
AMIN et al.: MULTI-VIEW PICTORIAL STRUCTURES 1

Multi-view Pictorial Structures
for 3D Human Pose Estimation

Sikandar Amin1

sikandar.amin@in.tum.de

Mykhaylo Andriluka2

andriluka@mpi-inf.mpg.de

Marcus Rohrbach2

rohrbach@mpi-inf.mpg.de

Bernt Schiele2

schiele@mpi-inf.mpg.de

1 Intelligent Autonomous Systems
Technische Universität München
München, Germany

2 Computer Vision and
Multimodal Computing
Max Planck Institute for Informatics
Saarbrücken, Germany

Abstract

Pictorial structure models are the de facto standard for 2D human pose estimation.
Numerous refinements and improvements have been proposed such as discriminatively
trained body part detectors, flexible body models, and local and global mixtures. While
these techniques allow to achieve state-of-the-art performance for 2D pose estimation,
they have not yet been extended to enable pose estimation in 3D. This paper thus proposes
a multi-view pictorial structures model that builds on recent advances in 2D pose esti-
mation and incorporates evidence across multiple viewpoints to allow for robust 3D pose
estimation. We evaluate our multi-view pictorial structures approach on the HumanEva-I
and MPII Cooking dataset. In comparison to related work for 3D pose estimation our
approach achieves similar or better results while operating on single-frames only and not
relying on activity specific motion models or tracking. Notably, our approach outper-
forms state-of-the-art for activities with more complex motions.

1 Introduction
In this paper we consider the task of articulated 3D human pose estimation from multiple
calibrated cameras. Traditionally this task is addressed using 3D body models [4, 7, 15, 32]
and involves complex inference in a high-dimensional space of 3D body configurations. Var-
ious mechanisms such as annealed particle filtering [7] or non-parametric belief propagation
[32] have been proposed to address the search complexity. In this paper we argue that the
search complexity can be reduced significantly by formulating the 3D inference problem as
a joint inference over 2D projections of the pose in each of the camera views. To that end
we build on the success of 2D pictorial structure models [21, 22, 36] that were shown to be
effective for 2D human pose estimation. Reasoning purely in 2D allows to delay resolving
2D to 3D lifting ambiguities until the point when all image observations are taken into ac-
count. This is in contrast to approaches based on 3D body models that need to hypothesize
3D poses early in the inference process.
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Figure 1: Our approach. (1) Projections of 3D pose in each view are jointly inferred using a mixture
of multi-view pictorial structures models. The body layout priors of each mixture component are visu-
alized below, activated components are highlighted in red. (2) 3D pose is recovered via triangulation.

Representing 3D pose as a collection of 2D projections allows to directly tap into recent
literature on articulated 2D pose estimation. Following the state-of-the-art in this area we
capture the appearance of 2D body projections using discriminatively-trained representations
based on color and local gradient histograms that have been demonstrated to be robust against
background clutter and variations in people appearance. This allows to apply our model
to scenes with non-static backgrounds and estimate poses for a variety of people without
adapting the model. Similarly to recent 2D pose estimation methods our approach is able to
densely scan the space of all image locations and 2D body configurations in all views. This
is in contrast to 3D models that typically rely on stochastic search and require initialization
and temporal filtering to perform well [15, 34, 37].

As a first contribution of this paper, we propose a 2D pose estimation approach that
extends our state-of-the-art 2D pictorial structures model [22] with color features and more
effective spatial terms. Also, we generalize [22] to a mixture model and propose a novel
approach for mixture component selection. The second and main contribution is to extend
this 2D pose estimation model to a multi-view model that performs joint reasoning over
people poses seen from multiple viewpoints. The output of this novel model is then used
to recover 3D pose. We evaluate our approach on the HumanEva-I [30] dataset which is
a standard benchmark for multi-view 3D pose estimation, and on our MPII Cooking [27]
dataset which has an order of magnitude more activities than HumanEva-I and includes
a significantly larger number of human subjects. On HumanEva-I our approach achieves
accuracy on par or better than recent results from the literature [34, 37] that rely on activity-
specific motion models and tracking, whereas our approach operates on single-frames only.
On MPII Cooking our approach improves over our 2D approach [27] by a large margin
demonstrating the advantages of jointly estimating pose across multiple views.

