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Abstract

Computational and memory costs restrict spectral tech-
niques to rather small graphs, which is a serious limitation
especially in video segmentation. In this paper, we propose
the use of a reduced graph based on superpixels. In con-
trast to previous work, the reduced graph is reweighted such
that the resulting segmentation is equivalent, under certain
assumptions, to that of the full graph. We consider equiva-
lence in terms of the normalized cut and of its spectral clus-
tering relaxation. The proposed method reduces runtime
and memory consumption and yields on par results in im-
age and video segmentation. Further, it enables an efficient
data representation and update for a new streaming video
segmentation approach that also achieves state-of-the-art
performance.

1. Introduction

Spectral clustering methods build the basis of many
state-of-the-art image [2] and video [12, 3, 7, 11, 24] seg-
mentation techniques. Spectral methods convince by their
ability to naturally include long-range affinities. Their glob-
alization effect (cf. [10]) helps robustness and is an im-
portant part of the hierarchical image segmentation of [2].
While segmentation techniques based on minimum cut for-
mulations are suited for problems with strong unary terms,
the balancing property of spectral clustering techniques is
favorable when the focus is on pairwise terms.

The resource requirements of spectral clustering are still
manageable for image segmentation up to a certain image
resolution, but the limits are easily reached with video data.
[24] presented a heavily parallelized extension of the pixel-
based image segmentation approach of [2] to whole videos
running on a GPU cluster. Since such computational re-
sources are often not available, video segmentation is usu-
ally implemented as a two-step approach. The graph is ei-
ther constructed on pre-computed superpixels/supervoxels
[27, 12, 16, 7] which are then clustered, or the clustering is

(a) Original graph (b) Equivalent graph
Figure 1. In graph-based segmentation, certain associations among
pixels may be assumed in the form of superpixels. These are must-
link constraints. In spectral clustering, balancing plays a key role
to exploit these constraints. We provide two graph reductions to
preserve the normalized cut or its spectral clustering relaxation.

applied to sparse trajectories and the result converted into a
dense segmentation in a postprocessing step [3, 20].

In this paper, we focus on the methods of the first group
and notice that, in conjunction with spectral clustering, they
are limited by the same pre-groupings that they leverage.
Consider the case of a superpixel which perfectly covers an
entire visual object. In theory, such a superpixel is desirable,
as it provides the maximum computational reduction with
minimum increase in model error. However, in a spectral
method [12, 11, 7] balanced solutions are preferred. Thus,
single-node clusters, such as the single superpixel covering
the entire object, are almost impossible. The standard graph
reduction by superpixels of [12, 11, 7] is not compatible
with the association balancing of spectral clustering. The
volume of the superpixels must be taken into account.

To this end, we investigate two graph reduction ap-
proaches which guarantee equivalence with the original
graph under certain assumptions (Figure 1). Hereby, it is
assumed that all pixels within a superpixel are connected
by must-link constraints. The first approach is drawn from
[21] and reduces the original graph such that the normalized
cut (NCut) is preserved. However, finding the NCut is NP-
hard and all spectral techniques recur to relaxations to solve
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the problem. The most common 2-norm relaxation [23, 19]
has proved successful in segmentation, but it may yield so-
lutions far from the NCut. Consequently, the (theoretical)
equivalence to the NCut practically still leads to different
solutions. We introduce therefore a graph reduction that
preserves the relaxed solution under stronger assumptions.
If the assumptions are not satisfied, the proposed reduction
leads to optimizing a new density-normalized-cut, which
can be favorable in some applications.

The proposed reduction models (Section 3) can be ap-
plied readily in image and video segmentation. Runtime
and memory consumption are reduced in all cases. Im-
age segmentation (Section 4) performance stays on par with
the state-of-the-art. Video segmentation (Section 5) outper-
forms all but one recent methods. Additionally, the reduc-
tion techniques allow a new streaming video segmentation
approach (Section 6), based on graph reduction over time,
which goes beyond state-of-the-art performance.

2. Related work
The two main objectives of graph reduction have been: i.

reducing the computational complexity and ii. constraining
(biasing) the solutions. Along the first line of work, this re-
lates to techniques reducing the number of data points in the
graph. This is highly desired in spectral clustering [23, 19].
In image segmentation, [9] achieves the objective by em-
ploying the Nyström method, i.e. randomly sampling the
points and extrapolating the approximate sampled solution
to the whole system. Elsewhere, [30, 5] approximate the
graph by representative points (aka landmarks). By con-
trast, we approximate the graph with superpixels.

Biasing a solution has also motivated much research. Bi-
asing allows inclusion of additional information, e.g. pro-
vided in an interactive fashion, into the solution. In image
segmentation, [32, 8, 18] propose models to include con-
straints into the spectral clustering solutions. In contrast to
ours, these methods process the whole graph, i.e. the ex-
pensive eigendecomposition underlying spectral clustering
is computed on the whole affinity matrix.

Recently, [21] has addressed both the computational
complexity and the constraints and suggested a reduction
that preserves the (normalized) cut. We study its reduction
in the scope of image and video segmentation. [26] lever-
ages a reduction close in spirit to [21] for image segmenta-
tion. We complement both approaches with a formulation
that considers the spectral relaxation.

Eigensolvers based on multigrid methods temporarily re-
duce the number of nodes and speed up computation while
keeping the solution of the original problem [15], yet the
coarser grids do not fit well to image structures. In [6] an
approximate algebraic multigrid has been proposed, which
focuses on the use of different features at different scales
rather than a fast exact solution of the single-grid problem.

Our section on video segmentation is close in spirit to this
approach. The recent work of Maire et al. [17] combines
traditional multigrid ideas with the option to use different
affinities at different scales.

3. Graph reduction model
This section provides the mathematical motivation for

the proposed reduction models. We briefly review the nor-
malized cut (NCut) and its relation to spectral clustering and
refer to [28] for more details. After stating the model of
equivalence from [21] in terms of the NCut, we introduce a
new re-weighting method for the reduced graph that is as-
sociated with the relaxed NCut objective.

