training set [17]. Bounding box (BB) annotations are used to extract the
objects. Consequently semantic connections between images and SSL predictions
on this new dataset can be evaluated in our multi-class protocol. To discard
information contained in the aspect ratio of the BB, squared regions (rescaled to
102x102 pixels) are extracted using the larger side of the BB and objects smaller
than 50 pixels are discarded. To avoid that a class dominates the evaluation, we
sub-sampled the largest class ‘people’ from 40% to 16% (the 2nd largest class
being ‘chair’ with ∼11%). The set contains 6,175 images of aligned objects but
varying object poses, challenging appearances, and backgrounds.

Animal with Attributes (AWA) [18] is a large and realistic dataset with 30,475
images and 50 classes, without alignment. Objects are located anywhere in the
image, in difficult conditions and poses, which makes the task of finding im-
ages containing similar object classes difficult. While being the most challenging
dataset in this evaluation it is the kind of data we are aiming for eventually.

Representations. This paper uses a large spectrum of representations used
by state-of-the art recognition methods [17]. For the first two datasets we con-
sider 7 complementary descriptors: 3 global descriptors (HOG [19], Gist [20],
pyramid bag-of-features (P-BoF) [21]), 3 bag-of-features representations (BoF)
with different detectors and descriptors, and a texture descriptor (TPLBP [22]).
Our HOG implementation uses 9-bins histograms of gradient orientations, lo-
cally normalized over contrast, extracted using a dense grid of non-overlapping
cells (of 8x8 pixels). Gist is a scene descriptor and we use the code of [20]. P-BoF
features are computed with the implementation of [21]. It extracts patches on 4
different levels, and a visual vocabulary of 200 words. Concurrently, we extract
bag-of-features representations. We combine Harris (Har-BoF) or Hessian-Affine
(Hess-BoF) detectors [23], with SIFT [24] and build visual vocabularies of 10000
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NN quality SSL results
L1 L2 L2-ctxt L1 L2 L2-ctxt

Features k=1 k=10 k=1 k=10 k=1 k=10 acc var acc var acc var
ETH C-SIFT 96.6 89.0 80.5 63.1 92.8 82.7 89.0 0.6 60.9 2.0 83.7 1.4

Gist 93.6 85.4 92.9 83.5 93.6 84.8 83.1 1.4 82.5 1.0 84.5 0.8
HOG 96.9 88.6 95.5 86.2 96.9 88.6 84.5 1.8 83.3 1.7 86.8 1.3

C-PASCAL C-SIFT 32.6 19.6 24.2 13.9 30.1 17.8 24.0 0.4 16.6 2.2 20.5 0.4
Gist 30.8 24.3 29.5 23.5 31.8 24.9 28.4 0.3 27.5 0.4 28.1 0.8
HOG 27.3 21.4 22.0 17.3 34.6 26.8 19.2 2.3 13.9 2.4 28.8 1.6

Har-BoF 28.7 16.2 17.8 10.4 25.1 13.6 20.1 0.5 13.1 2.7 15.7 0.5
Hess-BoF 31.3 17.9 20.1 11.2 26.7 15.2 21.6 0.7 15.3 2.3 16.5 1.1
P-BoF 28.5 22.3 24.1 17.7 24.1 17.7 28.4 0.9 20.2 1.2 20.6 0.9
TPLBP 33.5 26.2 26.9 20.4 26.9 20.4 29.5 0.9 20.4 2.0 20.5 1.9

AWA C-Hist 14.5 9.2 9.8 6.6 12.2 8.3 8.4 0.2 5.7 0.1 8.5 0.2
C-SIFT 14.2 9.2 12.2 8.0 15.4 10.4 8.0 0.2 7.0 0.1 10.3 0.2

Gist 12.1 8.1 12.0 8.1 15.0 10.3 7.2 0.2 7.4 0.2 10.9 0.1
LSS 10.9 7.8 8.3 6.3 11.7 8.1 6.9 0.1 5.5 0.3 8.2 0.3

