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Abstract

Automatic recovery of 3D human pose from monocular
image sequences is a challenging and important research
topic with numerous applications. Although current meth-
ods are able to recover 3D pose for a single person in con-
trolled environments, they are severely challenged by real-
world scenarios, such as crowded street scenes. To address
this problem, we propose a three-stage process building on
a number of recent advances. The first stage obtains an ini-
tial estimate of the 2D articulation and viewpoint of the per-
son from single frames. The second stage allows early data
association across frames based on tracking-by-detection.
These two stages successfully accumulate the available 2D
image evidence into robust estimates of 2D limb positions
over short image sequences (= tracklets). The third and
final stage uses those tracklet-based estimates as robust im-
age observations to reliably recover 3D pose. We demon-
strate state-of-the-art performance on the HumanEva II
benchmark, and also show the applicability of our approach
to articulated 3D tracking in realistic street conditions.

1. Introduction

This work addresses the challenging problem of 3D
pose estimation and tracking of multiple people in clut-
tered scenes using a monocular, potentially moving camera.
This is an important problem with many applications in-
cluding video indexing, automotive safety, or surveillance.
There are multiple challenges that contribute to the diffi-
culty of this problem and need to be addressed simulta-
neously. Probably the most important challenge in artic-
ulated 3D tracking is the inherent ambiguity of 3D pose
from monocular image evidence. This is particularly true
for cluttered real-world scenes with multiple people that
are often partially or even fully occluded for longer peri-
ods of time. Another important challenge, even for 2D pose
recovery, is the complexity of human articulation and ap-
pearance. Additionally, complex and dynamically changing
backgrounds of realistic scenes complicate data association
across multiple frames. While many of these challenges
have been addressed individually, we are not aware of any
work that has addressed all of them simultaneously using a

Figure 1. Example results: 3D tracking in a challenging scene.

monocular, potentially moving camera.
The goal of this paper is to contribute a sound Bayesian

formulation to address this challenging problem. To that
end we build on some of the most powerful approaches pro-
posed for people detection and tracking in the literature. In
three successive stages we accumulate the available 2D im-
age evidence to enable robust 3D pose recovery.
Overview of the approach. Ultimately, our goal is to es-
timate the 3D pose Qm of each person in all frames m of a
sequence of lengthM , given the image evidence E1:M in all
frames. To that end, we define a posterior distribution over
pose parameters given the evidence:

p(Q1:M |E1:M ) ∝ p(E1:M |Q1:M )p(Q1:M ). (1)

Here, Q1:M denotes the 3D pose parameters over the entire
sequence. Clearly, a key difficulty is that the posterior in
Eq. 1 has many local optima as the estimation of 3D poses
is highly ambiguous given monocular images. To address
this problem this paper proposes a new three-stage approach
sequentially reducing the ambiguity in 3D pose recovery.

Before giving an overview of the three-stage process, let
us define the observation likelihood p(E1:M |Q1:M ). We
assume conditional independence of the evidence in each
frame given the 3D pose parameters Qm. The likelihood
thus factorizes into single-frame likelihoods:

p(E1:M |Q1:M ) =
M∏

m=1

p(Em|Qm). (2)



In this paper, the evidence in each frame is represented by
the estimate of the person’s 2D viewpoint w.r.t. the camera
and the posterior distribution of the 2D positions and orien-
tations of body parts. To estimate these reliably from single
frames, the first stage (Sec. 2) builds on a recently proposed
part-based people detection and pose estimation framework
based on discriminative part detectors [3].

To accumulate further 2D image evidence, the second
stage (Sec. 3) extracts people tracklets from a small num-
ber of consecutive frames using a 2D-tracking-by-detection
approach. Here, the output of the first stage is refined in the
sense that we obtain more reliable 2D detections of the peo-
ple’s body parts as well as more robust viewpoint estimates.

