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Abstract

Human activity recognition from full video sequence has
been extensively studied. Recently, there has been increas-
ing interest in early recognition or recognition from partial
observation. However, from a small fraction of the video,
it might be demanding if not even impossible to make a
fine grained prediction of the activity that is taking place.
Therefore, we propose the first method to predict ongoing
activities over a hierarchical label space. We approach this
task as a sequence prediction problem in a recurrent neural
network where we predict over a hierarchical label space of
activities. Our model learns to realize accuracy-specificity
trade-offs over time by starting with coarse labels and pro-
ceeding to more fine grained recognition as more evidence
becomes available in order to meet a prescribed target ac-
curacy. In order to study this task we have collected a large
video dataset of complex activities with long duration. The
activities are annotated in a hierarchical label space from
coarse to fine. By directly training a sequence predictor
over the hierarchical label space, our method outperforms
several baselines including prior work on accuracy speci-
ficity tradeoffs originally developed for object recognition.

1. Introduction

Strong progress has been achieved in the area of hu-
man activity recognition over the last decade ranging from
coarse actions [34] to fine-grained activities [30]. The ma-
jority of these techniques focus on what has happened.
However, many application in surveillance system, crime
prevention, assistive technology for daily living, human
computer interaction interface, human robot interaction
would like to infer which activity is currently going on in or-
der to enable a system to behave proactive or context-aware.

Current system that address early recognition and also
activity recognition in general have a relatively short tem-
poral reach. Typically the investigated activities are on the
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Figure 1: An overview of our approach to inferring goal
during the recognition process of a complex activity by pre-
dicting with semantic abstraction.

order of a minute – with a few exceptions like cooking ac-
tivities. This limits the systems in the way they can act and
assist to a more immediate, anticipatory response. In order
to increase the temporal reach of our systems we have to
study a richer set of longer term activities.

While this goal is desirable, it raises the question how
much can be inferred about a complex activity from a very
short observation? The natural concern is that in many cases
the information might be quite limited until a more sub-
stantial fraction is being observed. Therefore we argue that
recognition of complex activities from partial observation
has to go hand in hand with a mechanism to predict at dif-
ferent semantic granularity in order to deliver a useful pre-
diction at anytime. In this sense, we have to bring coarse
and fine-grained recognition together in a single approach.

In order to study this challenging problem, we propose
the first dataset of complex activities that have a substan-
tial time span and that are organized in a semantic hier-
archy. We study how prediction can be performed from
partial observation of ongoing activities in this setting by
employing of a semantic back-off strategy. We introduce a
new representation that models the uncertainty over differ-
ent time frames across different levels of the semantic hier-
archy. More specifically, we propose a recurrent neural net-
work formulation that learns to directly predict on this hier-



archical label space from coarse to fine in order to achieve
an accuracy specificity trade off. A performance measure
is proposed that evaluates the gain in specificity over time
as more observations become available. Our new method
outperforms several baselines as well as techniques that we
adopt from the literature on accuracy specificity tradeoffs
for object recognition.

2. Related Work

Early computer vision research in recognizing human
motion and activities can be date back in early 1990’s [1].
Researchers have explored various approaches to tackle the
task and excellent surveys are available [25, 28, 1, 40].
In this section, we first review related datasets for activity
recognition and then discuss some related approaches for
analysis from partial observation.

Activity Datasets There is a large number of datasets pro-
posed for activity recognition or detection with various lev-
els of complexity. Early efforts to construct such datasets
include the KTH dataset [34] and the Weizmann dataset
[3] which feature simple activities like walking and jump-
ing. More complex datasets are introduced later with var-
ious backgrounds, slightly longer duration and more im-
portantly, with additional interaction of objects or peoples.
Typical examples are answering phone (human-object in-
teraction) in the Hollywood2 [23], golf swinging (human-
object interaction) in the UCF Sports [29] and hand shak-
ing (human-human interaction) in the UT-Interaction [33].
However, activities covered in these datasets usually consist
only very few types of (in most cases only one) interactions,
hence their structure are still relatively simple and individ-
ual video’s length is rather short. In contrast to this, there
are also long-duration datasets collected from surveillance
video like VIRAT [26] or daily living recordings like TUM
Kitchen [38], CMU-MMAC [8], URDAL [24], TRECVID
[27], ego-centric datasets [11, 36], and MPII Cooking [30].
Videos from these datasets show complex activities that
comprise multiple interactions of different type. Consid-
ering the example of making a dish in the cooking dataset
[30], one needs to interact with different tools and ingredi-
ents to complete a recipe.