PHOG 9.7 6.7 7.7 5.6 8.9 7.0 6.3 0.2 5.4 0.1 7.0 0.1
SIFT 11.0 8.1 10.4 7.6 12.4 8.8 7.7 0.2 7.3 0.3 9.2 0.2
SURF 16.4 10.6 11.7 8.0 14.3 10.7 9.0 0.1 6.8 0.3 10.4 0.2

Table 1. Quality of the nearest neighbor and the 10 nearest neighbors on the left part,
transductive propagation results on the right part, for L1, L2 (Sec. 3) and L2-Context
(Sec. 4.1). Only the 3 best descriptors are shown for ETH.

words. We also use C-SIFT based on the code of [25] (Color-SIFT descriptors
for Harris points, 2000 words vocabulary). Finally, the local texture descriptor
called ’three patch local binary pattern’ (TPLBP) [22] considers 3 neighboring
patches of size 3×3 arranged in a circle around each pixel to produce a single bit
value for each pixel. For AWA, we use 7 descriptors: the 6 publicly available fea-
tures [18] (color histograms (C-Hist), Local-Self-Similarity (LSS), Pyramid HOG
(P-HOG), bag-of-features representations involving SIFT, color-SIFT (C-SIFT),
and SURF descriptors) and the Gist descriptor that we computed additionally.

3 Local Structure and SSL Study

As stated before, this paper looks at two related tasks: local structure extraction
and the use of this structure for semi-supervised learning (SSL). We focus on
the question whether today’s object class representations are suitable for local
structure discovery, and how well these observations transfer to SSL. The fol-
lowing first analyzes neighborhood structures and then compares four different
graph-based algorithms for SSL.

Local structure discovery. For all three datasets, we analyze neighbor-
hood structures of different object representations, for the L1 and L2 distance
measures1. We focus on k-nearest neighbors (k-NN) structures which have bet-
ter connectivity and lead to more intuitive structures than e.g., ε-neighborhood
graphs [26]. These properties are also important for SSL algorithms.

Experiments. To evaluate the quality of the k-NN structure for an im-
age, we calculate the percentage of neighbors belonging to the same class as

1the χ2 measure was considered but not reported as it gave similar results as L1.
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this image. Averaging this percentage over all images results in the overall k-
NN structure accuracy. Intuitively, this evaluates how often the k-NN structure
connects images from the same class, and how much semantic information it
contains.

The left side of Tab. 1 shows L1 and L2 performances for the nearest (1-NN)
and the 10 nearest neighbors (10-NN), for all three datasets2. First, we see that
L1 constantly outperforms L2 for all representations and all datasets.

Also, we observe that results significantly differ between the different rep-
resentations. Global descriptors like P-BoF or Gist work well for ETH and C-
PASCAL as objects are mostly aligned in those databases. Local descriptors are
better suited for the more challenging dataset AWA.

Finally, the 1-NN and 10-NN exhibit different behaviors. Some features are
more robust for larger numbers of neighbors. For instance for C-PASCAL, Hess-
BoF is the third best descriptor when looking at 1-NN structures, with 31.3%,
but loses almost half of the performance when considering 10-NN (17.9%). On
the contrary, P-BoF gives poor results for 1-NN but is more robust for 10-
NN (22.3%). When considering SSL results, we will refer mainly to the 10-NN
structures, as graphs are using k-NN structures with large enough values of k.

Semi-supervised learning. We use the previous studied k-NN structure
and few labels in a graph and analyze several SSL methods for the object
recognition problem. These methods build a graph (X,Y ) where the nodes
X = {Xl, Xu} represent images and Y = {Yl, Yu} are the labels. (Xl, Yl) are
labeled images and (Xu, Yu) are unlabeled images. A graph is represented by an
adjacency matrix W built from the k-NN structure. The degree of each node
is dii ←

∑
j wij and defines the diagonal matrix D. Here, we evaluate non-

symmetric (directed) graphs. We do not evaluate fully connected graphs due to
their computational complexity and memory requirements. We also considered
weighted graphs but found that performance did not improve significantly.