Related work. Articulated 3D human pose estimation has been considered in the liter-
ature in a variety of settings. Much recent work has focused on markerless motion cap-
ture and has been mainly applied to images acquired in controlled laboratory conditions
[30]. Recent methods in this domain are typically relying on detailed body models [2, 15]
and elaborate optimization strategies based on stochastic search [15, 32], local optimization
[33], or a combination thereof [14]. Although impressive results have been obtained in this
setting [16, 33, 35], the developed approaches appear to have difficulties to generalize be-
yond the motion capture domain. Furthermore, applications such as activity recognition,
visual surveillance or mobile navigation typically rely on specialized pose estimation meth-
ods [17, 26, 27]. Various efforts have been made to bridge the gap between laboratory and
real-world settings by relying on activity specific pose and motion priors [16], structure-
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from-motion methods [23] or by combining visual observations with on-body inertial sen-
sors [25]. These approaches build on techniques developed for controlled laboratory envi-
ronments and extend them to more realistic settings. In this paper we pursue an alternative
strategy. As a foundation for our approach we rely on our pictorial structures model [22] that
has been shown to work for images of realistic complexity. We extend this model to incorpo-
rate recent improvements from the 2D pose estimation literature [9, 21, 36] and generalize it
to multi-view to enable 3D pose estimation. Our approach is related to [1, 31] who also rely
on pictorial structures to generate evidence for 3D pose estimation and to [5] who propose a
pictorial structures model defined in 3D. Compared to [5] we rely on a more economic 2D
representation, but require a loopy model to incorporate multi-view constraints. In contrast
to our work, the approaches of [1, 31] have been formulated for the monocular setting and do
not perform reasoning across viewpoints as we do here. We consider the more general task
of 3D pose estimation of people across a variety of activities whereas our prior approach [1]
is limited to pose estimation of walking people only and relies on activity specific motion
priors and tracking. The approach of [31] builds on a simple observation model based on
silhouette and color features and has only been evaluated in a laboratory setting. In con-
trast our approach builds on state-of-the-art appearance and spatial representations making
it applicable to both, the laboratory setting and the MPII Cooking dataset that includes a
variety of human subjects involved in a diverse set of activities, interacting with a large set
of objects.

2 Single-view model
In the following we describe our approach to 2D pose estimation that relies on the pictorial
structures model. We build on our formulation in [22] and extend it with several improve-
ments motivated by related work to boost performance. Specifically, we introduce a more
flexible part configuration and multi-modal pairwise terms [28, 36], color features [9], and
mixtures of pictorial structures [20].

2.1 Pictorial structures model
The pictorial structures model, originally introduced in [11, 13], represents the human body
as a configuration L = {l1, . . . , lN} of N rigid parts and a set of pairwise part relationships E.
The location of each part is given by li = (xi,yi,θi), where (xi,yi) is the image position of
the part, and θi is the absolute orientation. We formulate the model as a conditional random
field, and assume that the probability of the part configuration L given the image evidence I
factorizes into a product of unary and pairwise terms:

p(L|I) = 1
Z

N

∏
n=1

fn(ln; I) · ∏
(i, j)∈E

fi j(li, l j). (1)

The assumption underlying this factorization is that the likelihood of the part configuration
can be decomposed into the product of individual part likelihoods, making the inference
tractable in practice [6, 11, 22].
Flexible pictorial structures (FPS). We build on our publicly available implementation of
pictorial structures [22], which consists of 10 parts that correspond to left/right body limbs,
torso and head. We slightly change the part composition. Instead of encoding body pose via
a configuration of limbs we encode it via a configuration of body joints. The advantage of
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switching from limbs to joints is that the new model can better encode the foreshortening
of body parts due to out-of-plane rotation [27, 28, 36]. Our new model has 14 parts that
correspond to torso, head, as well as left and right wrist, elbow, shoulder, ankle, knee, and
hip. For the MPII Cooking dataset we only use the 10 upper body parts as in [27].