One limitation about current long-duration datasets is
that they are mostly used for recognition of elementary ac-
tivities within the long sequence instead of the recogniz-
ing the overall process. In addition, they are limited to a
particular domain and do not provide a hierarchical label
space. Our dataset exactly aims to fill this gap by provid-
ing dataset of complex activities across multiple domains
that are organized in a semantic label hierarchy. A related
dataset was built in [10] where activities are grouped with
respect to social interactions and places where the activity

Dataset #Class Avg. #Frames per Seq.
KTH 6 91
UT interaction 6 84
UCF sports 9 58
HMDB51 51 93
MPI cooking 65 157
Youtube action 11 163
Olympics sports 16 234
Hollywood2 12 285
VIRAT 12 357
KSCGR 8 786
Our dataset 48 8.7K

Table 1: Action/activity datasets.

usually takes places. There are several recent works collect-
ing videos from YouTube [22, 19, 35]. We also collect our
dataset from web sources, as it is a practical way to collect
a sizable dataset of realistic videos.

Analysis from Partial Observation There are a few re-
cent works focusing on analysis from partial observation.
Early recognition [32] aims to recognize activity from the
forepart of videos. The authors use accumulated histogram
with respect to the observed frames to represent the activity
of interest, and performs sequence matching with templates
averaged from training dataset. Following the similar idea
of sequence matching, [5] relaxes the location of observed
part and addresses recognition from partial observation and
applies sparse coding for better representation of the match-
ing likelihood. A slightly different line of work like [13]
focuses on early detection, deciding the temporal location
of the activity, yet as shown in [4] the algorithm does not
work so well in practical recognition task. A more recent
work [20] builds the early activity prediction on the human
detection and uses the resulted tracks to form a hierarchical
representation, yet in real world scenario, the detection and
tracking are usually expensive for complex scene involving
multiple people and can often be unreliable, not mention in
situations like ego-centric video where it is impossible to
obtain a detection result for the person doing the activity.

Beyond predicting a label for the sequence, [17] poses
a more challenging task to predict activity where a MDP is
used for the distribution over all possible human navigation
trajectories. The walking path addressed in [17] is still rel-
atively simple, hence [18] further explores indoor activities
which involves more complex interactions between human
and object. They represent the distribution over incoming
states with a set of particles sampled from an augmented
CRF. The activities exploited in [18], like taking medicine,
already meets our definition of complexities, yet it only ap-
plies to a very limited number of objects in very simple
scenes under controlled lab conditions. It is not clear how it
scale up to real world application and longer time scales.
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Figure 2: Example to show the difference between action
prediction and early recognition. Given a streaming video
sequence, (top) action prediction aims to give a label to a in-
coming local temporal segment (mix or cut); (middle) stan-
dard early recognition gives a label for the global video se-
quence (make a salad); (bottom) our proposed framework to
predict in the hierarchy with accuracy-specificity trade-off.
The solid arrows mark when the decision is made.

Prediction vs. Early Recognition Here we want to
distinguish two different types of problems addressed in re-
lated literature, i.e. prediction for unseen action/activity or
early recognition on the current observation. This is illus-
trated in Figure 2 with the example of making a salad which
involves multiple activities including peeling, cutting and
mixing. As one watches the activity moving on, prediction
is to forecast what is the next move after mixing whereas
early recognition is to tell the main theme of the activity as
cooking regardless of only partial observation of the whole
process. [17, 18] are examples of prediction and [32, 5, 20]
are for early recognition.

Indeed predicting real world activity is a very difficult
task, it generally requires various components including but
not limited to pose estimation, object detection and tempo-
ral segmentation where each task along is challenging al-
ready in real world application not to mention it is nontriv-
ial to combine them for a reasonable solution. Our work
focuses on early recognition which due to the long tempo-
ral duration of our investigated activities, also extend to the
future.

Activity Recognition with Recurrent Neural Networks
[2] applies a different variant of RNN to action recogni-
tion task. Our work differs from it in that we focus on
the early recognition and prediction over a hierarchical label

space with a learned accuracy-specificity tradeoff. Our re-
sults show the joint training of the sequence model w.r.t. to
the accuracy specificity tradeoff is key to our performance
improvements.

