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Abstract

Activity recognition approaches have shown to enable
good performance for a wide variety of applications. Most
approaches rely on machine learning techniques requiring
significant amounts of training data for each application.
Consequently they have to be retrained for each new appli-
cation limiting the real-world applicability of today’s activ-
ity recognition methods. This paper explores the possibility
to transfer learned knowledge from one application to oth-
ers thereby significantly reducing the required training data
for new applications. To achieve this transferability the pa-
per proposes a new layered activity recognition approach
that lends itself to transfer knowledge across applications.
Besides allowing to transfer knowledge across applications
this layered approach also shows improved recognition per-
formance both of composite activities as well as of activity
events.

1 Introduction
Human activity recognition using wearable sensors has

been an active research area due to its importance for
context-aware-systems. Substantial progress has been
achieved for application scenarios [2, 8, 21] spanning across
different areas, such as the entertainment, industrial or
healthcare domains. Some devices are already commer-
cially available, e.g., watches that log the wearer’s motion
over weeks to infer fitness levels or the Nintendo Wii ges-
ture controllers.

While the recognition of low level activities, such as walk-
ing, standing or sitting yields impressive results, e.g., [15],
recognition of more complex or composed activities, such
as cooking or cleaning, is far less researched, e.g., [1, 12],
and consequently still an open research question. Proba-
bly the single most important difficulty to recognize com-
plex activities is the inherent variability in executing such
activities by different people and with different durations.
As most of today’s activity recognition methods rely on
machine learning techniques this variability requires pro-
hibitive amounts of training data for each novel application.

The starting point of this paper is therefore to take a fresh

look at the problem and to explicitly design a novel activity
recognition architecture that is suited to transfer acquired
knowledge from one application to another. The main goal
is thereby to reduce the amount of required training data to
a minimum while allowing to reliably recognize complex
activities. The basic idea is illustrated in Fig. 1. Let us
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Figure 1. Transferring knowledge of activity
events to construct new composite activities

assume we want to learn the model of a new composite ac-
tivity (Cnew) that shares low-level activities (‘1’, ‘2’, ‘4’)
with two previously learned composite activities (C1, C2).
Rather than to learnCnew from scratch requiring substantial
amounts of training data we can transfer the low-level ac-
tivity recognizers from C1 and C2 to train (using few train-
ing samples) or even construct (using prior knowledge) a
model for Cnew. The underlying hierarchical model that
enables such transfer of knowledge is in line with research
in psychology and linguistics that show evidence that there
is good agreement on how humans perceive complex activ-
ities [6, 20]. Accordingly we borrow the term partonomy
[31], describing “part-of-whole” relationships between ac-
tivities and composites of activities. We explicitly use the
term activity events for underlying activities. For high level
activities composed of such underlying events, we use the
term composite activity.

The main contributions are threefold. First, we propose a
new partonomy-based approach that lends itself for knowl-
edge transfer thereby reducing the required amounts of
training data for new complex activities and applications.
To this end, we propose a multi-layered discriminative
model using a combination of joint boosting [26] and condi-
tional random fields [14] for detecting composite activities
from spotted activity events (Sec. 3). Second, we investi-
gate the possibility to transfer activity events across datasets



to recognize new composite activities (Sec. 5). Third, we
show that the partonomy-based approach improves both the
recognition of composite activities as well as the recogni-
tion of activity events compared to a direct approach with-
out hierarchical structure (Sec. 4 and 5).

2 Related Work
Activity recognition received much attention in recent

years aiming at a variety of different activities. Impressive
performance has been reported for activities such as stand-
ing, sitting, walking [15] or gestures [18, 30]. Recently,
also the recognition of complex activities [1, 12, 24] has
been explored. Such activities consist of various underlying
activities and usually span over larger timescale. To cap-
ture such complex activities, temporal probabilistic mod-
els are applied, including hidden Markov models (HMMs)
[18, 23] and conditional random fields (CRFs). In [11] a
framework is presented for recognizing concurrent and in-
terleaved activities based on skip-chain CRFs. In [17] hi-
erarchical CRFs are applied to model activities and signif-
icant places of individuals using GPS and high level con-
text information. Within robotics a performance compar-
ison between CRFs and HMMs is conducted [27], con-
cluding that CRFs can yield better recognition. This con-
cords to [14, 29]. In [4] recognition of complex activities
is approached top-down to identify specific low level ac-
tivities that discriminate complex high level activities. In-
terestingly, their findings match the observation that hu-
mans themselves can identify activities by their distinctive
parts without recovering the part structure itself [7, 25, 31].
While in computer vision the potential of hierarchies [19]
or partonomies [10] for object detection is being well ex-
plored, it has not yet been addressed widely for activity
recognition.