2.2 Appearance representation
The part likelihood terms are represented with boosted part detectors that rely on the encod-
ing of the image using a densely computed grid of shape context descriptors [3]. The feature
vector is formed by concatenating the descriptors inside the part bounding box. Then the
part likelihood term is given by f (li; I) = max(∑t αi,thi,t(ei(li))/∑t αi,t ,ε0), where ei(li) is
the feature vector corresponding to part i extracted at location li, hi,t are weak single-feature
classifiers, and αi,t are their corresponding weights learned with AdaBoost.

Color. We augment the shape context features used in the boosted part detectors with color
features. The intuition behind this is that certain body parts such as hands or the head fre-
quently have a characteristic skin color [8]. Additionally, certain colors are more likely to
correspond to background than to one of the body parts [9]. For this we encode the color of
the part bounding box using a multi-dimensional histogram of 10 bins for each of the dimen-
sions of the RGB color space, which results in a 103 = 1,000 dimensional feature vector. We
concatenate the shape context with the color features and learn a boosted part detectors on
top of this combined representation. Note that adding color information alongside the shape
information allows us to automatically learn the relative importance of both features at the
part detection stage.

2.3 Spatial model
The pairwise terms in Eq. 1 encode the spatial constraints between model parts and are
modeled with a Gaussian distribution in the transformed space of the joint between two
parts:

fi j(li, l j) =N (Tji(li)−Ti j(l j)|µ i j,Σi j), (2)

where Ti j is the mapping between the location of part i and location of the joint between parts
i and j, µ i j represents the preferred relative orientation between parts in the transformed
space and Σi j encodes the flexibility of the pairwise term. The parameters of the pairwise
terms are learned in piecewise fashion using maximum likelihood estimation.

Multi-modal pairwise terms. We extend our model by introducing mixture models at the
level of these pairwise part dependencies. To that end we replace the unimodal Gaussian term
in Eq. 2 with term that maximizes over K modes and represent each mode with a Gaussian.
The new multi-modal pairwise term is then given by:

fi j(li, l j) =
K

max
k=1
N (T k

ji(li)−T k
i j(l j)|µk

i j,Σ
k
i j). (3)

Note that this pairwise term is similar to the one used in [36], but has a somewhat dif-
ferent form as it incorporates both relative orientation and position of model parts whereas
in [36] only the relative position is modeled and orientation is represented via an additional
latent variable.
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2.4 Mixtures of pictorial structures (Mixture PS)

Following [20, 21] we extend our approach to a mixture of pictorial structures models. We
obtain the mixture components by clustering the training data with k-means and learning a
separate model for each cluster. The components typically correspond to major modes in the
data, such as various viewpoints of the person with respect to the camera. The index of the
component is treated as a latent variable that should be inferred at test time. We found that
the value of the posterior in Eq. 1 is unreliable to predict the optimal mixture component,
and propose two alternative strategies.

Component classifier. We train a holistic classifier that distinguishes the mixture compo-
nent based on the contents of the person bounding box. For this we rely on the approach
of [24] who jointly solve the tasks of object detection and viewpoint classification. This
approach is similar to DPM [10], but relies on a structured prediction formulation that en-
courages both correct localization and component detection. When applying [24] to our
setting we replace viewpoint classification with mixture component classification.

Minimum variance (min-var). We select the mixture component using criteria directly
related to the quality of the pose estimation. Inspired by the recent work of [19] we se-
lect the best component with the minimal uncertainty in the marginal posterior distribu-
tions of the body parts. The criteria used to measure the uncertainty is given by s(k, I) =
∑

N
n=1 ‖Covn(k, I)‖2, where Covn(k, I) is a covariance matrix corresponding to the strongest

mode of the marginal posterior distribution p(ln|I) of the component with index k. The index
k̂ of the selected component is chosen as k̂ = argminks(k, I).

3 Multi-view model
In this section we describe our approach to 3D pose estimation, which consists of two steps.
In the first step we jointly estimate the 2D projections of the 3D body joints in each view. As
a basic tool for the representation and inference of the projected human pose we rely on the
2D model introduced in Sec. 2. In the second step, we use the estimated 2D projections and
recover the 3D pose by triangulation [18].