Graph-based methods distribute labels from labeled to unlabeled nodes. In
our experiments, we compare four methods covering a broad range of possible
strategies. These methods are designed for binary problems, and expandable
to multi-class problems with n classes, by splitting into n one-versus-all binary
problems, sharing the same graph structure. All algorithms follow the same
pattern. First, labels are initialized, with Yl taking values in {1,−1} and elements
of Yu set to 0 resulting in Ŷ (0). Then labels are updated iteratively Ŷ (t+1) ←
LŶ (t) for a certain number of iterations3. This part differs for each method, and
is briefly described below.
Gaussian Fields Harmonic Functions (GFHF) [14] uses a transition probability
matrix L = D−1W to propagate the labels. Original labels cannot change.
Quadratic Criterion (QC) [?] is a variant of the previous method allowing the
original labels to change, which can help for ambiguous representations. It also
introduces a regularization term for better numerical stability.

2In all tables for both NN and SSL, best representation per configuration: gray cell
(max per column); best configuration: bold numbers (max per line); overall best: red.

3Typically a small number of iterations is used to avoid over-fitting.
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Local Global Consistency (LGC) [13] uses a normalized graph Laplacian L =
D−

1
2WD−

1
2 instead of transition probabilities. The initial labels are also allowed

to change, but in a regularized way. A parameter α (set to 0.5) regularizes the
modifications to limit overwritten labels and weights how much newly predicted
labels are trusted compared to original ones, Ŷ (t+1) ← αLŶ (t) + (1− α)Ŷ (0).
Discrete Regularization (DR) [27] incorporates local graph properties by looking
at the degree of two neighboring nodes. An additional cost function reduces the
influence of nodes with many connections.

Experiments. We apply these algorithms to all datasets and focus on the
following aspects: the differences between the 4 SSL algorithms, between the
different representations, and the influence of the local structure on SSL results.

We evaluate transductive results (i.e. prediction for the remaining labels)
with 10% labeled data, for all datasets on their different representations for L1
and L2. All experiments randomly select 5 sets of labeled data, and produce
mean and variance of the overall multi-class accuracy on unlabeled data only
(transductive results). For comparison, we also use the supervised k-NN classifier,
based on the same representations and measures. Some representative results2,
which illustrate our main findings, are summarized in Fig. 2 and in Tab. 1 (right).

i) Graph structure and different algorithms. The first experiment varies the
number of neighbors k in the graph, for the different algorithms. Fig. 2 (left)
shows the obtained performances for TPLBP, which performed best for C-
PASCAL in the case of local structures. As we can see, the number of neighbors
k is a crucial parameter and an optimal value exists. This value appeared to
be dataset- and SSL algorithm dependent. A minimum number is required to
perform reasonably. Too small k values result in a graph with disconnected com-
ponents, where the information is not propagated and some images not classified.

Once the correct parameters for the graphs are chosen, there are surprisingly
small differences between SSL methods. For instance, L1 numbers vary between
29.5% for LGC and 24.6% for QC. This emphasizes our claim that the structure is
more important than the algorithms. LGC is more stable across experiments and
the QC method tends to achieve lower results. This algorithm allows to change
the original labels but has no regularization parameter like LGC, leading to many
changes in the original labels, and accuracy drops for large k values. Finally,
all SSL results outperform the best k-NN result (k=80) of 23.5%, showing the
benefits of the unlabeled data in the classification process.

In the rest of the paper, we use LGC [13], as it exhibited stable results across
multiple settings, and its best settings determined from our parameter study.

ii) Image representations. As before in the NN study, we notice large differ-
ences between image representations (see Fig. 2 (left) for C-PASCAL and Tab. 1
for ETH and AWA). For C-PASCAL4, accuracies vary from 19.2% for HOG to
29.5% for TPLBP and for AWA from 6.3% for P-HOG to 9.0% for SURF, with

4Note that the non-balanced C-PASCAL (dominated by the well recognized person
class) shares similar observations with our C-PASCAL, across all experiments, with
higher overall numbers. For instance here, L1 varies from 27.4% for HOG and 47.1%
for TPLBP.
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Fig. 2. For C-PASCAL. Mean/Variance of overall accuracy on unlabeled data only for
LGC, GFHF, QC, and DR and k-NN (left). Different features with LGC (right).