More recently, the problem of knowledge transfer has
been identified as an important challenge. In [28] knowl-
edge about activities within two houses is transferred to a
third house by linking commonly used meta features. In
[32] activities from one domain are used to help learning in
a second, related domain. To link the domains a similar-
ity measurement is derived from the web using an activity
taxonomy of both domains. In contrast to their work, fo-
cusing on taxonomies of activities, we focus on the parton-
omy of activities. While dish-washing is in a “kind-of”-
relationship to cleaning indoor, i.e., characterized by a tax-
onomy, fill water into basin, scrub dishes, dry dishes are in
a “part-of” relationship of dish-washing, creating a parton-
omy. Bobick [5] classifies motion into a similar partonomy
to support the problem of motion-understanding. Different
levels of motion are introduced, containing different levels
of knowledge.

Within this paper we focus on transferable activity events
that constitute such part-of-relationships and can be reused

across different composite activities. [22] advocates to
transfer prior knowledge of higher level context, while re-
quiring training of lowlevel models only but without provid-
ing convincing empirical evidence. In contrast, we propose
a layered approach and also experimentally show the poten-
tial of transferring activity events to learn new composited
activities with minimal training.

3 Partonomy-based Activity Recognition
As outlined before our goal is to recognize activities, that

are composed of underlying activity events. Within this sce-
nario we address the following research questions:

1. Does the partonomy-approach improve the recognition
of composite activities?

2. Can we transfer knowledge about activity events to
learn and recognize new composite activities with min-
imal training?

3. By learning composites, can we use this knowledge to
improve recognition of underlying activity events?

To address these questions, we propose a recursive bottom-
up and top-down multilayer approach. In the first layer
L1, we perform activity spotting, to capture activity events.
Activity events usually appear sporadically within a large
background class. This complicates their detection, as these
events are easily confused with background events.

For subsequent composite activity layers Ln (n ≥ 2),
we create a partonomy of Ln−1-events to infer composite
Ln-activities (bottom-up). Note that Ln-activities can be
recursively composed by Ln−1-composite activities. Here
we assume knowledge of relevant events of the partonomy.
Furthermore, we use information (in a top-down fashion)
of Ln-composites to gain certainty about underlying Ln−1-
events and to improve their recognition. As mentioned be-
fore, common models to capture temporal sequences are
hidden Markov models (HMMs) or conditional random
fields (CRFs). As such, they are ideal to model the parton-
omy of composite activities. In contrast to HMMs, CRFs
impose weaker independence assumptions between obser-
vations, allowing to directly model temporal dependencies
between events for a composite. In this work, spotted activ-
ity events and their corresponding probability are fed into a
CRF, generating the posterior of the composite activity.

The following Sec. 3.1 describes the activity spotting ap-
proach and Sec. 3.2 the composite activity recognition.
Please note, that we omit time indices for better readabil-
ity and denote vectors in bold font.

3.1 L1-Activity Event Spotting
For L1-activity event spotting we use a three-step method

similar to [33]: segmentation, feature calculation and clas-
sification.

Segmentation. To reveal potentially interesting fragments
in a continuous sensor stream, we apply a segmentation



technique replacing the standard (fixed) sliding window ap-
proach. By assuming low-movement moments at the start
and end of interactions, segments of interest are created us-
ing such points. This segmentation technique is based on a
human body model, which can be inferred by 5 inertial mea-
surement units. Note that we create an over-segmentation
containing overlapping segments with 100% recall [33].