For the sake of clarity we first present the multi-view model for the case of two views.
We denote the 2D body configuration as Lm and the image evidence as Im for view m. Sim-
ilar to Eq. 1 the conditional posterior over body configurations in two views decomposes
into a product of unary and pairwise terms. These define appearance and spatial constraints
between parts independently for each view. In addition we introduce pairwise factors be-
tween every pair of corresponding parts in each view (see Fig. 1). The joint posterior over
configurations in both views is given by

p(L1,L2|I1, I2) =
1
Z

f (L1; I1) f (L2; I2)∏
n

f app
n (l1n, l

2
n; I1, I2) f cor

n (l1n, l
2
n), (4)

where f (L1; I1) and f (L2; I2) correspond to single-view factors and decompose into products
of unary and pairwise terms according to Eq. 1. When more than two views are available we
connect the corresponding 2D body parts in all pairs of views. The posterior in Eq. 4 then
includes multi-view appearance and correspondence factors for each pair of connected parts
in all views as well as within-view spatial and appearance factors. In the following we define
the multi-view pairwise factors that encode appearance and correspondence constraints.
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Multi-view appearance. The factor f app
n encodes the color and shape of the body part seen

from multiple viewpoints. We define the joint appearance feature vector by concatenating
the features from multiple views en(l1n, l2n) = [en(l1n),en(l2n)] and train a boosted part detector
using this representation. The appearance factor now depends on the locations of the part
in each view. Note that in contrast to the single-view boosted part detectors the multi-view
detector has access to features in all views during training and can exploit co-occurrence of
features across views to learn a more discriminative detector.
Multi-view correspondence. The factor f cor

n encodes the constraint that part locations
in each view should agree on the same 3D position. Given a pair of corresponding part
locations l1n and l2n we first reconstruct the corresponding position of the part in 3D using
linear triangulation [18]. The multi-view correspondence factor is then given by

f cor
n (l1n, l

2
n) = exp(−(‖l1n− l̂1n‖2 +‖l2n− l̂2n‖2)), (5)

where l̂1n and l̂2n denote the projections of the reconstructed 3D point in each view.
3D mixture model. As in Sec. 2 our multi-view model employs mixtures of pictorial struc-
tures to represent 2D body configurations per view. However, in the multi-view case the
mixture components correspond to groups of poses similar in 3D. In order to obtain such 3D
mixture components we first cluster the 3D training poses with k-means. We then project the
training data of each 3D cluster and learn 2D models from the projected data. We visualize
the components learned on the boxing data in Fig. 1. Note that the resulting 2D mixture com-
ponents are consistent across views by construction as they are learned from the projections
of the same 3D poses. We exploit this fact by jointly selecting the best mixture component
across all views and adapt the component selection procedure introduced in Sec. 2 accord-
ingly. For the component detector we add the scores of the corresponding components across
all views. For the uncertainty based criteria we add the uncertainty scores s(k, I) defined in
Section 2.3 for each of the corresponding components across all views.
Inference. The pictorial structures approach allows efficient and exact inference under the
simplifying assumptions that the pairwise part dependencies have a tree structure and can be
represented by Gaussian distributions. However, these assumptions limit the expressiveness
of the model. For example the pairwise factors in Eq. 3 as well as the multi-view factors in
Eq. 4 are not Gaussian and create loopy dependencies in the model structure. To perform
inference with non-Gaussian factors and loopy model we rely on the approximate two-stage
inference procedure introduced in [22]. In the first stage this procedure relies on the simpli-
fied tree-structured model with Gaussian pairwise factors (cf. Eq. 2) and simple shape and
color appearance terms in order to generate proposals for body part locations. This stage
can be seen as a search-space reduction step that is necessary in order to apply a more com-
plex model [12, 29]. The inference in the first stage is performed with sum-product belief
propagation which allows to compute marginal distribution for each body part p(li|I). The
inference is exact and efficient because the model is tree structured and messages can be
computed with Gaussian convolutions. In the second stage we sample a sufficiently large
set of locations from p(li|I)1 and perform inference in the full model with all factors in
the reduced state-space of the sampled part locations. Here we use the max-product belief
propagation as it allows to obtain a consistent estimate for the whole body configuration.
Finally, given the 2D projections estimated by the multi-view pictorial structures model we
reconstruct the 3D pose using triangulation.