3.1. NCut and spectral clustering

Consider a graph G = (V, E) with vertex set V and undi-
rected edges e ∈ E . We cast the segmentation problem as
a graph partitioning. The vertices in the graph represent the
pixels or superpixels of an image or video to segment. The
edges eij take weights from the pairwise affinities wij be-
tween the corresponding pixels or superpixels i and j.
NCut provides a clustering objective where the cluster sizes
are balanced by their volumes. For the case of partitioning
into two disjoint sets A and B, A∪B = V , A∩B = ∅, it is

NCut(A,B) =
cut(A,B)

vol(A)
+

cut(A,B)

vol(B)
, (1)

with cut(A,B) =
∑

i∈A,j∈B
wij and vol(A) =

∑
i∈A,j∈V

wij .

Determining the optimal sets A and B requires solving the
following minimization problem:

min f>Lf subject to Df ⊥ ~1, f>Df = vol(V),

and fi =


√

vol(B)
vol(A) if i ∈ A

−
√

vol(A)
vol(B) if i ∈ B

, (2)

where L = D −W is the (unnormalized) graph Laplacian,
W is the matrix containing the pairwise affinities wij and
D is the diagonal degree matrix with dii =

∑
j∈V wij .

Solving for NCut is NP-Hard. Its relaxation (allowing f to
take arbitrary real values) leads to spectral clustering:

min g>Lsymg = min
∑
i,j=1

wij

(
gi√
dii
− gj√

djj

)2

subject to g ⊥ D1/2~1, ‖g‖2 = vol(V), (3)

where g replaces f by a change of coordinates, i.e. g :=
D1/2f , and Lsym = I − D−

1
2WD−

1
2 is the normalized

graph Laplacian. The Rayleigh-Ritz theorem provides the
solution to (3) as the eigenvector corresponding to the sec-
ond smallest eigenvalue λ2 of Lsym.

4322



In what follows, we consider the case of two partitions, as
the mathematical formulation is simpler and more intuitive.
See [28] for a generalization to multi-partitionings in the
case of spectral clustering.

3.2. Equivalence of graphs

Given a point grouping {I1, . . . , Im} that separates the
image into disjoint superpixels and connects pixels in the
graph via must-link constraints, we want to determine a re-
duced graph GQ = (VQ, EQ), where the vertex set VQ =
{I1, . . . , Im} is reduced to the set of superpixels, and the
edges EQ describe pairwise affinities wQIJ between these
vertices. The new graph GQ should reflect the original vol-
umes in a meaningful way, allowing for a balanced seg-
mentation. This can be achieved by providing equivalence
to the original G in terms of the NCut in (2). A second
approach is motivated by finding equivalence in terms of
(3) (the spectral clustering relaxation), yielding a graph re-
weighting that leads to a different balancing term.

Equivalence of normalized cuts (GQ NCut)

Theorem 1. The NCut of partitions determined on the
graph GQ is the same as the NCut of the corresponding par-
titions on the original graph G if the affinity matrix WQ is
defined as

wQIJ =
∑
i∈I

∑
j∈J

wij (4)

Proof. Let us consider two arbitrary sets AQ and BQ parti-
tioning the graph GQ: AQ ∪BQ = VQ , AQ ∩BQ = ∅.
Based on AQ and BQ, we consider the corresponding par-
titions A and B of graph G: A = {i ∈ V|i ∈ I, I ∈ AQ}
and correspondingly for B.
Equation (4) defines the following relation among the vol-
umes of A and AQ (and consequently those of B and BQ):

vol(AQ) =
∑

I∈AQ,J∈VQ

wQIJ =
∑

I∈AQ,J∈VQ

∑
i∈I,j∈J

wij

=
∑

i∈A,j∈V
wij = vol(A)

(5)
and similarly vol(BQ) = vol(B).
Let us now consider the following partition function fi:

fi =


√

vol(B)
vol(A) if i ∈ A

−
√

vol(A)
vol(B) if i ∈ B

(6)

Von Luxburg [28] shows that fi is such that:

f>Lf =
1

2

∑
i,j∈V

wij (fi − fj)2
= vol(V) NCut(A,B)

(7)

Since Df ⊥ ~1 and f>Df = vol(V), [28] concludes that
optimizing for problem (2) corresponds to optimizing for
NCut, for which the given fi of Equation (6) is a solution.
A similar argument may be conducted to show that the fol-
lowing partition function fQI :

fQI =


√

vol(BQ)
vol(AQ)

if I ∈ AQ

−
√

vol(AQ)
vol(BQ)

if I ∈ BQ
(8)

is a solution for the NCut problem in graph GQ (where
the eigenproblem (2) is re-written in terms of fQI , LQ =
DQ −WQ, vol(VQ), vol(AQ) and vol(BQ) ).
Because of the relation between the volumes of Equation
(5), it follows that fQI = fi ∀i ∈ I . The solution to the
NCut problem (2) in GQ is therefore the same as in the orig-
inal graph G.
An alternative proof is provided in [21], which explicitly
considers volumes (here the diagonal matrix elements) and
affinities (off-diagonal terms).

While theoretically appealing from a graph perspective,
the previous equivalence focusses on the cut objective.
Given the fact that the optimal solution of (2) is usually not
found, we introduce a graph re-weighting that, under certain
conditions, provides equivalence to the spectral clustering
problem. We further show that, if these conditions are not
fulfilled, the proposed re-weighting optimizes a graph par-
titioning objective slightly different from NCut. Later we
will show empirically that optimizing this objective often
leads to favorable results.