The third stage (Sec. 4) then uses the image evidence ac-
cumulated in the previous two stages to recover 3D pose. As
described later, we model the temporal prior p(Q1:M ) over
3D poses as a hierarchical Gaussian process latent variable
model (hGPLVM) [17]. We combine this with a hidden
Markov model (HMM) that allows to extend the people-
tracklets, which cover only a small number of frames at a
time, to possibly longer 3D people-tracks. Note that our
3D model is assumed to generate the bottom-up evidence
from 2D body models and thus constitutes a hybrid genera-
tive/discriminative approach (c.f. [26]).

The contributions of this paper are two-fold. The main
contribution is a novel approach to human pose estimation,
which combines 2D position, pose and viewpoint estimates
into an evidence model for 3D tracking with a 3D motion
prior, and is able to accurately estimate 3D poses of mul-
tiple people from monocular images in realistic street en-
vironments. The second contribution, which serves as a
building block for 3D pose estimation, is a new pedestrian
detection approach based on a combination of multiple part-
based models. While the power of part-based models for
people detection has already been demonstrated (e.g., [3]),
here we show that combining multiple part-based models
leads to significant performance gains, and while improving
over the state-of-the art in detection, also allows to estimate
viewpoints of people in monocular images.

Related Work. Due to the difficulties involved in reliable
3D pose estimation, this task has often been considered in
controlled laboratory settings [4, 6, 13, 24, 29], with so-
lutions frequently relying on background subtraction and
simple image evidence, such as silhouettes or edge-maps.
In order to constrain the search in high-dimensional pose
spaces these approaches often use multiple calibrated cam-
eras [13], complex dynamical motion priors [29], or de-
tailed body models [4]. Their combination allows to achieve
impressive results [13, 15], similar in performance to com-
mercial marker-based motion capture systems.

However, realistic street scenes do not satisfy many of
the assumptions made by these systems. For such scenes
multiple synchronized video streams are difficult to obtain,

the appearance of people is significantly more complex, and
robust extraction of evidence is challenged by frequent full
and partial occlusions, clutter, and camera motion. In order
to address these challenges, a number of methods leverage
recent advances in people detection and either use detection
for prefiltering and initialization [11, 14], or integrate detec-
tion, tracking and pose estimation within a single “tracking-
by-detection” framework [2].

This paper builds on state-of-the-art people detection and
2D pose estimation and leverages recent work in this area
[3, 7, 10, 20], which we combine with a dynamic motion
prior [2, 28]. While [2] has shown to enable 2D pose es-
timation for people in sideviews, this paper goes beyond
by estimating poses in 3D from multiple viewpoints. Com-
pared to [14], we are able to estimate poses in monocular
images, while their approach uses stereo. [11] proposes
to combine detection and 3D pose estimation for monocu-
lar tracking, but relies on the ability to detect characteristic
poses of people, which we do not require here.

Estimation of 3D poses from 2D body part positions was
previously proposed in [25]. However, this approach was
evaluated only in laboratory conditions for a single subject
and it remains unclear how well it generalizes to more com-
plex settings with multiple people as considered here.

There is also a lot of work on predicting 3D poses di-
rectly from image features using regression [1, 16, 27], clas-
sification [21], or a search over a database of exemplars
[19, 22]. These methods typically require a large database
of training examples to achieve good performance and are
challenged by the high variability in appearance of people
in realistic settings. In contrast, we represent the complex
appearance of people using separate appearance models for
each body part, which reduces the number of required train-
ing images and makes our representation more flexible.

2. Multiview People Detection in Single Frames

2D people detection and pose estimation serves as one of
our key building blocks for 3D pose estimation and track-
ing. Our approach is driven by three major goals: (1) We
want to take advantage of the recent developments in 2D
people detection and pose estimation to define robust ap-
pearance models for 3D pose estimation and tracking; (2)
we aim to reduce the search space of possible 3D poses by
taking advantage of inferred 2D poses; and (3) we want to
extract the viewpoint from which people are visible to re-
duce the inherent 2D-to-3D ambiguity. To that end we build
on and extend a recent 2D people detection approach [3].