Features. Given the sensor data, the segments and the
body model from above, we then calculate features. We
use common features, such as mean and variance [3, 16,
13], and the body model features from [33]. Primitives of
activities, such as moving the arms up or down, bending
over, push-or-pull the hands are calculated. In total we gain
a feature dimension of about 1700.

Classification. L1-activity events are spotted using joint
boosting [26]. Its feature selection mechanism is useful
to select relevant features, which gains computational effi-
ciency for detection. For each segment s we calculate con-
fidences Hc

s for each activity event class c and normalize
them by U c

s = exp{Hc
s}P

i exp{Hi
s}

. Next, we pass a feature vector

xs = [t,Us]T consisting of a segment’s (L1-event’s) central
time t and the normalized confidences to the L2-composite
activity model.

3.2 Ln-composite Activity Recognition
Given a set of spotted L1-activity events xs in the datas-

tream, we can combine these to composed L2-activities.
Moreover, we define a recursive model, enabling the con-
struction of new Ln-composites using underlying Ln−1-
composites as events. Then xs corresponds to posteriors of
Ln−1-composites and their central time. At this point, one
has to be aware of the uncertainty when detecting Ln−1-
activity events: Errors occur in terms of false detections
(false positives) or missed events (false negatives). We ap-
ply a sampling-technique and forward sampled events to a
temporal probabilistic model. By selecting relevant activity
events and their combination we learn and infer composite
activities. Let us now look at the algorithm in more detail.

Sampling. As the exact composition of activity events is
priorly unknown due to imperfect recognition, all possible
combinations of relevant activity events have to be sampled.
To reduce computation time we perform sub-sampling by
using a sliding window in event-space. Note the difference
to a sliding window in timeframe-space. As mentioned ear-
lier, we can also miss events. To handle this type of error,
we ’hallucinate’ potentially missed events by assigning a
low default probability.

Features for Compositions. To enable Ln-composite
activity recognition, we exploit knowledge about Ln−1-
activity events, probability and the temporal distances be-
tween these events. A Gaussian distance model defined by
mean and variance of event distances, maps the timeframe
distance between two events to a closed interval between 0
and 1. We calculate the Gaussian from label distances on

the training data. Note that we use regularization due to few
amounts of training samples.

Composition modeling. As mentioned above, we choose
CRFs to model Ln-composite activities by using the fol-
lowing information: event class and probability of event,
order of events and distance between events. In contrast to
HMMs, CRFs are able to directly model dependencies be-
tween events, i.e., their temporal distance, using potentials
between connected nodes.
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Figure 2. Factorgraph of CRFs for composite
activities with 2, 3 or 4 activity events.

For each composite activity m an individual CRF is cre-
ated. Each CRF consists of a single composite node with
binary random variable y and e event nodes, with discrete
random variables z = [z1, .., ze] and zi ∈ Z = {1, .., e}
(see Fig. 2). The input feature is denoted by x = [x1, ..,xe].
The probability of the model for one composite is given by

Pm(y, z|x, v, w) =
1

Z
·
Y

i

Ψi(zi, xi, wi)·
Y
i,j

Φij(zi, zj , y, xi, xj , vij)

(1)

for each model m. Z corresponds to the normalizing par-
tition function. v,w parameterize logistic regression func-
tions used for the unary and pairwise potentials. For each
model m specific weights v and w are used. Due to nota-
tional simplicity we omit the index m for the weights.
3.2.1 Unary Potentials
To consider the uncertainty of detected Ln−1-events when
modeling Ln-composite activities, we set the unary poten-
tial functions for each node i as follows:

Ψi(zi = c,xi,wc
i ) = exp{[UT

i , 1] wc
i}, where c ∈ Z (2)

Here Ui correspond to the class confidences from step 1 in
Sec. 3.1. w weights the event confidences by their impor-
tance. Note that we pad an additional constant to model the
hyperplane offset.
3.2.2 Pairwise Potentials
Intuitively, the pairwise potentials correspond to temporal
and sequential dependencies between Ln−1-activity events.
As can be seen in Fig. 2 our model contains ternary cliques,
connecting pairwise sequential Ln−1-event nodes i and j
to the Ln-composite activity node. The equation for the
potential function is given by