Equivalence of spectral clustering (GQ SC)

Theorem 2. The graph GQ is equivalent to the original
graph G with corresponding partitions with respect to spec-
tral clustering, i.e. GQ preserves the relaxed spectral clus-
tering optimization problem (3), if

wQIJ =


∑
i∈I

∑
j∈J

wij if I 6= J

1

|I|
∑
i∈I

∑
j∈J

wij −
(|I| − 1)

|I|
∑
i∈I

∑
j∈V\I

wij if I = J

(9)
provided equal affinities of nodes of G constrained in GQ:

wik = wjk ∀i, j, k ∈ G : (i, j) ∈ I , I ∈ VQ (10)

Proof. Let us define LQ and LQsym to be respectively the un-
normalized and the normalized graph Laplacian of the re-
duced graph GQ.
Let us denote fQ its partition function. As for the full graph,
the partition function provides a clustering of the points, e.g.
by thresholding. It is common practise in spectral clustering
to use k-means on the eigenvectors to compute partitions.
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In the case of clustering into 2 partitions, fQ coincides with
the second eigenvector of the generalized eigenvector of LQ

and DQ. We refer the reader to [28] for a tutorial on the
topic.
We denote gQ the partition function related to fQ by the
change of coordinates gQ = (DQ)1/2fQ. gQ is directly
computed when eigendecomposing Lsym (second eigenvec-
tor for the 2-partition problem) and is used in the following
to ease notation. However, spectral clustering algorithms
generally use fQ to compute the partitions [23].
Proving equivalence consists of two parts:

1 Objective function. We prove that equivalent partition
functions f and fQ (respectively for the full G and the
reduced GQ graph) yield respective objective functions
g>Lsymg and (gQ)>LQsymgQ which are equal, except
for a scale factor (hence e.g. admit the same extrema);

2 Subjective conditions. We prove that, if f satisfies the
subjective conditions of the spectral clustering eigen-
problem (3) (volume and orthogonality) of graph G,
then the equivalent fQ also satisfies the correspond-
ing subjective conditions of eigenproblem (3) of graph
GQ. Similarly, if fQ satisfies the subjective conditions
of the eigenproblem (3) of graph GQ, then the equiva-
lent f also does so for the eigenproblem (3) of graph
G.

We first rigorously define fQ equivalent to f iff:

fQI = αfi + c α, c = constant ∀i ∈ I (11)

The two partition functions are equivalent in the sense that
they allow the same partitions. Given a threshold t for f , it
always exists the equivalent threshold for fQ (tQ = αt+ c)
yielding the same partitions. As for an example, in the case
of 2 partitions previously discussed, k-means is not affected
by translation and scaling. Note that α and c can be any,
with the exception of α 6= 0, as for a meaningful partition
function fQI . Equation (11) subsumes:

fi = fj ∀i, j ∈ I (12)

which holds due to symmetry, given the assumption of
equal affinities of elements of G constrained in GQ (10).

Let us start with part 1 of the proof. We aim to show
that:

fQI = αfi + c ∀i ∈ I ⇒ (gQ)>LQsymg
Q = βg>Lsymg

where α, c, β = constant
(13)

First we show that dii = dQII ∀i ∈ I:

dQII =
∑
K∈VQ

wQIK

=
∑
i∈I

∑
k∈V\I

wik +
1

|I|
∑
i,k∈I

wik −
|I| − 1

|I|
∑
i∈I

∑
k∈V\I

wik

=
∑
i∈I

∑
k∈V

wik
|I|

= dii

(14)
which leverages equal degrees of elements in G constrained
in GQ, following directly from the condition of equal affini-
ties (10), stated in the theorem. Then we show the rela-
tion among gQ and g, given equivalent fQ and f and corre-
spondingly g = D1/2f , gQ = (DQ)1/2fQ:

fQI = αfi + c√
dQIIf

Q
I = α

√
diifi + c

√
dii

gQI = αgi + c
√
dii

(15)

Finally we complete part 1 of the proof:

(gQ)>LQsymgQ

=
∑

I,J∈VQ

wQIJ

(
gQI√
dII
−

gQJ√
dJJ

)2

=
∑

I,J∈VQ

∑
i∈I,j∈J

wij

(
αgi + c

√
dii√

dii
−
αgj + c

√
djj√

djj

)2

= β
∑
i,j∈V

wij

(
gi√
dii
− gj√

djj

)2

= βg>Lsymg.

(16)
where β = α2 = constant.

Let us now consider part 2 of the proof.
Let us consider a partition function f satisfying the subjec-
tive conditions of orthogonality and volume of the spectral
clustering eigenproblem (3):

Df ⊥ ~1, f>Df = vol(V) (17)

Which may be rewritten:
∑
i∈V

diifi = 0 (orthogonality)∑
i∈V

diif
2
i = vol(V) (volume)

(18)

We must prove that the partition function fQ equivalent to
f (cf. Equation (11)) satisfies the subjective conditions of
eigenproblem (3) of graph GQ.
The subjective conditions of eigenproblem (3) of graph GQ
are the following:

∑
I∈VQ

dQIIfI = 0 (orthogonality)∑
I∈VQ

dQIIf
2
I = vol(VQ) (volume)

(19)
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By substituting for fQ from Equation (11) and for dQII from
Equation (14), the two conditions to prove are:

∑
I∈VQ

∑
i∈I

dii(αfi + c)

|I|
= 0 (orthogonality)∑

I∈VQ

∑
i∈I

dii
|I|

(αfi + c)
2

= vol(VQ) (volume)

(20)
Both equations are satisfied if α and c are defined as follows
(solutions of the above system of equations (20)):

α = ±

√√√√√ [vol(VQ)]
3∑

i∈V
dii
|I|

[
fi vol(VQ)−

∑
i∈V

diifi
|I|

]2
c = ∓

(∑
i∈V

diifi
|I|

)√√√√ vol(VQ)∑
i∈V

dii
|I|

[
fi vol(VQ)−

∑
i∈V

diifi
|I|

]2
(21)

Conversely, let us consider a partition function fQ satisfy-
ing the subjective conditions of orthogonality and volume
of the spectral clustering eigenproblem (3) for graph GQ:

DQfQ ⊥ ~1, (fQ)>DQfQ = vol(VQ) (22)

Which may be rewritten:
∑
I∈VQ

dQIIf
Q
I = 0 (orthogonality)∑

I∈VQ

dQII(f
Q
I )2 = vol(VQ) (volume)

(23)
Let us consider the partition function f equivalent to fQ (cf.
Equation (11)):

fi = α′fQI + c′ α′, c′ = constant ∀i ∈ I (24)

We must prove that this partition function f satisfies the
subjective conditions of eigenproblem (3) of graph G.
The subjective conditions of eigenproblem (3) of graph G
are the following:

∑
i∈V

diifi = 0 (orthogonality)∑
i∈V

diif
2
i = vol(V) (volume)

(25)

By substituting for f from Equation (24) and for dii from
Equation (14) the two conditions to prove are the following:

∑
I∈VQ

∑
i∈I

dQII(α
′fQI + c′) = 0 (orthogonality)∑

I∈VQ

∑
i∈I

dQII(α
′fQI + c′)2 = vol(V) (volume)

(26)

Both equations are satisfied if α′ and c′ are defined as fol-
lows (solutions of the above system of equations (26)):

α′ = ±
vol(V)

√
vol(V)√∑

I∈VQ |I| dQII
[
fQI vol(V)−

∑
I∈VQ |I| dQII f

Q
I

]2
c′ = ∓

√
vol(V)

∑
I∈VQ |I| dQIIf

Q
I√∑

I∈VQ |I| dQII
[
fQI vol(V)−

∑
I∈VQ |I| dQII f

Q
I

]2
(27)

This concludes the proof.