3. Method
In this section, we first discuss different ways of video

representation and formulate the task of early recognition
in video sequence. Our goal is to predict at any point in the
sequence over a hierarchical label space in order to realize
accuracy-specificity trade-offs. In order to have a temporal
integration of information over time and learn classifier and
the hierarchical tradeoff jointly, we employ recurrent neural
networks for modeling videos and extend it to labeling in
a hierarchy, and learning accuracy-specificity trade-off in
early activity recognition in videos.

3.1. Video Representation

Given a specific descriptor x, a video sequence can
then be represented as [x1, x2, ..., xT ], where T denotes the
frame index. There are several ways to obtain a compact
representation for sequences as shown in Figure 3: (1)
pooling over the whole sequence; (2) partition the video into
separated temporal segments, and combine the representa-
tion from the segments into a temporal sequence represen-
tation [x1:t, xt+1:2t, ...xT−t+1:T ], where t is the number of
frames for each segment. This approach has been applied in
[4, 37]; (3) sample clips (also temporal segments) from the
video to represent the video, each clip is trained as a single
instance in the video class, i.e. [xt1:t1+t] ∪ [xt2:t2+t] ∪ ...,
where t1, t2, ... are the time stamps when the clips are sam-
pled, and final prediction on the video is based on the ma-
jority vote from the sampled clips. This approach is applied
in the large-scale video recognition work [16].

We use improved dense trajectory feature [39] as the
basic feature to encode spatio-temporal information across
frames in the videos with a code book of size 4000 obtained
via k-means clustering. It uses a dense representation of
extracted trajectories and combines with trajectory-aligned
features, including HOG [6], HOF [21], motion boundary
histograms (MBF) [7]. The descriptor itself has been shown
to achieved the state-of-art performances on several public
datasets.

3.2. Early Recognition

Given a video sequence [x1, x2, ..., xT ], where T is the
last frame index of the video. Early recognition generally
refers to the task of classification:

y = f([x1, x2, ..., xt̃]) , t̃ ≤ T

The standard full video classification can be seen as a
special case of this formulation where t̃ = T . It is impor-
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Figure 3: Different ways to represent individual video se-
quence: full sequence (left), use one representation for the
full sequence; temporal segment (middle), partition full se-
quence into temporal segments and combine representation
for individual segments into one representation; sampled
clips (right), sample video clips from the sequence to form
several representations.

tant to point out the difference between early recognition
of activity [32] and human action prediction/anticipation
[17, 18, 20] whereas the former is essentially a sequence
classification problem that maps sequence in a single label

X : [x1, x2, ..., xT ] 7→ y

and the latter is a temporal classification problem that
maps a input sequence into a target sequence.

X : [x1, x2, ..., xT ] 7→ [y1, y2, ..., yL]

A specific example is shown in Figure 2 for ongoing video
stream of making salad. Assume we already observe the
person in video peeled the cucumber, cut it into slice, mix it
with other ingredients, early recognition generally aims to
output a global label for the sequence based on the available
observation, in this case, the label should be ‘making salad’
while the action prediction tries to predict the specific local
action label for the incoming video frames, in this case, the
correct label would be ‘put the salad in plate’.

3.3. Recurrent Neural Networks

A recurrent neural network (RNN) is a class of artifi-
cial neural network that allows connections between units
to form a directed cycle. We consider an architecture with
one self-connected hidden layer, which can be unrolled in
time as shown in Figure 4. One notable merit for RNN is
that the recurrent connections allow a ‘memory’ of previ-
ous inputs to persist in the network’s internal state which
can then be used to influence the network output [12]. This
characteristic makes it suitable for sequence analysis, espe-
cially in our case, with long duration and complex video
sequences.

Given a video sequence composed of temporal segments
x1, x2, ..., xT , each in Rd, the network computes a se-
quence of hidden states h1, h2, ..., hT , each in Rm and pre-
dictions y1, y2, ..., yT , each in Rk. The hidden unit in-
tegrates the information from the arrived observation and

those propagated from previous blocks of the networks:

x̃i = Wxhxi +Whhhi−1 + bh

hi = tanh(x̃i)

Each prediction unit represents the class label up to the cur-
rent observation and is activated by the hidden unit via a
softmax function:

h̃i = Whyhi + by

yi = softmax(h̃i)

where Wxh,Whh,Why are the weight matrices and bh, by
are the biases. The training is done by BackPropagation
Through Time (BPTT) [31] and the parameter is learned by
conjugate gradient descent method.