L1. Second, we observe the existing gap between the representations and the task.
Our toy dataset ETH exhibits good values, meaning that for datasets with an
obvious underling structure (same objects and views), it is accurately extracted
and used by the propagation algorithm. We were able to obtain satisfying results
even with minimal supervision. For the more challenging C-PASCAL and AWA
datasets, numbers are more disappointing. We can conclude that today’s image
representations are still not rich enough for building good semantic structures.

iii) Transfer from neighborhood structure. Tab. 1 shows that the results2 of
the 10-NN structures (left side) transfers directly to the SSL performances (right
side) for each dataset, including the observed semantic gap. 10-NN performance
is more consistent with the SSL algorithms as the latter need a minimum number
of connections to propagate the labels. Note that 1-NN structure quality is always
higher than SSL results because it gives only an intuition on the probability for
an image to transfer the correct label to its first neighbor. We could reach this
number for about 50% of the images labeled.

Summary. In this section, we studied the local neighborhood structure and
its influence on different SSL algorithms. We observed that the parameters that
determine the local neighborhood structure (image representations, value of k,
etc.) result in larger differences in performance than the particular choice of the
SSL algorithm. ETH presents high quality neighbors and the semantic structure
of the dataset is captured accurately. For more realistic datasets, like C-PASCAL
and AWA, the quality of neighbors is disappointing and underline the existing
gap between considered categories’ appearance and today’s computer vision rep-
resentation. This limitation also transfers to SSL results.

4 Improving the local structure between images

The previous section showed that local neighborhood structures capture some se-
mantic information between images, but a gap still exist between the connections
in a structure and the object categories, leaving ample room for improvement.
Also, we showed that this structure has a stronger influence on the results than
the SSL method itself. Therefore, this and the following section consider different
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directions to improve the quality of the connections between images. We want to
improve the local structure without any learning involved, trying again to move
away from supervised methods. Our goal is to build an improved unsupervised
local neighborhood structure, which consequently can be generic, and does not
depend on the considered SSL problem.

In the following we explore to which extent the neighborhood structure can be
improved without labels, using only topological information of the dataset itself
and look at its influence on (i) the local structure itself, and (ii) the SSL results.
Sec. 4.1 considers context measures as an improvement over standard measures
and Sec. 4.2 shows the benefit of symmetric relations between neighbors.

4.1 Context measures

We consider the contextual measure, proposed in [28] for the image retrieval
task. This context measure is applied for L25 to our problem.

Principle. When trying to decide if two images are close, the answer is often
given for a given context. We do not look only at the images themselves, but also
at the surrounding images. This is the intuition behind the contextual measure
[28], that computes the distance from a first descriptor p to another descriptor q
in the context of u using: L2ctxt(q, p|u) = argmin0≤ω≤1{||q−(ωp+(1−ω)u)||2}.
The context vector u is obtained by computing the mean vector of the l nearest
neighbors (l=100 in our experiments) of p in the collection.

Experiments. Tab. 1 summarizes the results2 obtained for the L2-context
measure, in comparison with the L1 and L2 measures considered in our previous
study. From this table we can make the following observations. First, context
measure brings a consistent improvement to the L2 measure. This improvement
represents for 1-NN about 9% in average for ETH, almost 5% in average for
C-PASCAL and 2.5% for AWA. The same applies for the SSL results: we note
11% improvement for ETH, about 3% for C-PASCAL and for AWA, in average.
Sparse vectors (e.g. Hess-BoF or Har-BoF) benefit the most. We again observe
in this table the consistency between the NN quality and the corresponding SSL
results, already underlined in the previous section’s study.

Interestingly, L2-ctxt brings L2 to the level of L1 and sometimes outperforms
it. Context measures are a promising direction and one could expect further
improvement from the context version of L1. As no closed-form solution exists
for L1, this new measure will be difficult to scale to very large datasets. Therefore,
we consider a different strategy which scales more easily in the following.