When the assumptions of Theorem 2 do not apply, (9)
raises a new balanced cut problem, which we denote density
normalized cut (DNCut):

Theorem 3. AQ and BQ are solutions of (3) in graph GQ,
reduction of G according to (9), iff A and B are solutions
in G of the DNCut problem:

DNCut(A,B) =
cut(A,B)∑
I∈AQ

vol(I)
|I|

+
cut(A,B)∑
I∈BQ

vol(I)
|I|

(28)

given A and B which respect the must-link constraints of
GQ: A = {i ∈ V|i ∈ I, I ∈ AQ} and similarly B.

Proof. We note that the different formulation of equiva-
lence does not affect the cost of the cut(AQ, BQ) (cf. Equa-
tions (4), (9) off-diagonal terms).
Equation (9) defines the following relation among the vol-
umes of AQ and those of the groupings I ∈ AQ:

vol(AQ) =
∑

I∈AQ,J∈VQ

wQIJ

=
∑
I∈AQ

 ∑
J∈VQ\I

∑
i∈I,j∈J

wij

+
1

|I|
∑
i,j∈I

wij −
|I| − 1

|I|
∑

i∈I,j∈V\I

wij


=

∑
I∈AQ

 1

|I|
∑
i,j∈I

wij +
1

|I|
∑

i∈I,j∈V\I

wij


=

∑
I∈AQ

vol(I)

|I|

=
∑
I∈AQ

∑
i∈I

vol(i)
|I|

=
∑
i∈A

vol(i)
I(i)

(29)
where vol(i), the volume of element i ∈ V , coincides with
dii, previously adopted, and I(i) is the function providing
the cardinality of superpixel I , to which element i belongs:

I : V → N (30)
i 7→ |I| (31)
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Based on this observation, we note that an alternative for-
mulation of DNCut is the following:

DNCut(A,B) =
cut(A,B)∑
I∈AQ

vol(I)
|I|

+
cut(A,B)∑
I∈BQ

vol(I)
|I|

(32)

=
cut(A,B)∑
i∈A

vol(i)
I(i)

+
cut(A,B)∑
i∈B

vol(i)
I(i)

(33)

which uses in the definition A and B and the function I(i).
Let us consider the partition function

fQI =


√

vol(BQ)
vol(AQ)

if I ∈ AQ

−
√

vol(AQ)
vol(BQ)

if I ∈ BQ
(34)

solution of problem (2) for the graph GQ:

DQfQ ⊥ ~1, (fQ)>DQfQ = vol(VQ) (35)

Let us further consider the partition function fi equivalent
to fQI :

fi =

 α′
√

vol(BQ)
vol(AQ)

+ c′ if i ∈ A

−α′
√

vol(AQ)
vol(BQ)

+ c′ if i ∈ B
(36)

We have already shown in Theorem 2 that fi is a solution of
the spectral clustering eigenproblem (3) under the assump-
tion of equal affinities for the element of G constrained in
GQ.
Let us now relax the problem and remove this assumption.
If we do so, fi still preserves the subjective conditions of
orthogonality and volume, for which the condition was not
used. However the objective function yields:

f>Lf

=
1

2

∑
(i,j)∈V

wij (fi − fj)2

=
1

2

(√
vol(BQ)

vol(AQ)
+

√
vol(AQ)

vol(BQ)

)2 ∑
i∈A,j∈B

wij+

1

2

(√
vol(AQ)

vol(BQ)
+

√
vol(BQ)

vol(AQ)

)2 ∑
i∈B,j∈A

wij

= cut(A,B)

(
vol(BQ)

vol(AQ)

vol(AQ)

vol(BQ)
+ 2

)
= cut(A,B)

(
vol(VQ)

vol(AQ)

vol(VQ)

vol(BQ)

)
= vol(VQ)

 cut(A,B)∑
I∈AQ

vol(I)
|I|

+
cut(A,B)∑
I∈BQ

vol(I)
|I|


= vol(VQ) DNCut(A,B)

(37)

Optimizing for spectral clustering in the reduced graph
GQ without the assumption of equal affinities corresponds
therefore to optimizing for DNCut in the original graph
G.

Both graph reductions of Theorems 1 and 2 yield results
that are superior to using superpixels without the proposed
reduction equations. Note that, in our application on video
segmentation in Section 5, the condition of equal affinities
in Theorem 2 always applies by construction.
While NCut and DNCut coincide for equally sized super-
pixels, DNCut provides a different balancing term if this is
not the case. Since the volume of a vertex set tends to in-
crease with its cardinality, NCut yields clusters that are to
a certain degree also balanced by their size. In DNCut, the
volumes of every superpixel are normalized by their sizes
such that the balancing is done purely based on the point
association. Thus, even large segments have to be justified
by their affinities. As shown in the following sections, this
leads to favorable results in image and video segmentation.

4. Image segmentation
The state-of-the-art hierarchical image segmentation al-

gorithm of [2] consists of three main components (illus-
trated in Figure 2). Local edge information is captured by
mPb, which is a linear combination of color, brightness,
and texture gradients at multiple scales and orientations.
More global information is provided by sPb, which is the
spectral decomposition of an affinity matrix of intervening
mPb contours among pixels and the computation of eigen-
vector gradients. This spectral part is mainly responsible
for the large consumption of memory and computational
resources. Finally a hierarchical boundary map with closed
boundaries is computed from the linear combination of mPb
and sPb (called global Pb, or gPb), via an oriented water-
shed transform (owt) and ultrametric contour map (ucm).