3.4. Early Recognition in a Semantic Hierarchy

Deng et al. [9] first introduce the concept of optimizing
an accuracy-specificity tradeoff for hierarchical image clas-
sification with the DARTS algorithm. Here we briefly recap
the formulation of the concept and discuss how we extend
it to our settings.

Optimizing Accuracy-Specificity Trade-Offs The key
idea behind the accuracy-specificity trade-off is to make
cost-sensitive prediction over the hierarchy, where predic-
tions at upper level (fine-grained level categories) of the hi-
erarchy get penalized more than those at lower level (coarse
level categories). By optimizing over both the specificity
and accuracy an optimal tradeoff is found. More formally,
given a classifier f : X 7→ Y , with accuracy Φ(f) defined
as,

Φ(f) = E[f(X) ∈ π(Y )]

where π(Y ) is the set of all possible correct predictions,
[P ] is the Iverson bracket, i.e., 1 if P is true and 0 otherwise.
The preference for specific class labels over general class
labels at each node v, i.e. the specificity is encoded with
information gain (decrease in entropy) by

rv = log2|Y | − log2
∑
y∈Y

[v ∈ π(y)]

The total reward for the classifier f is hence defined as

R(f) = E(rf (X)[f(X) ∈ π(Y )])

The optimal trade-off between accuracy and specificity
is then formulated as maximizing the reward given an accu-
racy guarantee 1− ε ∈ (0, 1]:

minimize
f

R(f)

subject to Φ(f) ≥ 1− ε
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Figure 4: Graphical model for recurrent neural networks. (a) The recurrent neural networks with a single, self-connected
hidden layer. (b) The unrolled model with respect to discrete time steps from (a). (c) The recurrent network with structural
output over the hierarchy.

Accuracy-specificity Trade-off Over Time Motivated
by ideas from incremental feature computation and anytime
recognition [14, 15], we extend this concept with a tempo-
ral dimension to early recognition and model the decision
process when analyzing an ongoing video stream. At each
time step, we have to predict a label in the hierarchy and
hereby trade-off between accuracy and specificity.

R(f, t) = E(rf (Xt)[f(Xt) ∈ π(Y )])

The intuition behind this is that when only observing a small
portion of the video, we have little evidence to accurately
predict at a fine-grained level but may still be able to give
a sensible coarse-level class label. By considering the total
cost of possible wrong prediction at fine-grained level and
probably correct prediction at coarse-level, together with
our preference to predict at different levels, we are likely
to give prediction at coarse-level given little observed data.
When observing more and more parts of the video, we be-
come more certain about our prediction at the fine-grained
level, and by the same mechanism, we start to predict at a
more fine-grained level. Figure 2 shows a concrete exam-
ple. By summing up the term over time T ,

T∑
t

R(f, t) =

T∑
t

E(rf (Xt)[f(Xt) ∈ π(Y )])

we can evaluate the efficiency for accuracy-specificity from
a classifier f .

Structured Output RNN for Predictions Over Hierar-
chical Label Spaces We propose an RNN optimizing the
objective from above by predicting over a structured out-
put space – our hierarchy H . We denote labels at top-layer,
middle-layer and bottom layer in the hierarchy as Y1, Y2, Y3
(coarse to fine). As shown in Figure 4, our RNN model di-
rectly predicts an output layer y3,i representing the posterior

probabilities over the fine grained labels in the bottom layer.

y3,i = p(Y3 = i|x), i = 1, ...,K3

where K3 is the number of classes within the layer. On top
of this layer, we introduce an additional layer to represent
the middle layer, where the connections between these two
layers are defined according to the hierarchy H , i.e. if class
i in bottom layer belongs to class j in middle layer, node i
and j are connected or (i, j) ∈ H . Accordingly, the middle
layer activations are defined as follows:

y2,j = p(Y2 = j|x), j = 1, ...,K2

=
∑
i

p(Y2 = j|Y3 = i)p(Y3 = i|x)