1In all experiments we sample 1,000 locations for each part and remove the duplicates. We found this number to
be sufficient and increasing the number of sampled locations did not have significant influence on the final results.
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Part likelihood terms walking box

FPS 114.3 77.4
+ mixtures PS 83.2 69.3

+ color 75.2 68.5

+ multi-view appearance 58.9 52.3
+ multi-view corresp. 55.5 49.1

+ multi-modal p.t. 54.5 47.7

(a) Part likelihood terms.

# walking box

1 75.2 68.5
2 68.3 64.7
3 54.5 47.7

(b) Number of
camera views.

# clustering selection walking box

1 87.1 60.6

8 2D min-var 59.2 52.1
8 3D classifier 59.4 -
8 3D min-var 55.9 47.7

16 3D min-var 54.5 -

(c) Mixture PS components: number,
clustering, and selection strategy

Table 1: HumanEva-I. Test on S1, trained on S1,S2,S3, 3D error in mm.

4 Evaluation
We evaluate our approach on two datasets, HumanEva-I [30] which is a standard benchmark
for 3D pose estimation in the laboratory setting, and on the more challenging MPII Cooking
dataset [27] that was recorded for the task of fine-grained activity recognition and features a
larger number of subjects and interactions with objects.
HumanEva-I. Following [37], we use the three color cameras recorded in HumanEva-I.
We use the provided evaluation scripts and report 3D error in millimetres. We compute
the 3D poses with linear triangulation [18] by using pose estimated from all 3 cameras.
For the walking and box sequences we evaluate on the validation set, as [34, 37], and for
combo sequence on the test set, as [34]. In order to compensate for the slight differences in
positioning of joints in our model and in HumanEva we add a fixed offset to each joint. In
order to estimate this offset we first manually fit our model to several training images and
then compute the mean offset between our poses and the HumanEva ground-truth.
MPII Cooking. We use the same training and test sets as in [27], evaluating 2D projections
per camera and reporting percentage of correct parts (PCP). In contrast to [27] where we
evaluate only on a single camera, we restrict the training and test set to frames which are
recorded by both, the first and second camera. For each view this results in 896 training
images from 5 subjects and 1154 test images from 7 subjects (disjoint from training subjects).
The two cameras are about 35◦ apart. Images and annotations are available on our website.

4.1 Evaluation of our approach
HumanEva-I. We start evaluating the effect of the various design choices on the overall
performance of the model shown in Table 1. We begin by examining the different improve-
ments for the part likelihood terms for the walking sequence (Table 1a, first column). Our
model proposed in [22] with flexible parts (FPS) [27] and shape features has a 3D error of
114.3mm (first line, Table 1a). With our mixture of pictorial structures (with 16 components,
3D clustering, and min-var selection) the error significantly reduces to 83.2mm. This strong
improvement can be explained by the fact that the walking sequences shows subjects walk-
ing in a circle, i.e. they are seen from different view-points, thus a single component model
cannot capture this variation well. As an additional image feature we add color which further
reduces error to 75.2mm.

So far we estimated pose individually per camera. We now examine the benefits of using
our proposed multi-view model (see Sec. 3). Relating appearance across multiple views
reduces error by 16.3mm to 58.9mm, adding location correspondence further reduces error
to 55.5mm. Finally we add multi-modal pairwise terms for the parts which reaches the
minimal error of 54.5mm. Table 1b compares the performance gain from a single camera
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Part likelihood terms cam 1 cam 2

FPS [27] 63.7 66.3
+ color 66.9 70.8

+ multi-view correspondence 72.6 73.8
+ multi-view appearance 74.3 75.4

+ mixtures PS 78.7 79.3
+ multi-modal pairwise terms 80.0 80.5

(a) Monocular and multi-view improvements

upper arm lower arm
Model Torso Head r l r l All

Cam-1
FPS [27] 88.4 84.7 42.9 61.6 46.4 58.3 63.7
our 92.9 89.4 72.6 79.4 68.8 76.8 80.0