Our proposed graph reduction addresses the expensive
sPb step by grouping most certain pixel associations into
superpixels based on mPb and reducing the per-pixel affin-
ity matrix of [2] to a smaller matrix. The original matrix
corresponds to a graph G = (V, E), where the pixels rep-
resent the nodes V . They are connected to their neighbors
within a certain radius r (r = 5 in [2]), by edges eij ∈ E
that are weighted by the maximal intervening mPb bound-
ary along the line īj:

wij = exp

(
−max

p∈īj
max
θ

mPb(p, θ)

ρ

)
(38)

with constant ρ. To reduce the complexity of the spectral
analysis step, we pre-group the pixels into superpixels by
computing watershed segmentation with the mPb values; cf.
Figure 2. This pre-grouping is reliable in terms of bound-
ary recall, i.e. important boundaries are not missed. How-
ever, mPb does not allow for an exact boundary localiza-
tion. Therefore, in areas with mPb beyond a threshold τ ,
we keep a node for every single pixel in the reduced graph.
Finally we compute sPb from the reduced graph, where the
affinities are re-weighted according to either Theorem 1 or
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Figure 2. Workflow of [2] up to gPb. The computation of sPb on
the pixel graph G is replaced by computation in the reduced pixel-
and-superpixel graph GQ. Superpixels are provided by watershed
regions; in areas where (mPb)> τ the grouping is considered un-
certain and the single pixels are preserved as nodes. (τ = 0 means
using pixels just, i.e. the original problem, τ = 1 means using
only superpixels.)

Theorem 2. We denote the two graphs as GQ NCut and GQ
SC respectively.

4.1. Experimental evaluation

The effect of the graph reductions is evaluated on the
BSDS 500 benchmark [2]. In Figure 3 (left), we present a
study on the boundary precision-recall (BPR) and memory
footprint of the sPb affinity matrix versus the mPb threshold
τ , which determines superpixel aggregation within the wa-
tershed regions. We choose τ = 0.3, which does not alter
performance but reduces memory consumption by 50% and
sPb processing time from 71.5 to 33.5 secs. (This includes
the reduction cost, negligible in practise.)

Figure 3 (right) shows that the reduced graph GQ leads to
the same performance as the original algorithm of [2] using
the full pixel graph. The reduced graph GQ SC even yields
better results in the high-precision BPR range and, conse-
quently, achieves a higher average precision (AP) than the
original; cf. Table 1. Moreover, the eigenvectors (EV’s)
extracted by this reduction technique are a more compact
representation than those of the full graph: in Figure 2, the
first EV’s of the original graph are mainly influenced by the
global image coordinates (they emphasize groupings along
the horizontal, vertical or diagonal direction). By contrast,
the 4th eigenvector of the reduced graph already highlights
the bear in the image. Note that, both for the SC and
NCut reductions, the eigenvectors of the grouped pixels be-
come piece-wise constant and thus closer, as we conjecture,
to their respective non-relaxed problems, i.e. DNCut and
NCut. This may further explain the slight improvement in
performance.

Figure 3. (Left) Analysis of the superpixel/pixel parameter τ ver-
sus boundary precision-recall (BPR) performance (top) and mem-
ory footprint of the affinity matrix in sPb (bottom) on all train im-
ages in BSDS500 [2]. (Right) Comparison of BPR performance of
[2] against the proposed graph reduction methods on BSDS500.

5. Video segmentation
We use the graph reduction and re-weighting to develop

a video segmentation method that combines more discrim-
inative features computed at a coarse superpixel level with
the balanced graph structure of the pixel or superpixel level.
Moreover, the method benefits from the lower resource re-
quirements by computing the solution at the coarse level;
see Figure 4 for a sketch of the overall concept.

The method builds upon Galasso et al. [12], who con-
struct a graph G′ = (V ′, E ′) for the entire video sequence,
where nodes V ′ = {i1, i2, . . . , in} are pre-computed su-
perpixels. Edges E ′ connect each superpixel to its direct
spatial and temporal neighbors. Edge weights w′ij are pair-
wise affinities between superpixels i and j, computed from
motion, appearance and superpixel-shape features. In [12],
superpixels consist of the lowest level (level 1) of the hier-
archical image segmentation from [2], and a re-weighting
to account for the volume of superpixels is missing.

We use a second, coarser graph G′′ = (V ′′, E ′′), where
nodes V ′′ = {I1, I2, . . . , Im} represent coarser superpixels
(level 2) from [2]; see an example in Figure 5. Affinities
w′′IJ between superpixels at level 2 are determined based
on the features from [12], yet they are re-weighted to take
into account the better balance of the finer graph structure of
G′. (cf. Introduction, superpixels at level 2 show large vari-
ations in size which impinge the computation of balanced
cut solutions.) In this case, the reduced equivalent graph
GQ is identical to G′′ up to the re-weighted affinities wQIJ .

Re-weighting implies first a projection of edges e′′IJ to
the finer graph G′ = (V ′, E ′) of superpixels at level 1. This
is a higher-order expansion problem, since an edge e′′IJ con-
nects generally more than 2 superpixels at level 1. Clique
expansion [1] yields a possible mathematical formulation:

E ′ = {e′ij | ∃ e′′IJ ∈ E ′′, i ∈ I, j ∈ J} (39)

w′ij =
∑

e′′∈E′′:(I,J)∈e′′,i∈I,j∈J

w′′IJ . (40)

In fact, the costly computation of the clique expanded graph
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Boundary Benchmarks Region Benchmarks
Covering PRI VI

ODS OIS AP ODS OIS Best ODS OIS ODS OIS
[2] gPb-owt-ucm 0.73 0.76 0.73 0.59 0.65 0.74 0.83 0.86 1.69 1.48
GQNCut 0.72 0.75 0.74 0.59 0.65 0.74 0.82 0.86 1.70 1.48
GQSC 0.73 0.75 0.75 0.57 0.64 0.73 0.81 0.85 1.69 1.48

Table 1. Boundary and region benchmarks of [2] and our proposed methods on BSDS 500.