2.1. Basic pictorial structures model

Pictorial structures [8] represent objects, such as peo-
ple, as a flexible configuration of N different parts Lm =
{lm0, lm1, . . . , lmN}. m denotes the current frame of
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Figure 2. Training samples shown for each viewpoint: (a) right,
(b) r.-back, (c) b., (d) left-b., (e) l., (f) l.-front, (g) f., (h) r.-f.

the sequence. The state of part i is given by lmi =
{xmi, ymi, θmi, smi}, where xmi and ymi denote its im-
age position, θmi the absolute orientation, and smi the part
scale. The posterior probability of the 2D part configuration
Lm given the single frame image evidence Dm is given as

p(Lm|Dm) ∝ p(Dm|Lm)p(Lm). (3)

The prior on body configurations p(Lm) has a tree structure
and represents the kinematic dependencies between body
parts. It factorizes into a unary term for the root part (here,
the torso) and pairwise terms along the kinematic chains:

p(Lm) = p(lm0)
∏

(i,j)∈K

p(lmi|lmj), (4)

where K is the set of edges representing kinematic rela-
tionships between parts. p(lm0) is assumed to be uniform,
and the pairwise terms are taken to be Gaussian in the trans-
formed space of the joints between the adjacent parts [3, 8].
The likelihood term is assumed to factorize into a product
of individual part likelihoods

p(Dm|Lm) =
N∏

i=0

p(dmi|lmi). (5)

To define the part likelihood, we rely on the boosted part
detectors from [3], which use the truncated output of an
AdaBoost classifier [12] and a dense shape context repre-
sentation [5, 18]. Our model is composed of 8 body parts:
left/right lower and upper legs, torso, head and left/right
upper and lower arms (later sideview detectors also use
left/right feet for better performance).

Apart from its excellent performance in complex real
world scenes [3, 7], the pictorial structures model also has
the advantage that inference is both optimal and efficient
due to the tree structure of the model. We perform sum-
product belief propagation to compute the marginal poste-
riors of individual body parts, which can be computed effi-
ciently using convolutions [8].

Data and evaluation. While the detector of [3] is in
principle capable of detecting people from arbitrary views,
its detection performance has only been evaluated on side
views. To evaluate its suitability for our multiview set-
ting, we collected a dataset of 1486 images for training,
248 for validation, and 248 for testing, which we carefully
selected so that sufficiently many people are visible from
all viewpoints. In addition to the persons’ bounding boxes,
we also annotated the viewpoint of all people in our dataset
by assuming 8 evenly spaced viewpoints, each 45 degrees
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Figure 3. Calibrated output of the 8 viewpoint classifiers.

apart from each other (front/back, left/right, and diagonal
front/back left/right). Fig. 2 shows example images from
our training set, one for each viewpoint.

As expected and can be seen in Fig. 4(a), the detector
trained on side-views as in [3] shows only modest perfor-
mance levels on our multiview dataset. By retraining the
model on our multiview training set we obtain a substantial
performance gain, but still do not achieve the performance
levels of monolithic, discriminative HOG-based detectors
[30] or HOG-based detectors with parts [9] (see Fig. 4(b)).
However, since we not only need to detect people, but also
estimate their 2D pose, such monolithic or coarse part-
based detectors are not appropriate for our task.

2.2. Multiview Extensions

To address this shortcoming, we develop an extended
multiview detector that allows 2D pose estimation as well as
viewpoint estimation. We train 8 viewpoint-specific detec-
tors using our viewpoint-annotated multiview data. These
viewpoint-specific detectors not only have the advantage
that their kinematic prior is specific to each viewpoint, but
also that part detectors are tuned to each view. We enrich
this set of detectors with one generic detector trained on all
views, as well as two side-view detectors as in [3] that ad-
ditionally contain feet (which improves performance).