Φij(zi, zj , y = c3,xi,xj ,vij) = (3)
exp{[f1(xi,xj), f2(xi,xj), 1] vc3

ij }



with binary label c3. For the pairwise potentials we cal-
culate the two features functions f1 and f2. First, we inject
temporal constraints between activity events into our model:

f1(xi,xj) = N (ti − tj ;µ, σ) (4)

A Gaussian model N is learned on the distance of each se-
quential pair of activity events on the training data. A sec-
ond feature function models the sequence of co-occurring
activity events:

f2(xi,xj) = |Ui −Uj | (5)
by subtracting neighboring features. Again we pad a con-
stant representing the offset by the hyperplane to the feature
vector in Eq. 3.

Inference and Learning. We use loopy belief propaga-
tion [9] to infer the marginal probabilities in the nodes.
Before describing the learning, let us define training data
X = {x1, ..,xN} with labels Y = {y1, .., yN} and Z =
{z1, ..zN} with N number of training samples. Given
marginal beliefs b, we learn the weights by gradient descent
for each class c ∈ Z, binary composite class c3 and event
node i:
∂logPm(Y,Z|X )

∂wc
i

=
N∑

n=1

[Ui · (δ(zn
i = c)− bni (c))] (6)

for unary potentials and

∂logPm(Y,Z|X )
∂vc3

ij

=
N∑

n=1

([f1(xi,xj), f2(xi,xj), 1]T · (7)

(δ(yn = c3)− bn(c3)))

for the pairwise potentials. As the ratio between positive
and negative data (background) is unbalanced we reuse pos-
itives samples and regroup them with negative samples, un-
til all samples are considered.

To evaluate our model, we use two datasets called Book-
shelf and Mirror. We first describe the Bookshelf-dataset
and show applicability of our approach by comparing to
a more standard approach for activity recognition. Here
we consider two layers of activities L1 and L2. Then we
show the ability of knowledge transfer by considering the
partonomy of activities on the Mirror dataset. To analyze
our model with respect to its recursive property we consider
three layers of activities L1, L2 and L3.

4 Composite Activity Recognition on the
Bookshelf Dataset

Standard approaches for activity recognition make often
use of classifiers, which do not consider hierarchical struc-
ture, respectively partonomies of composite activities. Of-
ten such approaches are combined with a sliding window,
for which probabilities of learned activities are estimated.

First, we compare our proposed partonomy-based ap-
proach to the direct approach using joint boosting and a

L2-Composite Activity L1-Activity Events
Fix Side Parts Marking–Drill–Screw (Fix Side Parts)
Join Side Parts Marking–Drill–Screw (Join Side Parts)
Make Back Part Sawing–Drill–Screw–Hammering
Assemble Box Marking–Hammering
Hang Up Box Marking–Drill–Screw–Hang-Up Box
Create Template 2x Marking–Cut Template

Table 1. Six composite activities and the cor-
responding activity events for Bookshelf

sliding window as baseline. More specifically, we investi-
gate how both approaches perform when reducing training
data for composite activity recognition. We conduct these
experiments on a dataset called Bookshelf.

4.1 Bookshelf Dataset
As motivated in the introduction we want to advance the

state-of-the-art in activity recognition by considering com-
posite physical activities. Recognizing activities within
maintenance or construction scenarios is specifically inter-
esting. In order to avoid forgetting steps or to facilitate the
reentry into interrupted working cycles context aware sys-
tems can be helpful. Therefore we choose a realistic dataset
in a workshop scenario, called Bookshelf, in which sub-
jects construct a wooden bookshelf (Fig. 3). Typical for

Skrews

Skrews

Skrews (Holder)

Nails (Backpart)

Nails (Spacer)

Figure 3. Explosion drawing of Bookshelf

construction tasks, the dataset consists of a variety of L1-
activity events, such as drilling or screwing with high vari-
ability in execution. These are grouped into several steps
(L2-composite activities) that follow a sequential order. Ta-
ble 1 outlines the composite activities and their correspond-
ing activity events. 10 Subjects (3 female, 7 male, aging
from 23 to 37) were asked to build two book boxes. Their
body size varies between 5.5 and 6.2 feet (1.68m to 1.89m).
10 hours of data were recorded while 20 book boxes were
built.