4.2 Ranking and Symmetry

Here we explicitly look at the distribution of neighbors and try to build a more
intuitive and more evenly distributed structure. In particular, we would like
to emphasize the symmetric relations between images when building the local
neighborhood structure. First, we propose a new neighbor selection procedure to

5a closed-form solution is available for L2, making computations faster
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1-NN 10-NN
Dist Rank Dist Rank

Features L1 L2 L2-cxt L1 L2 L2-cxt L1 L2 L2-cxt L1 L2 L2-cxt
C-Hist 14.5 9.8 12.1 16.8 12.1 12.9 9.2 6.6 8.3 10.6 7.9 8.5
C-SIFT 14.1 12.1 15.3 19.1 14.8 16.6 9.1 8.0 10.4 11.6 9.4 10.6

AWA Gist 12.1 11.9 15.0 14.8 14.4 15.2 8.0 8.0 10.2 9.7 9.7 10.2
LSS 10.8 8.2 11.7 14.6 10.4 12.3 7.8 6.2 8.0 9.5 7.1 8.1

NN quality PHOG 9.7 7.6 8.8 12.2 9.3 9.8 6.7 5.6 6.9 7.9 6.2 7.0
SIFT 11.0 10.3 12.3 12.5 11.5 12.5 8.0 7.6 8.8 8.9 8.4 8.9
SURF 16.3 11.7 14.3 23.0 14.2 15.8 10.5 8.0 10.7 14.2 8.9 10.8

Table 2. Quality of the nearest and the 10 nearest neighbors, chosen with distance-
or a rank-based strategy, for AWA.

ETH - SSL results
Rank, non sym Dist, sym Rank, sym

L1 L2 L2-cxt L1 L2 L2-cxt L1 L2 L2-cxt
Feat. acc gain acc gain acc gain acc gain acc gain acc gain acc gain acc gain acc gain

CSIFT 91.5 +2.5 79.5 +18.6 84.6 +0.9 90.9 +1.8 74.1 +13.2 84.5 +0.8 91.3 +2.3 82.4 +21.5 84.7 +1.0
Gist 84.9 +1.8 83.2 +0.7 84.6 +0.1 83.8 +0.7 83.0 +0.5 84.1 -0.3 84.5 +1.5 83.2 +0.7 84.4 -0.1
HOG 87.4 +2.9 86.8 +3.5 87.6 +0.8 87.4 +2.9 88.1 +4.8 86.1 -0.7 87.3 +2.9 87.8 +4.4 87.1 +0.3

C-PASCAL - SSL results
CSIFT 24.8 +0.8 18.8 +2.3 20.4 0.0 24.1 0.0 19.6 +3.1 20.7 +0.3 24.3 +0.2 20.8 +4.3 20.8 +0.3
Gist 30.8 +2.4 30.3 +2.7 29.1 +1.0 30.4 +2.0 30.0 +2.5 29.0 +1.0 32.0 +3.6 31.4 +3.9 29.5 +1.4
HOG 29.6 +10.4 24.4 +10.4 30.3 +1.5 29.5 +10.3 26.8 +12.9 30.4 +1.6 32.2 +13.0 29.5 +15.6 31.0 +2.1
Har 20.7 +0.6 14.9 +1.8 15.4 -0.3 20.3 +0.2 16.5 +3.5 16.1 +0.4 20.5 +0.4 16.7 +3.7 16.0 +0.3
Hess 23.2 +1.7 16.2 +0.9 16.6 +0.1 22.4 +0.9 17.4 +2.2 17.4 +0.9 23.1 +1.5 17.8 +2.5 17.4 +0.9

P-BoF 29.9 +1.4 23.9 +3.7 23.5 +2.8 29.4 +1.0 23.8 +3.6 22.5 +1.9 29.9 +1.4 25.3 +5.1 23.9 +3.3
TPLBP 32.7 +3.2 29.4 +9.0 28.6 +8.2 32.0 +2.5 28.1 +7.7 26.7 +6.2 33.8 +4.3 30.9 +10.5 29.5 +9.0

