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This paper systematically analyzes the strengths and weaknesses of existing image warping algorithms

on the tasks of face recognition. Image warping is used to cope with local and global image variability

and in general is an NP-complete problem. Although many approximations have recently been

proposed, neither thorough comparison, nor systematic analysis of methods in a common scheme

has been done so far. We follow the bottom-up approach and analyze the methods with increasing

degree of image structure preserved during optimization. We evaluate the presented warping

approaches on four challenging face recognition tasks in highly variable domains. Our findings indicate

that preserving maximum dependencies between neighboring pixels by imposing strong geometrical

constraints leads to the best recognition results while making optimization efficient.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Automatic face recognition by reasoning about similarity of facial
images is a hard task in computer vision. Strong local variations in
expressions and illuminations, global changes in pose, temporal
changes, partial occlusions, as well as affine transformations stem-
ming from automatic face detection all contribute to rich intra-class
variability which is difficult to discriminate from inter-class dissim-
ilarity. In addition, often only a limited number of images per
individual are provided as references. In the most extreme case, only
one frontal image (mughot) is available (see Fig. 2), which makes it
difficult to learn a model capturing the natural variability. In this
work we analyze image warping algorithms which do not build any
specific facial models, but directly encode a deformation-invariant
dissimilarity measure used within a nearest neighbor classification
framework.

Many methods approach the image similarity problem in face
recognition by extracting local features from interest points or
regular grids and matching them between images. The similarity
is based on the quality and number of found matches [1–5]. The
main focus is put on finding an appropriate feature descriptor
which is a priori invariant to certain transformations [6–9] or can
be learned from suitable training data [10–12], but not on the
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matching procedure. Descriptors must be chosen or trained to
carry as much discriminatory information as possible making
these methods prone to overfitting on a certain task. In addition, no
geometrical dependencies between matches are considered, which
makes these methods fast, but also disregard image structure. In
contrast to related feature matching techniques, most of presented
warping approaches incorporate geometric dependencies while also
relying on dense local descriptors. This leads to smooth structure-
preserving deformations compensating for strong appearance
changes due to different poses and expressions (cf. Fig. 1) and
also makes the methods robust to occlusions and illuminations.

Another group of face recognition methods try to cover global
and local variability by using parametric shape models, such as
elastic graph bunch matching [13], active shape [14] and active
appearance models [15], or by imposing domain knowledge to infer
3D models from 2D images. For the latter, virtual pose images are
generated in [16] which can be used as additional reference images
and pose variability is learned from data in [17] to marginalize over
poses. In contrast to these approaches, the presented warping
algorithms are far less task specific as no prior knowledge on face
structure is involved in the design of corresponding methods.

Recent work [18–23] has shown increased research interest in
image warping approaches originating from one-dimensional dynamic
time warping in speech recognition. Direct extension to the two-
dimensional case leads to intractable models in which global optimi-
zation is NP-complete [24] due to the loopy nature of the underlying
graphical model. Therefore, approximations have been proposed,
which relax some of the first-order dependencies between single
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Fig. 1. Query image (a), mugshot reference image (d), and deformed reference

image (b) using smooth global warping algorithm. (c) shows the deformation grid,

where dark blue areas correspond to small absolute deformations and dark red

corresponds to strong absolute deformations. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this

article.)

Fig. 2. (a) Local and global face variability caused by changes in facial expressions

and partial occlusions (top row), and changes in pose (bottom row). (b) Only one

reference image per person is available.

Table 1
Structural constraints as presented in [30].

Constraints Monotonicity Continuity

Horizontal 0rui,j�ui�1,j r2 9vi,j�vi�1,j9r1

Vertical 0rvi,j�vi,j�1 r2 9ui,j�ui,j�19r1
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positions of the image grid during optimization. Zero-order warp-
ing [25] disregards all dependencies and thus is very efficient.
Pseudo-two-dimensional hidden Markov models (P2DHMM) have
been used for face recognition [26,27]. They can be calculated
efficiently using decoupled hidden Markov models (HMMs), but
cannot find good warpings in the presence of strong non-linear
variations and cannot even cope with rotations. The idea of
P2DHMMs was extended to trees [28] allowing for greater flex-
ibility at a cost of higher computational complexity. Additionally,
maximum a posteriori inference (MAP) in Markov random fields
(MRF) is receiving increased attention [20,18,19]. Efficient algorithms
like sequential tree-reweighted message passing (TRW-S) [29] opti-
mize all dependencies simultaneously and find good (local) optima
with a huge number of labels.