Setup. The subjects were equiped with 5 Xsens MTx
inertial measurement units. The units are mounted at the
lower and upper arms and at the top back. Each sensor
incorporates 3D-magnetometers, 3D-acceleration and 3D-
gyroscopes. A fusion algorithm combines the sensory input



and estimates an absolute 3D-orientation with respect to a
global coordinate system. Sampling was set to 50Hz. To al-
low for fine grained offline annotation video cameras were
used to record activities.

Evaluation Procedure. We perform leave-one-out 10-
fold cross-validation to evaluate user independent recogni-
tion performance. For a reduced training set, we perform re-
peated leave-one-out random-subsampling cross-validation.
We repeat experiments 5 times.

Performance is measured using a one-vs-all classification
scheme. Given a detected activity segment (event or com-
posite activity) S and its label A, we use the matching cri-
terion start(A) ≤ center(S) ≤ stop(A). If the center of
S falls in A, then S is considered to be a true positive. We
measure performance by precision and recall obtained by
thresholding posteriors. Unless otherwise noted, we sum-
marize results by the equal error rate (EER), which equals
the break even point of precision and recall.

4.2 Results
Fig. 4 shows the average EER both for the partonomy ap-

proach as well as for the direct approach without represent-
ing any hierarchical structure. When reducing training data
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Figure 4. Overall results for L2-composite ac-
tivities on Bookshelf.

from 10 to 2 subjects for composites, performance remains
almost constant for the partonomy-based approach, while
the direct approach degrades about 10%. This can be ex-
plained by the fact that the direct approach has to learn both
the variability of L1-events as well as of the L2-composite
activities from limited training data resulting in an unrep-
resentative model. The partonomy model can profit from
low variance of composite activities and its prior knowledge
about activity events allowing almost constant performance.
Moreover, we observe that the window size plays a signifi-
cant role for the direct approach. As activity duration differs
between subjects it is unclear what the optimal size would
be. Note again, that our partonomy approach is independent
of duration in timeframes and completely based on a sparse
event-space representation, which gains robustness with re-
spect to such time-variability in contrast to sliding window
approaches.

Looking at the performance for individual composite ac-
tivities, we observe that performance degrades marginally
when reducing from 10 to 2 training samples for: making
backpart (95% to 92%), assembling box (90% to 88%) and
hanging up box (100% to 95%). Create template yields con-
sistently worse result with 58% EER. It suffers from bad
recognition (with respect to false positives) of its underlying
L1-activity events mark template (28%), mark holes (42%),
cut template (30%). For fix side parts and join side parts
performance remains constant at 88%, respectively 78%.

Using L2 topdown-knowledge detection of L1 activity
events can be improved from 70% to 81% EER on average.

We also experimentally reduced the amount of training
data for activity events for our partonomy approach. Results
dropped significantly and we conclude, that 10 person train-
ing is minimal to capture the variability of activity events.

4.3 Discussion
We conclude from the experiments that the partonomy-

based approach yields better results than a direct approach
that does not consider partonomy of activities. This con-
cords to previous work using layered representations for
complex activities [22]. By transferring knowledge about
underlying events, training data for composite activities can
be reduced with marginal effect on performance. Interest-
ingly, results are still surprisingly good using a direct ap-
proach. On this dataset activity events are rarely shared,
therefore composite activities themselves are highly dis-
criminative which won’t be the case for larger numbers of
composite activities. More importantly, while the direct
approach yields acceptable results, it is difficult to use its
acquired knowledge for unseen and new composite activi-
ties. Using a multi-layered approach we can reuse activity
events and learn new compositions. Next, we show results
of composite activity recognition on the dataset Mirror us-
ing knowledge transfer of L1-activity events from the Book-
shelf dataset.

5 Knowledge Transfer to Mirror-Dataset
Previously we showed that direct and partonomy-based

approaches work well. Now, our specific wish is to reuse
activity models and to reduce hereby the need of re-training
new composite activities.