AWA - SSL results
C-Hist 11.0 +2.6 7.6 +1.9 8.9 +0.4 10.8 +2.4 8.6 +2.9 9.1 +0.6 11.2 +2.8 8.7 +2.9 8.9 +0.5
CSIFT 11.0 +3.0 8.9 +1.9 10.8 +0.5 12.8 +4.7 11.5 +4.5 12.0 +1.7 13.0 +5.0 11.3 +4.3 11.8 +1.5
Gist 10.1 +2.7 10.1 +2.7 11.2 +0.3 10.8 +3.4 11.0 +3.6 11.5 +0.6 11.1 +3.7 11.1 +3.7 11.2 +0.4
LSS 9.4 +2.6 6.9 +1.4 8.5 +0.3 10.9 +4.0 9.1 +3.6 9.4 +1.2 11.1 +4.3 9.0 +3.5 9.4 +1.2

PHOG 7.5 +1.2 6.1 +0.7 7.2 +0.2 9.4 +3.2 8.0 +2.5 8.1 +1.0 9.4 +3.1 7.9 +2.5 8.1 +1.1
SIFT 9.5 +1.8 8.9 +1.6 9.8 +0.6 10.4 +2.6 9.6 +2.3 9.9 +0.7 10.0 +2.3 9.4 +2.1 9.9 +0.7
SURF 13.7 +4.7 8.0 +1.2 10.6 +0.3 16.3 +7.2 12.8 +6.1 13.4 +3.0 16.7 +7.7 12.9 +6.1 13.4 +3.0

Table 3. Left: non-symmetric graphs on rank-based structures. Middle: symmetric
graphs on distance-based structures. Right: symmetric graph and rank based struc-
tures. The improvement obtained in comparison to Tab. 1 is shown in the gain column.

emphasize symmetric relations using the “rank as neighbor”. Second, we consider
symmetry within the SSL-algorithm during graph propagation.

Improving the structure using ranking. In Sec. 3, for a particular dis-
tance measure and representation, we extracted distance-based neighbors, i.e. we
look for the k images with the smallest distances to a given image, and use these
images to build our local neighborhood structure.

We propose to look at a new way of selecting neighbors, so called rank-
based neighbors, that refines the notion of distances by emphasizing symmet-
ric relations between images. Intuitively, we connect two images which both
have the other image as one of their nearest neighbors. More formally, we
choose rank neighbors of image i as follows. We compute a first set of (distance-
based) neighbors for i, and keep the one having the smallest score according to
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sc(di, dj) = τj(di) + τi(dj), where di, dj are the descriptors of image i and image
candidate j, and τi(dj) encodes the NN rank of descriptor dj as (distance-based)
neighbor of image i. In practice, we consider only the l nearest neighbors of im-
age i as candidates, and τj(di) is replaced by τ ′j(di) = min(τj(i), l). l is used to
narrow the search, and only needs to be large enough (here l=800). Note that
even though the function sc(dj , dj) is symmetric, rank-based neighborhood is
not a symmetric relation.

Improving the graph by using symmetric relations. Sec. 3 considered
non-symmetric (directed) graphs. Here we look also at symmetric (undirected)
graphs. They consider incoming as well as outgoing links for propagation. There
is a similar intuition behind symmetric graphs and rank-based NN as they both
enforce more symmetric interaction between images. In the case of rank-based
NN, a new structure is proposed which is potentially more effective, while for
symmetric graphs, the influence of images that are too often selected as a neigh-
bor is reduced within the existing structure.

Experiments. The study is divided in two parts. First, we look at the gain
obtained by the structure between images using ranking, and then we study the
improvement brought by both the ranking and the symmetry for the SSL results.

i) Rank-based local structure. In terms of NN quality, the rank strategy brings
a consistent improvement. Over the different image descriptors, when looking at
the first neighbor (1-NN quality), ETH gains 1.6% in average for L1, 9.5% for L2
and 1.9% for L2-ctxt by using the rank-based strategy. For C-PASCAL, we get
2.4% improvement for L1, 5.5% for L2 and 1.9% for L2-ctxt in average. For AWA
(the results are shown in Tab. 2), the 1-NN quality for SURF is improved from
16.3% to 23% and the 10-NN quality goes from 10.5% to 14.5%. As a remark,
few images were very often chosen as neighbors with standard distance-based
strategy leading to an unbalanced and unadapted structure, and we observe
that with the rank-based structures, this phenomena is highly reduced, which is
a direct consequence of the improvement of the local structure.