We explored two strategies for combining the output
of this bank of detectors: (1) We simply add up the log-
posterior of a person being at a particular image loca-
tion as determined by the different detectors; and (2) we
train a linear SVM using the 11-dimensional vector of the
mean/variance-normalized detector outputs as features. The
SVM detector was trained on the validation set of 248 im-
ages. Fig. 4(a) shows that the simple additive combination
of viewpoint-specific detectors improved over the detection
performance from each individual viewpoint-specific detec-
tor. It also outperforms the approach from [3].

Interestingly, the new SVM-based detector not only
substantially improves performance, but also outperforms
the current state-of-the-art in multiview people detection
[9, 30]. As is shown in Fig. 4(b), the performance improves
even further when we extend our bank of detectors with
the HoG-based detector from [30]. While this is not the
main focus of our work, this clearly shows the power of the
first stage of our approach. Several example detections in
Fig. 4(c) demonstrate the benefits of combining viewpoint-
specific detectors.
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Figure 4. Comparison between (a) viewpoint-specific models and combined model, and (b) comparison to state-of-the-art on the “Multi-
viewPeople” dataset; (c) sample detections obtained with the side-view detector of [3] (top), the generic detector trained on our multiview
dataset (middle), and the proposed detector combining the output of viewpoint-specific detectors with a linear SVM (bottom).

Right Right- Back Left- Left Left- Front Right- Avg.
% Back Back Front Front

Max 53.7 35.5 45.7 22.6 37.9 8.6 40.0 8.3 31.1
SVM 72.6 12.7 48.6 12.3 55.7 44.5 70.4 16.2 42.2

SVM-adj 71.4 22.3 29.5 18.0 84.7 18.1 50.7 29.2 35.4

Table 1. Viewpoint estimation on the “MultiviewPeople” dataset.
The task is to classify one of 8 viewpoints (chance level 12.5%).

Viewpoint estimation. Next we aim to estimate the per-
son’s viewpoints, since such viewpoint estimates allow to
significantly reduce the ambiguity in 3D pose. To that end,
we rely on the bank of viewpoint-specific detectors from
above, and train 8 viewpoint classifiers, linear SVMs, on
the detector outputs of the validation set. We consider two
training and evaluation strategies: (SVM) Only training ex-
amples from one of the viewpoints are used as positive ex-
amples, the remainder as negative ones; and (SVM-adj),
where we group viewpoints into triplets of adjacent ones
and train separate classifiers for each such triplet. As a base-
line approach (Max), we estimate the viewpoint by taking
the maximum over the outputs of the 8 viewpoint-specific
detectors. Results are shown in Tab. 1. SVM improves
over the baseline in case when we require exact recognition
of viewpoint by approx. 11%, but SVM-adj also performs
well. In addition, when we also consider the two adjacent
viewpoints as being correct, SVM obtains an average per-
formance of 70.0% and SVM-adj of 76.2%. This shows
that SVM-adj more gracefully degrades across viewpoints,
which is why we adopt it in the remainder.

Since the scores of the viewpoint classifiers are not di-
rectly comparable with each other, we calibrate them by
computing the posterior of the correct label given the clas-
sifier score, which maps the scores to the unit interval. The
posterior is computed via Bayes’ rule from the distributions
of classifier scores on the positive and negative examples.
We assume these distributions to be Gaussian, and estimate
their parameters from classifier scores on the validation set.

Fig. 3 shows calibrated outputs of all 8 classifiers com-
puted for a sequence of 40 frames in which the person first
appears from the “right” and then from the “right-back”
viewpoint. The correct viewpoint is the most probable for
most of the sequence, and failures in estimation often cor-
respond to adjacent viewpoints.

3. 2D Tracking and Viewpoint Estimation
As discussed in the introduction, our goal is to accumu-

late all available 2D image evidence prior to the third 3D
tracking stage in order to reduce the ambiguity of 2D-to-
3D lifting as much as possible. While the person detector
described in the previous section is capable of estimating
2D positions of body parts and viewpoints of people from
single frames, the second stage (described here) aims to im-
prove these estimates by 2D-tracking-by-detection [2, 31].