However, when being confronted with new composite ac-
tivities, direct approaches have to be retrained from scratch.
To recognize new composites consisting of shared activity
events, knowledge about the underlying event layer is re-
quired. In this case partonomy-based approaches can be
exploited. By transferring knowledge about L1-activity-
events, our partonomy-model enables us to learn new L2-,
..., Ln-composite activities.

To investigate the possibilities of transferring knowledge
of shared L1-activity events, a second dataset called Mirror
is recorded. Fig. 6 shows such a mirror-rack. The mirror is
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Figure 5. Example for 2 subjects for Mirror dataset

framed and equipped with a shelf. To mount it on the wall
a (single) holder similar to the bookshelf is mounted.

The dataset consists of 10 L1-activity events, which are
combined into 6 L2-composed activities. As we are inter-
ested in certain events only, a large null-class is present.
Examples for ignored activities include but are not limited
to grabbing tools, moving parts, fixing parts using clamp
etc. The average ratio between each activity vs. background
is 1:280. While the underlying L1-activity-events (e.g.,
drilling, screwing) are similar to building a bookshelf, they
constitute a rather different L2-composition. Table 2 lists

Skrew (top frame)

Nails (side frame)
Skrews (Holder)

Nails (Spacer)

Skrews (Shelf)

Mirror

Figure 6. Explosion drawing of Mirror

activities for layer L1 and L2 and a third activity layer L3. In
comparison with L1- and L2-activities from the Bookshelf
(Table 1), one can see differing L2-composites but using
shared L1-events across both datasets. One L2-activity only
is completely shared (hang up box/mirror). Fig. 5 illustrates
L1-, L2- and L3-activities for two exemplary subjects. It
can be also seen how composite activities differ strongly in
length across subjects.

6 subjects (1 female, 5 males aging between 27 and 32)
were asked to build such a mirror-rack. Their body size
varies between 5.2 and 6.2 feet (1.60m, 1.89m). None
of the test subjects has experience in wood engineering

L2-Composite Activity L1-Activity Events
Prepare Frames (part 1) 4x Marking
Prepare Frames (part 2) 4x Sawing
Join two Parts Marking–Drill–Screw
Fix mirror side frame Marking–Drill–Hammering
Fix mirror top frame (part 2) Sanding
Prepare Backside (part 2) Marking–Saw–Hammering
Hang Up Box Mark–Drill–Screw–Hang-Up Box
L3-Composite Activity L2-Activity Events
Create frames Prepare Frames (part 1)–Prepare Frames (part 2)
Finish Backpart Join two parts–Prepare backside (part 2)
Finishing Mirror sides 2x Fix mirror side frame
Finishing Mirror Join two parts–sanding

Table 2. 6 L2-composite activities and
the corresponding L1-activity events. L3-
composite activities and the corresponding
L2-composites for Mirror

or is related to activity recognition research. The dataset
was recorded one year after the bookshelf-experiment, con-
ducted by a different researcher on different subjects. We
recorded roughly one subject per day. Each subject was
told about the L2-composites and shown which tools to use
and which L1-steps to take.

5.1 Results

The experimental setup equals the setup from the Book-
shelf dataset. We specifically show performance by trans-
ferring knowledge of activity events from the Bookshelf to
the Mirror dataset. On average we achieve an EER of 63%
for L1-activity events. Fig. 7 shows results on L1-activity
events of the Mirror dataset in more detail. The red line
shows the precision recall curve without using knowledge
of the partonomy created by L2-composite activities. For
sawing, and drilling good performance is achieved (96%,
85%). Impressively, screwing at wall is immediately rec-
ognized with 100% precision and recall. While screwing,
hammering, drill wall perform above 50% EER, hang up
box, sanding and marking drop below 50%.