Finally, L2-ctxt is the one which benefits the least from the rank NN strategy.
This gives the intuition that looking at the local neighborhood through the
context vector allows to select more intuitive and symmetric connections.

ii) Rank structure and symmetry for SSL results. Tab. 3 can be directly
compared with the right part of Tab. 1 and shows the following results.

First, we see for the non-symmetric case the same kind of improvement with
rank-based structure as in the NN study. Tab. 1 presents results for a structure
built with distance-based neighbors and a non-symmetric strategy. When com-
paring it with the first column of Tab. 3, we see in the gain column, that the rank
brings an improvement of up to 18.6% for ETH (L2 and C-SIFT), up to 10.4%
for C-PASCAL (HOG for both L1 and L2) and 4.7% for AWA (for SURF).

Next, we can observe a similar, but often smaller, improvement when compar-
ing non-symmetric graphs (right part of Tab. 1) with symmetric graphs (middle
column of Tab. 3). Descriptors improving significantly with the new rank struc-
ture also benefit the most from the symmetric graphs. Finally, when combining
the two new strategies (symmetric graphs using a rank structure, shown on the
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Fig. 3. Left: SSL combination strategies. Right:
1-NN rank-based structure quality for single fea-
tures and their combination on AWA.
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right part of Tab. 3), we have similar or even better numbers than both previous
strategies. As a more general comment, rank methods (non-symmetric or sym-
metric) combined with L1 give nearly always the best performance and bring
significant overall improvement. For C-PASCAL, TPLBP’s accuracy goes from
29.5% to 33.8%. AWA benefits the most as the SURF descriptor improves from
9.0% accuracy to 16.7% with a symmetric graph and a rank-based structure.

5 Combination

In the previous section, we have seen that we can significantly improve the local
structure of the image collection for a given image representation and a given
measure. In the following we will combine different features together.

Feature combination has become an active area of research in the last years,
and the supervised framework allows to learn the different feature contributions
using the labels. Recent work [29] showed that simply averaging kernels gives
already a good improvement. Consequently, both our related tasks - building the
NN structure and predicting labels with SSL - should benefit from the combina-
tion of several image representations. In this section, we look only at the second
task, i.e. image categorization using SSL algorithms.

Principles. Three graph combinations are considered (illustrated Fig. 3).
Combination #1 assumes that the combination is done at the structure level.

The different features are used to compute a single k-NN local structure. Av-
eraging all single feature distances builds a single list of distance NN. A multi-
feature rank score builds a single list of rank NN. This score is calculated by
sccomb(i, j) =

∑
m∈Features sc(d

m
i , d

m
j ) where dm

j is the mth representation of
image j, and sc(dm

i , d
m
j ) is the single feature rank score (see in Sec. 4.2).

Combination #2 builds a graph for each feature, and forms one combined
graph, the union graph, whose edges are the union of edges of each graph.

Combination #3 builds as many graphs as features and propagates labels in
each graph. All propagation results are combined and produce the final label.
Combinations #2 and #3 use multiple graphs. Each graph can either come from
distance or rank based local structures.

Experiments. For the C-PASCAL and AWA datasets, we combine all de-
scriptors and the 3 best performing ones. Due to space constraints, Tab. 4 shows
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C-PASCAL - SSL results
rank rank sym

Features Comb av var gain av var gain
Gist+ #1 34.0 0.8 0.0 34.8 0.7 +0.1

P-BoF+ #2 35.6 0.9 +2.9 36.4 0.8 +2.6
TPLBP #3 35.8 1.0 +3.1 36.7 0.9 +2.9

all #1 34.9 0.8 +0.9 35.7 0.3 +0.9
#2 37.2 0.6 +4.5 36.8 0.5 +3.0
#3 38.0 0.7 +5.3 37.9 0.8 +4.1

AWA - SSL results
rank rank sym

Features Comb av var gain av var gain
C-Hist+ #1 15.1 0.1 +1.4 17.7 0.2 +1.0
C-SIFT+ #2 16.7 0.1 +3.0 17.8 0.1 +1.1

SURF #3 17.7 0.2 +4.0 19.1 0.2 +2.4
all #1 17.3 0.3 +3.6 20.1 0.3 +3.3

#2 18.1 0.2 +4.4 19.2 0.1 +2.5
#3 19.9 0.2 +6.2 21.8 0.2 +5.1

Table 4. Accuracy on unlabeled data only and gain compared to the best single
feature for C-PASCAL (left) and AWA (right). Results are proposed for the rank based
structures, for both symmetric and non-symmetric graphs.