Cam-2
FPS [27] 84.5 90.9 56.1 56.3 55.3 54.6 66.3
our 91.1 92.4 75.4 76.7 72.9 74.7 80.5

(b) Results per part

Table 2: MPII Cooking, in percentage of correct parts (PCP).

over two to three cameras. The improvements show that our model can strongly exploit
the appearance and spatial correspondences across views. Note that in our experiments the
relative positions of the cameras remained the same for training and test runs. In the more
general case of arbitrary positioned cameras these constraints are likely to be more difficult
to incorporate, however, this remains for future work.

The second columns of Tables 1a and 1b show results for the boxing sequence. Com-
pared to walking the error drops in all cases which can be explained by reduced variability
in the viewpoint of the person. For this reason and only limited training data of 404 frames,
we use only 8 instead of 16 components used for walking. Additionally we examine dif-
ferent options for the mixtures of pictorial structures in Table 1c. The first line gives the
error without a mixture of a single component with 87.1/60.6mm for walking/box. Splitting
the data into 8 components by clustering the data in camera 1 in 2D decreases the error to
59.2/52.1mm. A further decrease in error to 55.9/47.7mm can be achieved by clustering the
data in 3D (line 4 in Table 1c). In both cases we use the minimum prediction variance to
select the correct component. Using a classifier to select the right component (line 3) per-
forms slightly worse with 59.4mm for walking, indicating that our min-var selection scheme
is a reasonable choice. Finally, increasing the number of components to 16 for walking
decreases the error slightly to 54.5mm. This setup is used throughout all remaining experi-
ments on HumanEva-I and also in Table 1a and 1b. In Fig. 2 we show qualitative results for
diverse poses and activities.
MPII Cooking. Next we evaluate our design choices on the pose challenge from MPII
Cooking as shown in Table 2a. Our FPS model [27] achieves 63.7 and 66.3 PCP (percentage
of correct parts, higher is better) for camera 1 and camera 2, respectively. Adding color fea-
tures improves performance to 66.9 and 70.8 PCP. If we add multi-view correspondence and
appearance information between both cameras performance improves by a total of 7.4/4.6
to 74.3/75.4 PCP, which is consistent with the improvements on HumanEva-I. Additionally
we add mixtures of PS with 5 components2, 3D clustering and min-var component selection,
gaining an additional 4.4 / 3.9 to 78.7 / 79.3 PCP. Finally, we include multi-modal pairwise
part terms, achieving a PCP of 80.0 and 80.5 for camera 1 and camera 2, respectively.

4.2 Comparison to state-of-the-art
HumanEva-I. In Tables 3 we evaluate our model for the sequences and settings considered
in related work and compare to state-of-the-art approaches of [34, 37]. We commence by
describing the results for the walking sequence in Table 3a. There are six different settings
with respect to the training and test split of the data. Our approach performs best in one
setting while Yao et al. perform best in three, CRBM and imCRBM perform best in one

25 components was the maximum number which gave reasonable clusters with the limited training data.
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CRBM imCRBM Yao our
Train Test [34] [34] [37]

S1,2,3 S1 55.4 54.3 44.0 54.5
S1 S1 48.8 58.6 41.6 56.7

S1,2,3 S2 99.1 69.3 54.4 50.2
S2 S2 47.4 67.0 64.0 52.1

S1,2,3 S3 70.9 43.4 45.4 54.7
S3 S3 49.8 51.4 46.5 62.4

(a) Walking

CRBM Yao our
Test [34] [37]

S1 75.4 74.1 47.7

(b) Box

CRBM imCRBM our
Train Test (S3) [34] [34]

walking 61.84 80.72 50.1
S1,2,3 jogging 93.05 89.90 54.0

combo 75.48 84.74 51.8

walking 48.12 67.48 60.8
S3 jogging 75.67 86.44 57.2

combo 60.17 75.77 59.2

(c) Combo

Table 3: HumanEva-I. Comparison to state-of-the art, 3D error in mm.

each. A closer inspection reveals that CRBM seems to overfit on the subject as it performs
significantly better when the training subjects are limited to the test subjects (lines 2,4,6). In
contrast to it our model benefits from additional training data from other subjects, i.e. it seems
to be able to generalize better. While our error ranges from 50.2 to 62.4, the other approaches
vary stronger (CRBM: 48.8-99.1, imCRBM: 43.4-67.0, Yao: 41.6-64.0), indicating that our
approach is less dependent on the respective setting.