Given L1 activity events we now model new L2 compos-
ites differing from the previous dataset Bookshelf. Learning
L2 is done by leave-one-out 6-fold-cross-validation. How-
ever, as we have seen in the prior experiment we can re-
duce the amount of training data to a minimum of two sam-
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Mirror dataset

ples with marginal decrease of performance. On average L2

composite activities are recognized with an EER of 71%.
Fig. 8 shows results per L2-composite activity. For three ac-
tivities (fix side frame, prepare frames (part 2), hang up on
wall) we achieve almost perfect results. Activities prepare
frames part 1, join parts, prepare backside part 2 are less
recognized. An inherent requirement is a reasonable qual-
ity of underlying activity events: prepare frames part 1 uses
4× marking only, which is detected with low performance
(26% EER). We experienced join two parts to be confused
with similar composite activities, containing shared activity
events (marking, drilling) such as fix mirror side frames.

As indicated above we consider a third layer L3. We
construct this partonomy by creating recursively a parton-
omy using L2-composite activities as events of L3-activity
composites. On average L3-activities are recognized with
an EER of 79%. Fig. 8 shows results on the individual
L3-composite activities. 3 out of 4 activities are perfectly
recognized. Only for activity finishing the mirror, recog-
nition performance is low. This L3-composition contains
L2-activities sanding and join two parts, both not well rec-
ognized. As such, their partonomy is not well recognized.

Next we show improved recognition results using top-
down knowledge from L2 to L1-activities, respectively from
L3 to L2 . For L1-activity events EER can be improved by
12% to 75% using the L2 partonomy. As the green line in
Fig. 7 shows, we can reduce the amount of false positives
for several activities. For drill wall, hang up box results im-
prove to 100%. Only for marking recognition performance
cannot be improved. Note, that sanding is not contained in
a L2-composite, but used directly as L2 activity event in the
L3-composite activity finishing mirror.

When incorporating information of the L3-partonomy in
the detection of L2-activity events, we can improve three
L2-activities. On average performance is improved by 17%
to 88% EER. Here prepare frames (part 1) profits most of
the L3-partonomy. In combination with perfectly recog-

nized preparing frames (part 2) false positives of preparing
frames (part 2) can be reduced to a large extent.
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Figure 8. Results for composites L2 and L3
for Mirror dataset

5.2 Discussion
According to our experiments, composite activity recog-

nition across different datasets containing differing com-
posites can be efficiently approached by our partonomy-
based model. By storing (transferable) knowledge about
L1-activity events we can recognize L2-, respectively L3-
composite activities with minimal training data. While
transfer shows feasible results, difficulties still remain: dif-
ferent tools, users and even screws or nails influence recog-
nition performance. Interestingly, having an imperfect ac-
tivity event detection, composite activity yield impressive
results with increasing performance per layer. Moreover,
by recognizing composite activities we can go top down
and increase performance of recognizing L1-activity events
significantly. Experimental tests of varying the amount of
training data for activity events showed that our model re-
quires a minimal quantity of events in order to recognize
composite activities. Large variability of executing activity
events demand large amount of training data. However, we
showed that we can reuse this data, together with a minimal
amount of training data for new composite activities.

6. Conclusion and Future Work
This paper presents a new partonomy-based approach to

recognize composite activities. Modeling composite activi-
ties as partonomy has several advantages. First, our layered
model using CRFs lends itself to transfer knowledge. We
showed that transfer of L1-activity events is possible across
different datasets. Hereby, we were able to learn new L2-
composites by minimal learning of event combination. Sec-
ond, by encapsulating variability of activity events in layer
L1, our model outperforms a direct approach of recogniz-
ing L2-composites, which suffers from variability of under-
lying L1 activities. Third, considering a partonomy we can



improve activity events by backprojecting knowledge in a
top-down fashion from an Ln-layer to its lower Ln−1 layer.

In this work, we focused on sequentially ordered events,
which frequently appear in a temporally local timespan.
In order to be able to capture higher level activities with
stronger irregularities with respect to their partonomy, we
will extend our model by grammar-oriented descriptions.
Consequently, we plan to investigate less structured do-
mains, such as activities of daily living.

Additionally, we will investigate automatic structure
learning (i.e., not priorly specifying relationships) and use
all layers jointly for training. Constrastly, prior high level
knowledge from activity models, e.g., grammatical repre-
sentation, can be used to recognize complex activity con-
stellations. We would like to analyze the trade off between
the amount of training data and high level knowledge that
helps learning structure.
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