To exploit temporal coherency already in 2D, we extract
short tracklets of people. This, on the one hand, improves
the robustness of estimates for 2D positions, scale and view-
point of each person, since they are jointly estimated over an
entire tracklet. Improved body localization in turn aids 2D
pose estimation. On the other hand, it also allows to perform
early data association. This is important for sequences with
multiple people, where we can associate “anonymous” sin-
gle frame hypotheses with the track of a specific person.

Tracklet extraction. From the first stage of our approach
we obtain a set of Nm potentially overlapping bound-
ing box hypotheses Hm = [hm1, . . . ,hmNm

] for each
frame m of the sequence, where each hypothesis hmi =
{hx

mi, h
y
mi, h

s
mi} corresponds to a bounding box at partic-

ular image position and scale. In order to obtain a set of
tracklets, we follow the HMM-based tracking procedure in-
troduced in [2]1. To that end we treat the person hypothe-
ses in each frame as states and find state subsequences that

1A detailed description is given in Sec. 3.3 of [2].



Figure 5. People detection based on single frames (top) and tracklets found by our 2D tracking algorithm; Different tracklets are identified
by color and the estimated viewpoints are indicated with two letters (bottom). Note that several false positives in the top row are filtered
out and additional – often partially occluded – detections are filled in (e.g., on the left side of the leftmost image).

are consistent in position, scale and appearance by itera-
tively applying Viterbi decoding. The emission probabili-
ties for each state are derived from the detection score. The
transition probabilities between states hmi and hm−1,j are
modeled using first-order Gaussian dynamics and appear-
ance compatibility:

ptrans(hmi,hm−1,j) = N (hmi|hm−1,j ,Σpos) ·
N (dapp(hmi,hm−1,j)|0, σ2

app).

where Σpos = diag(σ2
x, σ

2
y, σ

2
s), and dapp(hmi,hm−1,j)

is the Euclidean distance between RGB color histograms
computed for the bounding rectangle of each hypothesis.
We set σx = σy = 5, σs = 0.1 and σapp = 0.05.
Viewpoint tracking. Finally, for each of the tracklets we
estimate the viewpoint sequence ω1:N = (ω1, . . . , ωN ),
again using a simple HMM and Viterbi decoding. We con-
sider the 8 discrete viewpoints as states, the viewpoint clas-
sifiers described in Sec. 2 as unary evidence, and Gaus-
sian transition probabilities that enforce similar subsequent
viewpoints to reflect that people tend to turn slowly.
Evaluation. Fig. 5 shows an example of a short subse-
quence in which we compare the detection results of the
single-frame 2D detector with the extracted tracklets. Note
how tracking helps to remove the spurious false positive de-
tections in the background, and corrects failures in scale es-
timation, which would otherwise hinder correct 2D-to-3D
lifting. In Fig. 3 we visualize the single frame prediction
scores for each viewpoint for the tracklet corresponding to
the person with index 22 on Fig. 5. Note that while view-
point estimation from single frames is reasonably robust, it
can still fail at times (the correct viewpoint is “right” for
frames 4 to 30 and “right-back” for frames 31 to 40). The
tracklet-based viewpoint estimation, in contrast, yields the
correct viewpoint for the entire 40 frame sequence. Finally,
as we demonstrate in Fig. 5, the tracklets also provide data
association even in case of realistic sequences with frequent
full and partial occlusions.

4. 3D Pose Estimation
To estimate and track poses in 3D, we take the 2D track-

lets extracted in the previous stage and lift the 2D pose es-
timated for each frame into 3D (c.f. [25]), which is done
with the help of a set of 3D exemplars [19, 22]. Projections
of the exemplars are first evaluated under the 2D body part
posteriors, and the exemplar with the most probable pro-
jection is chosen as an initial 3D pose. This initial pose
is propagated to all frames of the tracklet using the known
temporal ordering on the exemplar set. Note that this yields
multiple initializations for 3D pose sequences, one for each
frame of the tracklet. This 2D-to-3D lifting procedure is
robust, because it is based on reliable 2D pose posteriors,
and detections and viewpoint estimates from the 2D track-
lets. Starting from these initial pose sequences, the actual
pose estimation and tracking is done in a Bayesian frame-
work by maximizing the posterior defined in Eq. (1), for
which they serve as powerful initializations. The 3D pose is
parametrized as Qm = {qm, φm,hm}, where qm denotes
the parameters of body joints, φm the rotation of the body
in world coordinates, and hm = {hx