Next we examine the results for box in Table 3b. Here related work only reports results
for subject S1: 75.4mm (CRBM) and 74.1mm (Yao et al.) error. Our model significantly
reduces the error by 26.4mm to 47.7mm. In this case CRBM and Yao et al. cannot benefit
from the strong motion prior used in the walking sequence as the box activity is less cyclic.

Finally we compare on the combo sequence in Table 3c. We first note that for all but
one we improve over state-of-the-art. Most notably we achieve an error of only 51.8mm for
combo (third line), while [34] report 75.48mm when training on all subjects. The challenge
for this sequence is that the model is required to handle two different activities. While our
model achieves a similar error compared to the walking sequence (see Table 3a), as it does
not rely on a specific activity prior, especially imCRBM significantly drops in performance.
Similar to walking, CRBM seems to overfit on the subject, showing much better results if
the training is restricted to the test subject (upper versus lower part of the table).

MPII Cooking. For the MPII Cooking pose challenge the state-of-the-art approach is FPS
[27]. In Table 2a we compare our approach in detail for all parts. We see that our approach
improves for all parts and both cameras. Especially for the right and left lower arm we
improve at least by 17.6 PCP (for right lower arm, cam-2). Overall we improve by 16.3 and
14.2 to an impressive 80.0 and 80.5 PCP for camera 1 and 2, respectively.

5 Conclusion
3D human pose estimation is traditionally addressed using 3D body models. In this work
we follow an alternative avenue and rephrase the problem as inference over the set of 2D
projections of the 3D pose in each camera view. This alternative formulation builds on the
state-of-the-art pictorial structures model and allows to benefit from recent advances in 2D
human pose estimation. By extending the original model we proposed in [22] with flexible
parts, color features, multi-modal pairwise terms, and mixtures of pictorial structures, our
2D pose estimation approach significantly improves performance on both datasets used for
evaluation. To exploit the multi-view information we augment the model with appearance
and spatial correspondence constraints across views. Overall we achieve similar or better
performance compared to state-of-the-art [34, 37] on HumanEva-I without using tracking
or exploiting activity specific priors. Similar, on the pose challenge of MPII cooking, our

Citation
Citation
{Taylor, Sigal, Fleet, and Hinton} 2010

Citation
Citation
{Taylor, Sigal, Fleet, and Hinton} 2010

Citation
Citation
{Yao, Gall, Gool, and Urtasun} 2011

Citation
Citation
{Taylor, Sigal, Fleet, and Hinton} 2010

Citation
Citation
{Yao, Gall, Gool, and Urtasun} 2011

Citation
Citation
{Taylor, Sigal, Fleet, and Hinton} 2010

Citation
Citation
{Taylor, Sigal, Fleet, and Hinton} 2010

Citation
Citation
{Taylor, Sigal, Fleet, and Hinton} 2010

Citation
Citation
{Rohrbach, Amin, Andriluka, and Schiele} 2012

Citation
Citation
{Mykhaylo, Stefan, and Bernt} 2011

Citation
Citation
{Taylor, Sigal, Fleet, and Hinton} 2010

Citation
Citation
{Yao, Gall, Gool, and Urtasun} 2011



10 AMIN et al.: MULTI-VIEW PICTORIAL STRUCTURES

Walking (S1) Box (S2) Jog (S3)

(a) HumanEva-I (b) MPII Cooking, top: cam 1, bottom: cam 2.

Figure 2: Example 3D pose estimation results from our approach (projected to 2D).

approach consistently improves for all parts over state-of-the-art.
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