Figure 4. In video segmentation, discriminant affinities are com-
puted from the coarse graph G′′ = (V ′′, E ′′) among superpix-
els at level 2. Projection to finer graphs of superpixels at level 1
G′ = (V ′, E ′) or of pixels G0 = (V0, E0) and further reduction
are necessary to re-balance the volumes. We propose a reweight-
ing which avoids the expensive expansions.

G′ is not necessary, as the re-weighting can be done directly
on the coarser graph G′′.

According to Theorem 1, the reduced graph GQ preserv-
ing the normalized cut of G′ gets the weights:

wQIJ =


|I||J |w′′IJ if I 6= J

|I|(|I| − 1)
∑
K 6=I

w′′IK if I = J (41)

Proof. First we elaborate on the correspondence between
the clique-expanded affinitiesw′ij of graph G′ and the affini-
ties w′′IJ which we have estimated for the graph G′′ of su-
perpixels at level 2.
By construction, superpixels at level 2 {I1, I2, . . . , Im} do
not overlap I ∩ J = ∅. The clique expansion relations of
Equations 40 and 39 translate therefore into the following:

w′ij =


w

′′

IJ if I 6= J, i ∈ I, j ∈ J∑
K 6=I

w
′′

IK if i, j ∈ I, i 6= j

0 ifi = j

(42)

Note the property of the clique-expanded graph G′: all el-
ements {ik1 , ik2 , . . . , ikm} constrained within a superpixel
Ik have equal edges and affinities.
Next we elaborate on the affinities w′′IJ of graph G′′ and
their relationship to affinities wQIJ of graph GQ equivalent
to G′′.
We have:

wQIJ =
∑
i∈I

∑
j∈J

w′ij =


∑
i∈I

∑
j∈J

w′ij if I 6= J∑
i∈I

∑
j∈J

w′ij if I = J
(43)

by application of Theorem 1.
We first consider the case I 6= J :

wQIJ =
∑
i∈I

∑
j∈J

w′ij = |I| |J | w′′(I, J) (44)

where we have leveraged the property of equal edges and
affinities of constrained elements in clique-expanded graph,
cf. Equation (42). Then we elaborate on the case I = J :

wQIJ =
∑
i∈I

∑
j∈J

w′ij =
∑
i∈I

∑
j∈J

∑
K 6=I

w′′(I,K)


= |I| (|I| − 1)

∑
K 6=I

w′′(I,K)

(45)
by leveraging the same property of the clique-expanded
graph G′.
Combining cases I 6= J and I = J leads from Equation
(43) to the reweighting of Equation (41).

According to Theorem 2, the reduced graph GQ preserv-
ing the spectral clustering solutions of G′ gets the weights:

wQIJ =


|I||J |w′′IJ if I 6= J

(|I| − 1)
∑
K 6=I

(1− |K|)w′′IK if I = J (46)

Proof. Let us consider the property of equal edges and
affinities of constrained elements in the clique-expanded
graph G′, as discussed in the previous proof on Equation
(42). This property satisfies the assumption of equal affini-
ties of elements of G′ constrained in GQ of Theorem 2.
Let us then proceed to write the relation between the clique
expanded graph G′ and the reduced graph GQ:

wQIJ =


∑
i∈I

∑
j∈J

w′ij if I 6= J

1

|I|
∑
i∈I

∑
j∈J

w′ij −
|I| − 1

|I|
∑
i∈I

∑
j∈V\I

w′(ij) if I = J

(47)
which follows from the application of theorem 2.
Case I 6= J coincides with what shown in the previous
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riverboat SPX Lev.1 SPX Lev.2
Figure 5. Sample superpixels at level 1 (lowest layer) and 2
(ucm=0.12) extracted from a hierarchical image segmentation [2].

proof, cf. Equation (44). For the case I = J , we have:

wQIJ =
1

|I|
∑
i∈I

∑
j∈J

w′ij −
|I| − 1

|I|
∑
i∈I

∑
j∈V\I

w′(ij)

= (|I| − 1)
∑
K 6=I

w′′(I,K)− |I| − 1

|I|
|I||K|

∑
K 6=I

w′′(I,K)

= (|I| − 1)
∑
K 6=I

(1− |K|)w′′(I,K)

(48)
which leverages the property of equal edges and affinities
of constrained elements in the clique-expanded graph G′.
The reweighting of Equation (46) follows finally from
Equation (47) by combining cases I = J and I 6= J .

Rather than re-balancing with regard to a finer superpixel
resolution, it is also possible to efficiently recompute the
weights according to the original pixel level graph G0; see
Figure 4.

5.1. Experimental evaluation

[13] has recently provided a challenging video segmen-
tation benchmark based on the HD quality videos from [25],
the boundary precision-recall (BPR) metric from [2] and a
volume precision-recall metric (VPR) that reflects the prop-
erties of a good video segmentation, such as temporal con-
sistency. The benchmark also considers various subtasks
including a motion segmentation task, where only moving
objects are evaluated. We consider both the overall task and
the motion subtask.

In Figure 6 (top), we compare the different variants of
graph reduction to the state-of-the-art in video segmenta-
tion. We consider reduced graphs GQ equivalent to the
graph G′ at superpixel level 1 or the graph G0 over the orig-
inal pixels. Each version is considered with regard to equiv-
alence of the normalized cut (NCut), cf. Theorem 1, and of
the spectral clustering eigenproblem (SC), cf. Theorem 2.

Besides the precision-recall graphs, we also report
aggregate performance indicators (optimal dataset scale
[ODS], optimal segmentation scale [OSS], average preci-
sion [AP]) of BPR and VPR, for the general and motion
task. The existing methods in block A (with the exception
of [13]) are outperformed by the graph reduction methods
in block B. Among these variants, GQ ≡ G′ SC, using the
spectral clustering equivalence, performs best. The average
improvement to the best of those video segmentation meth-

Figure 8. In streaming video segmentation, the spectral graph
reduction allows a novel approach whereby, at each instant in
time t = i, only those nodes for which a grouping is available
with largest certainty are merged. According to the hypothesized
grouping, an equivalent reduced graph GQ1:i is determined, which
is carried over at the following instance in time t = t+1, iterating
the process. At time t = i the optimal (over frames 1 : i) video
segmentation is obtained by clustering the equivalent graph GQ1:i.

ods is 7.3% on the overall task and even 11% on the motion
subtask. Qualitative examples are shown in Figure 7.