m, h
y
m, h

scale
m } the po-

sition and scale of the person projected to the image. The
3D pose is represented using a kinematic tree with P = 10
flexible joints, in which each joint has 2 degrees of freedom.
A configuration example is shown in Fig. 6(a).

The evidence at frame m is given by the Em =
{Dm, ωm}, and consists of the single frame image evidence
Dm and the 2D viewpoint estimate ωm obtained from the
entire tracklet. Assuming conditional independence of 2D
viewpoint and image evidence given the 3D pose, the single
frame likelihood in Eq. 2 factorizes as

p(Em|Qm) = p(ωm|Qm)p(Dm|Qm). (6)

Based on the estimated 2D viewpoint ωm, we model the
viewpoint likelihood of the 3D viewpoint φm as Gaussian
centered at the rotation component of φm along the y-axis:

p(ωm|Qm) = N (ωm|projy(φm), σ2
ω). (7)



We define the likelihood of the 3D pose p(Dm|Qm) with
the help of the part posteriors given by the 2D body model

p(Dm|Qm) =
N∏

n=1

p(projn(Qm)|Dm), (8)

where projn(Qm) denotes the projection of the n-th 3D
body part into the image. While such a 3D likelihood is typ-
ically defined as the product of individual part likelihoods
similarly to Eq. 5, this leads to highly multimodal posteri-
ors and difficult inference. By relying on 2D part posteriors
instead, the 3D model is focused on hypotheses for which
there is sufficient 2D image evidence from previous stages.

To avoid expensive 3D likelihood computations, we rep-
resent each 2D part posterior using a non-parametric repre-
sentation. In particular, for each body part n in frame m we
find the J locations with the highest posterior probability
Emn = {(ljmn, w

j
mn), j = 1, . . . , J}, where ljmn ∈ R4 cor-

responds to the 2D location (image position and orientation)
andwj

mn to the posterior density at this location. Given that,
we approximate the 2D part posterior as a kernel density es-
timate with Gaussian kernel κ:

p(projn(Qm)|Dm) ≈
∑

j

wj
mnκ(ljmn, projn(Qm)). (9)

Dynamical model. In our approach we represent the tem-
poral prior in Eq. 1 as the product of two terms:

p(Q1:M ) = p(q1:M )p(h1:M ), (10)

which correspond to priors on the parameters of 3D pose as
well as image position and scale. The prior on the person’s
position and scale p(h1:M ) is taken to be a broad Gaussian
and models smooth changes of both the scale of the person
and its position in the image.

We model the prior over the parameters of the 3D pose
q1:M with a hierarchical Gaussian process latent variable
model (hGPLVM) [17]. We denote theM dimensional vec-
tor of the values of i-th pose parameter across all frames
as q1:M,i. In the hGPLVM each dimension of the original
high-dimensional pose is modelled as an independent Gaus-
sian process defined over a shared low dimensional latent
space Z1:M :

p(q1:M |Z1:M ) =
P∏

i=1

N (q1:M,i|0,Kz), (11)

where P is the number of parameters in our pose repre-
sentation, Kz is a covariance matrix of the elements of the
shared latent space Z1:M defined by the output of the co-
variance function k(zi, zj), which in our case is taken to be
squared exponential.