Similarly we define another layer above this layer to repre-
sent top layer prediction (coarse labels):

y1,k = p(Y1 = k|x), k = 1, ...,K1

=
∑
j

p(Y1 = k|Y2 = j)p(Y2 = j|x)

=
∑
j

∑
i

p(Y1 = k|Y2 = j)p(Y2 = j|Y3 = i)p(Y3 = i|x)

The complete model is shown in Figure 4. Based on the this
prediction over the hierarchy we define a structured loss in
order to optimize for the desired accuracy specificity trade-
off:

Loss(θ,D) = −
∑
i

log p(Y1 = y
(i)
1 |x(i), θ)

+ log p(Y2 = y
(i)
2 |x(i), θ)

+ log p(Y3 = y
(i)
3 |x(i), θ)

where D denotes the training set{X,Y1, Y2, Y3}, and i in-
dexes the i-th data instance in D.



Figure 5: 3-layer hierarchy defined in our dataset.

4. Experiment
We first present our new dataset of complex activities

with a hierarchical label space and afterwards perform a
quantitative comparison of our proposed method and com-
pare to several baselines.

4.1. Datasets

We explore various complex activities composed of mul-
tiple interactions. Recording videos for a large set of diverse
classes is difficult, considering we need to find experts in
different fields to perform the activities and capture multiple
videos for a single class. In addition, this would eliminate
the challenge of different capture devices. Hence, we build
our dataset on videos from web to create our dataset. In the
following part, we briefly discuss how we collect videos,
pre-process the data and tackle the associated challenges of
building such a dataset.

Data Collection We begin by defining a 3-layer seman-
tic hierarchy (we count the root node of “Doing something”
as layer 0) with 3 nodes in the first layer (cooking, craft-
ing, repairing), then for each node, we select 4 specific de-
rived categories as nodes to form the following layer, and
for each node in the middle layer, we select 4 more specific
classes as leaf nodes to form the bottom layer. For exam-
ple, we include making “pizza”, “soup”, “salad” and “sand-
wich” as the second layer for “cooking”, and for “salad”, we
consider making 4 different kinds of salads, namely “egg
salad”, “garden salad”, “chicken salad” and “greek salad”.
Overall, we obtain a tree for complex activities with total
3× 4× 4 = 48 activity classes as leaf nodes. The full hier-
archy is shown in Figure 5. 10 videos are collected for each
leave node from YouTube and eHow, which sum up to 480
video clips with total length of more than 41 hours or more
than 4.18 million frames. The dataset is available online1.
Sample frames of the videos are shown in Figure 6. We use

1http://www.mpii.de/ongoing-activity

Figure 6: Some sample frames from our dataset.From top
to bottom: make neapolitan pizza, make cheese steak sand-
wich, repair bike brake, change car oil, make vase, build
chair.

half number of videos for training and the rest for testing.
These videos from the web differ from the ones recorded

from lab: while the latter record the whole process for each
activity with good controlled conditions, the former are of-
ten edited (adding head leader, tail leader, titles, flashback,
etc) from the uploaders under various conditions (different
point of view, shooting skills, etc). Hence such data is very
noisy and exposes many of the aforementioned challenges
of realistic videos. We rescale video into 360p for further
processing (640× 360).

4.2. Full Video Recognition

First we consider a setting where we classify full video
sequences. This is particularly interesting since our col-
lected videos are significant more complex than previous
datasets on both the temporal scale and internal structure.
This provides a relative measure of difficulty for activity
recognition on our database. We train and predict on full
sequences with a SVM classifier. While a χ2 kernel is
usually applied to integrate different descriptors in a multi-
channel fashion as in [39], we find out that a linear kernel
gets slightly better results on our dataset. Therefore we use
the linear SVM for all our experiments. As can be seen from
Table 2, the performance reaches 25.7% at layer−3 (fine-
grained), which suggests that we have established indeed a
very difficult task at this detailed level.

An alternative to training on full sequence is to use sam-
pled clips to represent the whole video [16]. Accordingly,
we randomly sample 20% of each video in the training set
for training, and test on the full video sequences in the test
set. Note here we predict directly on the entire video se-
quence instead of the average on the prediction of sampled
clips from each test sequence. As shown in 2, this approach
is also valid on our dataset and is only slightly worse than
training on full video sequence.