Comparing the results for the graph G′′ of superpixels at
level 2 (without re-weighting) to results from [12], where
superpixels at level 1 are used without re-weighting, shows
that affinities estimated over larger superpixels are advan-
tageous. This is probably because they are computed over
larger homogeneous image areas where, e.g., motion can be
computed more reliably. Additionally re-balancing G′′ fur-
ther improves performance, especially with regard to VPR.

The algorithm of [13] (hierarchical image segmenta-
tion [2] propagated with optical flow) is only partially out-
performed by the proposed methods. This may be explained
by the more complex image features of [2], e.g. texture de-
scriptors. There is much to improve on the low level fea-
tures of [12] (mean color and motion), which we use here.
This is further substantiated by our better results on the mo-
tion tasks, where static image features play a less prominent
role.

Regarding runtime and memory usage, the algorithm of
[12] peaks for sequences like koala, panda and buffalos,
where the number of superpixels (nodes in graph G′) is
∼ 200k (k = 1000). For the same sequences, the num-
ber of superpixels at level 2 (nodes of GQ) is ∼ 65k. On
average, the number of superpixels reduces by a factor of 3,
which means that only 10% of the runtime and 20% of the
memory is needed.

6. Streaming video segmentation

In a streaming scenario new data becomes available only
sequentially and should be discarded after processing. In
the case of video segmentation, this yields two constraints:
i. future frames are not yet available and ii. only a limited
fraction of information from previous frames can be kept in
memory. The first constraint appears in all applications that
must make decisions in real-time1. The second constraint

1The definition of real-time depends on the application.
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General benchmark Motion subtask

BPR VPR BPR VPR
General benchmark Motion subtask Volume statistics

BPR VPR BPR VPR Length NCL
Algorithm ODS OSS AP ODS OSS AP ODS OSS AP ODS OSS AP µ(δ) µ
Human 0.81 0.81 0.67 0.83 0.83 0.70 0.63 0.63 0.44 0.76 0.76 0.59 83.24(40.04) 11.90
A. State-of-the-art video segmentation algorithms
∗Corso et al. [6] 0.47 0.48 0.32 0.51 0.52 0.38 0.21 0.21 0.11 0.37 0.35 0.23 70.67(48.39) 25.83
∗Galasso et al. [12] 0.51 0.56 0.45 0.45 0.51 0.42 0.34 0.43 0.23 0.42 0.46 0.36 80.17(37.56) 8.00
∗Grundmann et al. [14] 0.47 0.54 0.41 0.52 0.55 0.52 0.25 0.34 0.15 0.37 0.41 0.32 87.69(34.02) 18.83
∗Ochs and Brox [20] 0.17 0.17 0.06 0.25 0.25 0.12 0.26 0.26 0.08 0.41 0.41 0.23 87.85(38.83) 3.73
Xu et al. [29] 0.38 0.46 0.32 0.45 0.48 0.44 0.22 0.30 0.15 0.32 0.36 0.27 59.27(47.76) 26.58
Segm. propagation [13] 0.61 0.65 0.59 0.59 0.62 0.56 0.47 0.52 0.34 0.52 0.57 0.47 25.50(36.48) 258.05

B. Proposed graph reduction methods: GQ equiv. to SPX Lev.1 (G′) or pixel level (G0) graphs, wrt NCut or spectral clustering (SC)
∗GQ ≡ G′ NCut 0.62 0.66 0.54 0.54 0.57 0.52 0.39 0.49 0.28 0.51 0.54 0.48 69.08(40.91) 20.00
∗GQ ≡ G0 NCut 0.62 0.66 0.53 0.55 0.59 0.53 0.39 0.48 0.28 0.53 0.59 0.52 71.77(40.27) 20.00
∗GQ ≡ G′ SC 0.62 0.66 0.54 0.55 0.59 0.55 0.41 0.49 0.32 0.55 0.60 0.54 61.25(40.87) 80.00
∗GQ ≡ G0 SC 0.60 0.65 0.52 0.53 0.57 0.52 0.38 0.45 0.28 0.52 0.56 0.52 52.81(46.25) 100.00
∗G′′ (SPX Lev.2) 0.60 0.65 0.52 0.44 0.50 0.42 0.38 0.49 0.28 0.44 0.51 0.41 60.42(41.85) 18.00

C. Streaming algorithms: variants of methods (GQ ≡ G0 NCut) and (GQ ≡ G′ SC) above, wrt max number of nodes maintained
∗Stream5k GQ ≡ G0 NCut 0.61 0.67 0.52 0.55 0.59 0.53 0.39 0.50 0.28 0.52 0.58 0.50 73.31(40.33) 15.63
∗Stream500 GQ ≡ G0 NCut 0.61 0.66 0.52 0.55 0.59 0.52 0.40 0.48 0.27 0.51 0.56 0.48 68.61(41.21) 16.57
∗Stream5k GQ ≡ G′ SC 0.59 0.64 0.52 0.53 0.56 0.52 0.40 0.47 0.29 0.52 0.55 0.51 33.55(36.11) 116.78
∗Stream500 GQ ≡ G′ SC 0.58 0.62 0.51 0.51 0.51 0.51 0.37 0.43 0.28 0.52 0.53 0.51 3.17(11.49) 586.47

Figure 6. Comparison of (block A in table) state-of-the-art video segmentation algorithms [6, 14, 12, 29, 13], (block B) the proposed
spectral graph reduction methods and (block C) the streaming variants, on the benchmark of [13]. The plots show boundary precision-
recall (BPR) and volume precision-recall (VPR) curves, for the general benchmark and the motion segmentation subtask. The table shows
aggregate performance evaluations (optimal dataset scale [ODS], optimal segmentation scale [OSS], average precision [AP]) of BPR and
VPR and includes length statistics (mean µ and std. dev. δ) and no. of clusters (NCL). (*) indicates video frames resized by 0.5. Best
performances highlighted in each block. (Plots and blocks A, B) the proposed methods based on graph reductions (GQ ≡ G′ NCut,
GQ ≡ G0 NCut, GQ ≡ G′ SC, GQ ≡ G0 SC) outperform all recent methods but segmentation propagation [13] (see Section 5). (Blocks
A, B, C) The proposed streaming variants StreamX of two proposed reduction methods marginally decrease their performance and provide
state-of-the-art results. (X in StreamX indicates the maximum number of nodes maintained over the whole video.) (see Section 6.)