The values of the shared latent space Z1:M are them-
selves treated as the outputs of Gaussian processes with a
one dimensional input, the time T1:M . Our implementation
uses a dl = 2 dimensional shared latent space. Such a hi-
erarchy of Gaussian processes allows to effectively model
both correlations between different dimensions of the orig-
inal input space and their dynamics.
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Figure 6. (a): Representation of the 3D pose in our model
(parametrized joints are marked with arrows). (b): Initial pose
sequence after 2D-to-3D lifting (top) and pose sequence after op-
timization of the 3D pose posterior (bottom).

MAP estimation. The hGPLVM prior requires two sets
of auxiliary variables Z1:M and T1:M , which need to be
dealt with during maximum a-posteriori estimation. Our
strategy is to optimize Z only and keep the values of T
fixed. This is possible since the values of T roughly cor-
respond to the person’s state within a walking cycle, which
can be reliably estimated using the 2D tracklets. The
full posterior over 3D pose parameters being maximized is
given by:

p(Q1:M ,Z1:M |E1:M , T1:M ) ∝ p(E1:M |Q1:M )·
p(q1:M |Z1:M )p(Z1:M |T1:M )p(h1:M ). (12)

We optimize the posterior using scaled conjugate gradients
and initializing the optimization using the lifted 3D poses.

4.1. 3D pose estimation for longer sequences

The MAP estimation approach just described is only
tractable if the number of frames M is sufficiently small. In
order to estimate 3D poses in longer sequences we apply a
strategy similar to the one used in [2]: First we estimate 3D
poses in short (M = 10) overlapping subsequences of the
longer sequence. Since for each subsequence we initialize
and locally optimize the posterior multiple times, this leaves
us with a large pool of 3D pose hypotheses for each of the
frames, from which we find the optimal sequence using a
hidden Markov model and Viterbi decoding. To that end
we treat the 3D pose hypotheses in each frame as discrete
states with emission probabilities given by Eq. 6 and define
transition probabilities between states using the hGPLVM.

5. Experiments
We evaluate our model in two diverse scenarios. First,

we show that our approach improves the state-of-the-
art in monocular human pose estimation on the standard
“HumanEva II” benchmark, for which ground truth poses
are available. Additionally, we evaluate our approach on
two cluttered and complex street sequences with multiple
people including partial and full occlusions.
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Figure 7. 3D pose estimation on the “TUD Stadtmitte” dataset (left) and on a sequence from a moving camera [14] (right).

Figure 8. 3D pose estimation examples on HumanEva II for “Sub-
ject S2/Camera C1” (top) and “Subject S2/Camera C2” (bottom).

5.1. Evaluation on the “HumanEva II” dataset

In order to quantitatively evaluate the performance of
our 3D pose estimation method we use the “HumanEva II”
dataset [23], which provides synchronized images and mo-
tion capture data and is a standard evaluation benchmark
for 2D and 3D human pose estimation. On this dataset we
compare to [21] as they obtain the best published results in a
setting comparable to ours: They estimate poses in monoc-
ular image sequences without background subtraction, but
rely on both appearance and temporal information.

For this experiment we train viewpoint specific mod-
els on the images of subjects “S1”, “S2”, “S3” from the
“HumanEva” dataset. We found that adding more training
data improves the performance of part detectors, especially
for the lower and upper arm body parts. Therefore, we ex-
tended the training data with the images from the “People”
[20] and “Buffy” [10] datasets. The set of exemplars for
2D-to-3D lifting and the hGPLVM used to model the tem-
poral dynamics on the pose sequences were obtained using
training data for subject “S3” of the “HumanEva” dataset.
As we show, despite the limited training data, this prior en-
ables pose estimation on the “HumanEva II” dataset as well
as in realistic street scenes.