Layer Clips-training(%) Full-training(%)
bottom-layer 25.3 25.7
middle-layer 52.3 59.1
top-layer 76.4 78.1

Table 2: Classification results on full video sequence

4.3. Recognition from Partial Observation

We proceed by examining the case where the video is
only partially observed.We simulate two types of video seg-
ments to represent incremental arrival of video frames, (i)
frames from the beginning with different observation ratios
[10%, 20%, ..., 100%] where we explore different strategies
for early recognition (ii) continuous frames taking up 10%
of the full observation starting at different temporal loca-
tion. As a result a video is represented as a temporal se-
quence of these frame segments [0−10%, 10−20%, ..., 90−
100%, ]. This setting simulates the practical setting where
the observer starts from arbitrary position and perceive a
part of videos and wants to infer the current activity class.
We refer to this as online recognition.

Early Recognition We evaluate the following strategies
for early recognition: (1) train single model on full video
and predict at different observation ratios; (2) train with
augmented data i.e the combination of full video and video
segments of different observation ratios and make predic-
tions; (3) train on sampled video segments and test on par-
tial observation, this is inspired by the result from our full-
video recognition experiment and we would like to inves-
tigate how models trained on sampled clips can discrimi-
nate activity classes based on partial observation. We use
the same pipeline as in the full video recognition and also
test on differ layers in the label hierarchy. The results are
shown in Figure 7. As we see from the plots, while the
training on sampled clips gets slightly worse results than the
other two settings, i.e. training on full sequence and on both
full sequence and augmented data is still feasible. Compar-
ing training on full sequence with and without the augment
dataset, we observe improvement on upper two layer. At
the lower-level, it helps when the observation ratio is below
60% but degrades the performance slightly afterwards.

In addition to early recognition setting, we also evaluate
the accuracy-specificity trade-off over time as shown in Fig-
ure 8. We compare to our adaption of the DARTS algorithm
as described above as a baseline. As we can see from the
expected information gain at fixed target accuracy, training
with full sequence and augment data (red curve) most of the
time achieve the best reward over the other two, i.e. training
on full sequence (green curve) and training on clips (blue
curve). To help better understand the concept, Figure 8 also
shows examples of prediction a distribution over the hierar-
chy and observation ratios at several target accuracy. The
proportion of predictions at lower level grows with time,

which means the classifier gets more certain about the ac-
tivity class over time. When specifying a lower target ac-
curacy, there are more predictions at lower levels in the hi-
erarchy, with higher target accuracy the other way around.
In order to reach the target accuracy, the prediction has to
move to higher layer that has better confidence.
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Figure 9: Results for online recognition.
Online Recognition We evaluate online recognition us-
ing our proposed RNN model that performs a structured
prediction over the label hierarchy (structRNN) and com-
pare it to the DARTS algorithm and a plain RNN. For RNN
and struct RNN, we use 50 units for the hidden layer and
use a L2 regularizer. Parameters were selected based on
the validation set. We perform dimensionality reduction by
using the decision value from linear classifiers trained over
different layers in order to reduce the raw feature vector of
20K dimension. In a preliminary study we have observed
that this generally gives better performance on the expected
reward for accuracy-specificity trade-off. The final results
are show in Figure 9. Compared to the baseline DARTS al-
gorithm, the RNN achieves better performance. This is due
to the connectivity between the hidden units that improve
the propagation of information along time. The structRNN
further improves the RNN performance as we enforce the
structural loss with respect to the hierarchy. In addition, we
note that our structRNN even outperforms the previously
investigated early recognition settings. Figure 10 shows
some example predictions for videos.

5. Conclusion
In this paper, we proposed a new challenging dataset

with hierarchical labels to study the recognition of
long-duration, complex activities and temporal accuracy-
specificity trade-offs. We propose a new method based on
recurrent neural networks that learns to predicts over this
hierarchy and realizes accuracy specificity tradeoffs. Our
method outperforms several baselines on this new challenge
including an adaptation of hierarchical prediction from ob-
ject recognition.
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Figure 7: (Left) train SVM model from full video and predict at different observation ratios; (middle) train model from full
video sequences and augmented dataset; (right) train model from sampled clips.
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Figure 8: (Left)the expected information over time given specific accuracy.(right) Example of prediction distribution over
time based on the optimization over accuracy-specificity trade-off for train on full and augment segments.
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Figure 10: Example prediction over three activities in the video, from top to bottom: change car filter, change a CPU and
make a cup.
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