1-NN quality SSL-results
strategy ETH C-PASCAL AWA ETH C-PASCAL AWA
single feature 96.9 34.6 16.4 89.0 29.5 9.0
single feature + rank 97.6 38.3 23.0 91.3 33.8 16.7
multiple features + rank 98.5 45.5 27.5 94.0 38.0 21.8

Table 5. Successive improvements of the local structure: best single feature with dis-
tance (top) and with rank structure and symmetric graphs (middle), and best feature
combination (bottom) - for the first neighbor quality (left), and the SSL results (right).

only the SSL results2, for L1 and for the 2 most promising strategies from the
previous section, namely non-symmetric and symmetric graphs, on rank local
structures. Each combination setting is considered for the 3 different combina-
tion strategies. Transductive accuracy is presented together with the gain in
comparison to the best single feature one within the combination.

As a first and expected conclusion, the combination of different features im-
proves the SSL results in all settings. For C-PASCAL, the setting with all features
improves the best single feature result by 5.3% reaching an accuracy of 38%. Also
the AWA dataset benefits from 5.1% when combining all 7 descriptors reaching
21.8%. Second, there are only small differences between the combination meth-
ods, but the third strategy generally gives the best results.

Summary. If we look back at the different improvements of the local neigh-
borhood structure we proposed in this paper, the absolute gain brought for each
dataset is summarized in Tab. 5. In particular, SSL results are enhanced from
89% to 94% for ETH, from 29.5% to 38% for C-PASCAL and in the case of
AWA we doubled the performance from 9% up to 21.8% without any label.
This underlines the assumption that the structure matters more than the SSL
algorithm, and that the structure can be improved in an unsupervised manner.

We believe that these encouraging results will be more pronounced for larger
datasets. Fig. 3, compared to Fig. 1, shows that both i) the ranking structure
strategy and ii) the combination of features benefit more for larger datasets.
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6 Conclusions

This paper explored ways of using the large amount of available image data in
order to overcome inherent problems of supervised approaches. In particular,
we consider methods which rely less on supervised classifiers and more on the
structure of the data itself, namely the unsupervised construction of a local
structure between images and the use of this structure in a SSL framework.

An important conclusion of our study is that the local structure – induced
by the employed image representation, the distance measure and the number of
nearest neighbors considered – matters more than the SSL algorithm. Zhu made
this claim [30] together with the remark that there is only little work on the
structure itself. In that sense, our study contributes to a better understanding
of such structures for the tasks of object recognition and image categorization.

It is worth noting that the results obtained for the NN analysis directly
translate into the corresponding performances of SSL algorithms. We indeed
observed that the right set of parameters (image representation, distance mea-
sure and strategy to use it) can literally predict the SSL accuracy. On the more
negative side, the overall performance obtained by the SSL algorithms is far
from being satisfactory. This fits our intuition that unsupervised local structure
contain some semantic information, but that the current object representations
are not powerful enough for realistic datasets without supervised learning and
discriminant classifiers.

To overcome these limitations we proposed different directions to improve
the local structure of the dataset without any label and consequently improve
the SSL results. In particular, we showed the benefits of contextual measures,
symmetric relations between images, and feature combinations. At the end, a
12.8% accuracy improvement was obtained for the realistic AWA dataset without
using any supervision for building the local structure.

As a conclusion, using large image collections and unsupervised local struc-
ture construction in combination with SSL algorithms is a promising direction.
A generic structure can be built independently of the task, and then combined
with different sets of labels. This structure can be improved by considering more
suitable and complementary object and image representations, combining them,
and using the information contained on the image collection topology.
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