The authors of [21] report pose estimation results for the
first 350 frames of the sequence containing subject “S2”, in-
dependently estimating poses for views obtained from cam-
eras “C1” and “C2”. Tab. 2 shows the mean error in the

Subj./Cam. 2D Mean (Std) [21] 2D Mean (Std) 3D Mean (Std)
S2/C1 12.98(3.5) 10.49 (2.70) 107(15)

S2/C2 14.18(4.38) 10.72 (2.44) 101(19)
Table 2. Quantitative evaluation on the HumanEva II dataset
(frames 1-350). We report mean error and standard deviation of
the relative 2D and 3D joint positions. 2D results are in pixels and
3D results are in millimeters.

estimation of 2D and 3D joint locations, obtained using the
official online evaluation tool. For both sequences our re-
sults improve substantially over those reported by [21]. The
improvement is especially large for the sequence taken with
camera “C2”, on which we obtain an average error of 10.72
pixels, compared to 14.18 pixels. We have also evaluated
the 3D pose estimation performance of our approach, ob-
taining a mean error of 107 and 101 millimeters for cameras
“C1” and “C2”. Fig. 8 shows several examples of estimated
poses obtained by our method on both sequences, visualiz-
ing every 100-th frame. We attribute the better localization
accuracy of our method to the continuous optimization of
3D pose given the body part positions rather than selecting
one from a discrete set of exemplars [21].

5.2. 3D pose estimation in street scenes

To evaluate our approach for a realistic street setting, we
introduce the novel “TUD Stadtmitte”’ dataset containing
200 consecutive frames taken in a typical pedestrian area.
Over the 200 frames of this sequence our 2D tracking al-
gorithm obtained 25 2D people-tracks, none of which con-
tained false positive detections. Fig. 7 (left) shows example
images evenly spaced throughout the sequence. For every
track we estimate the viewpoint of the person using exclu-
sively our viewpoint classification algorithm. We could eas-
ily integrate the direction of movement of the person into
the estimate, but this would limit the applicability of our
method to the setting with static cameras. Note that we are
able to estimate 3D poses correctly over a diverse range of
viewpoints including those with significant depth ambigu-
ity and difficult imaging conditions. Note, for example, the
people on the right side of image Fig. 7(a) and the people in



the middle of the image in Fig. 7(h).
Unfortunately we cannot report quantitative results on

the 3D pose recovery for this sequence, as obtaining ground
truth is very difficult for such realistic image sequences.
However, the results are qualitatively close to those demon-
strated by our method on the “HumanEva II” dataset, sug-
gesting that the obtainable quantitative results would be
comparable. Although our motion prior was trained on
the “HumanEva” dataset, it generalized well to the street
setting. Interestingly, we are also able to correctly esti-
mate the pose of the person standing still, as is shown in
Fig. 7(c,f,g). Looking at typical failure cases, several in-
correctly estimated poses are due to incorrect scale estima-
tion as in Fig. 7(a), partial occlusion Fig. 7(b,f), or fail-
ure in viewpoint estimation (e.g., the rightmost person in
Fig. 7(h)).

We also evaluated our approach on a sequence recorded
by a moving camera previously used in [14]. Due to the
high amount of background clutter, low frame-rate and
many people in near frontal views, this sequence presents
significant challenges for 3D pose estimation. Several ex-
amples of estimated 3D poses are shown in Fig. 7(right).
Note that even under such challenging conditions our ap-
proach can track and estimate poses of people over a large
number of frames, e.g., the rightmost person in Fig. 7(i,j).
Also note that tracking and viewpoint estimation produced
correct results even in the presence of strong background
clutter, e.g., for the rightmost person in Fig. 7(d,e).

6. Conclusions
In this paper we presented a novel approach to monocu-

lar 3D human pose estimation and tracking, which is able
to recover poses of people in realistic street conditions.
The approach leverages recent advances in reliable 2D pose
estimation from monocular images, tracking-by-detection,
and powerful modeling of 3D dynamics based on hierar-
chical Gaussian process latent variable models. This al-
lows to first accumulate the available 2D image evidence
from which later 3D poses can be reliably recovered and
tracked. The approach has been evaluated quantitatively on
the “HumanEva II” benchmark and improves the state-of-
the-art in this setting. We also showed excellent results on a
challenging street sequence underlining the applicability of
the approach for 3D pose estimation and tracking of multi-
ple people in cluttered scenes using a monocular, potentially
moving camera.
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