Image GT [14] [12] GQ ≡ G0 NCut GQ ≡ G′ SC [29] Stream500 GQ
Figure 7. Video segmentation results comparing the algorithms of [14, 12, 29] and our proposed spectral graph reduction methods to one
of the available ground truths [13] (we report for each algorithm the coarse-to-fine level with best performance in VPR). Both our best
performing methods (GQ ≡ G0 NCut, GQ ≡ G′ SC) qualitatively improve on the algorithm of [12], better discerning the visual objects.
The proposed streaming method (Stream500 GQ ≡ G0 NCut) provides similar results as its batch version (GQ ≡ G0 NCut).

appears as large amounts of data must be processed with limited memory resources.
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Some video segmentation algorithms from literature are
also available in streaming mode [14, 29, 4] (sometimes on-
line is used as a synonym), yet they all recur to a strict
Markov assumption (cf. [29]). This means that the seg-
mentation at the current frame is computed from the cur-
rent image Vi and the segmentations Si−1, ..., Si−n from
a fixed number n of previous frames. Often multiple im-
ages Vi, ..., Vm rather than a single image are considered in
a temporal window of a fixed size m.

Obviously, this suffers from early, suboptimal segmenta-
tion decisions. Especially when motion is necessary to dis-
ambiguate the appearance between the visual objects, nec-
essary information may only emerge at a later frame. While
in a streaming setting there is no way to avoid this problem
on the first frames, the lacking information at the beginning
should not affect the quality of the segmentation in the cur-
rent and future frames.

Rather than taking into account just information from a
fixed number of frames, we propose a more flexible data re-
duction where certain decisions are made immediately and
uncertain decisions are postponed to the time when the nec-
essary information is available. This concept is known as
deferred inference in tracking [22, 31].

The proposed graph reduction enables an implementa-
tion of this concept in video segmentation as illustrated in
Figure 8. Given a graph G1:i associated to the observed por-
tion of a video sequence V1:i = {V1, . . . , Vi}, we propose
to only merge those nodes for which a grouping is avail-
able with larger certainty, determining therefore a reduced
graph GQ1:i to carry over. At each point in time, the opti-
mal segmentation S∗1:i is provided by clustering the reduced
graph. The provided optimal solution from GQ1:i is equiva-
lent to G1:i under the conditions stated in Section 3, if the
optimal solution from G1:i is the superset of the groupings
in GQ1:i. Therefore, we formulate the streaming algorithm
from time i− 1 to i as two basic steps: i. input new frames
into the current graph, i.e. GQ1:i−1 ∪ Gi; ii. cluster the graph
into a superset of hypotheses and reduce it accordingly, i.e.
GQ1:i.

Implementation details. If looking for tens of seg-
ments, a superset of hypotheses may be given by thou-
sands of nodes (we experiment on this parameter). The
clustering step is an iteration of spectral clustering: com-
pute eigenvectors and cluster with k-means. Two extensions
are required for k-means: i. seed solutions from existing
groupings (clusters are initialized with the random parti-
tion method, using labels from the previous iterations when
available); ii. consider the multiplicity of the groupings in
the update of cluster centers (the estimated cluster means
are weighted by the node cardinalities).

6.1. Experimental evaluation

We evaluate the proposed streaming video segmentation
algorithms in the same setup as described in Section 5.1.
Figure 9 compares existing approaches [14, 12, 29] and se-
lected graph reduction variants from the previous section
(GQ ≡ G0 NCut, GQ ≡ G′ SC) with the proposed stream-
ing variants StreamX . X is the maximum number of nodes
maintained over the whole video. We vary this number from
5000 to 500, out of a total of ∼ 33000 nodes contained in
the full graph at level 2. Note that 500 nodes are as much
as the number of superpixels at level 2 within ∼1.5 frames.
The table in Figure 6 shows the corresponding aggregate
performance measures.

A good streaming algorithm should get as close as pos-
sible to the performance of its batch processing correspon-
dent. All proposed streaming variants only decrease perfor-
mance by a few percentage points, but still achieve state-of-
the-art results. In particular, streaming reduction based on
NCut preserves performance best. Its performance decrease
of 1.9% for Stream500 is very small compared to the 12.8%
decrease in the streaming extension [29] of Grundmann et
al. [14]. Streaming methods based on spectral clustering
maintain performance but provide less desirable segmenta-
tions (length statistics in the table in Figure 6). This is due
to the changing balance among clusters over time, e.g. ob-
jects entering the scene or zooming.

Both streaming variants further reduce runtime and
memory consumption. At each point in time, Stream500

only keeps in memory 500 nodes (∼1.5 frames) plus the
newly input f frames (1 ≤ f ≤ n depending on the ap-
plication). Given ∼ 330 superpixels at level 2 per frame,
the reduction stage runs spectral clustering on |VQ| ≈
500 + 330f . This reduces runtime and memory needs of
[12] to 5% and 2% respectively (we set f = 10 but incre-
ment GQ of 1 frame for increased robustness).

7. Conclusions

We have addressed the common practice in video seg-
mentation to work with graphs based on aggregated super-
pixels rather than single pixels. We have shown that the cor-
responding graphs should be re-weighted and analyzed two
formulations that maintain the solutions of the full graph
under certain conditions. Our experiments encourage the
use of superpixels in conjunction with one of the presented
re-weighting schemes. We have achieved state-of-the-art
performance in image and video segmentation. At the same
time runtime and memory consumption have been reduced
significantly. Further, we have introduced the concept of
deferred inference in streaming video segmentation, which
leads to top results also in this field.
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General benchmark Motion subtask

BPR VPR BPR VPR
Figure 9. Evaluation of streaming algorithms with BPR and VPR on the general benchmark and the motion segmentation subtask of [13].
The proposed streaming variants (dashed/dotted red/black curves) of our graph reduction algorithms maintain performance and outperform
video segmentation [14, 12] and streaming algorithms [29].
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