Although many warping algorithms have been proposed
recently, neither thorough comparison, nor systematic analysis in a
common scheme has been done so far. Each new warping method is
often seen as an incremental improvement over an existing approach
and thus usually compared to one baseline algorithm, whereas its
positioning in the global view on image warping is unclear. In this
work, we systematically analyze the strengths and weaknesses of
existing warping approaches by arranging them into a hierarchy of
four groups of methods in a global scheme. We assign each method to
a particular group respecting the dependencies which hold between
single image coordinates during optimization. In our analysis, we
gradually move on from simple locally optimal methods towards
more complex approaches which optimize all dependencies simulta-
neously. We thoroughly evaluate all presented algorithms on four
challenging face recognition tasks and show that preserving more
dependencies described by strong geometric constraints leads to the
best recognition performance.

The rest is organized as follows: We start with the problem of
image warping and describe structural constraints in Section 2. Then
we analyze advantages and disadvantages of existing warping app-
roaches in Section 3. We describe some practical issues in Section 4
and perform a thorough evaluation of presented approaches in
Section 5. Finally, we provide conclusion remarks.
2. Image warping

In this section, we will define the two-dimensional image
warping (2DW) analogously to [30] and present structure-preser-
ving constraints.

In 2DW, an alignment of a reference image RAFU�V to a test
image XAFI�J is searched for so that the aligned or warped image
R0AFI�J becomes similar to X. F is an arbitrary feature descriptor.
The alignment is a pixel-to-pixel mapping fwijg ¼ fðuij,vijÞg of each
position ði,jÞA I � J in the test to a position ðu,vÞAU � V in the
reference image. One is interested in an alignment ^fwijg max-
imizing the posterior probability:

^fwijg ¼ arg max
fwijg

pðfwijg9X,RÞ ¼ arg max
fwijg

pðX,R9fwijgÞpðfwijgÞ: ð1Þ

Assuming a Gibbs distribution, instead of maximizing Eq. (1),
we can also minimize an energy EðX,R,fwijgÞ ¼�log p ðX,R9 fwijgÞ

pðfwijgÞ which using first-order Markovian assumptions becomes:

EðX,R,fwijgÞ ¼
X

ij

dðXij,Rwij
Þþ

X
nAN ðijÞ

Tn,ijðwn,wijÞ

2
4

3
5: ð2Þ

The unary term dðXij,Rwij
Þ is a distance between corresponding

pixel descriptors and the pairwise term Tð�Þ is a smoothness
function in which first-order geometrical dependencies and con-
straints between neighboring pixels N can be implemented. The
optimal alignment wij is obtained through minimization of the
energy EðX,R,fwijgÞ. This optimal alignment does not change when
the smoothness is only computed w.r.t. horizontal and vertical
predecessors, changing Eq. (2) to

EðX,R,fwijgÞ ¼
X

ij

½dðXij,Rwij
ÞþThðwi�1,j,wijÞþTvðwi,j�1,wijÞ�, ð3Þ

where Thð�Þ and Tvð�Þ are horizontal and vertical smoothness
terms. Finding the global minimum of the energy in Eq. (3) was
shown to be NP-complete [24] due to cycles in the underlying
graphical model representing the image lattice. Therefore, suita-
ble approximations are necessary.

2.1. Structural constraints

It has been shown by [30] that obeying specific hard constraints
is necessary for obtaining a structure-preserving alignment. To this
end, constraints ensuring the monotonicity and continuity of warp-
ing have been proposed. These constraints given in Table 1 prevent
large gaps and mirroring of some areas in the deformed image. They
are conceptually similar to 0–1–2 HMMs in speech recognition and
replace the smoothness terms Th, Tv by constrained versions Tc

h, Tc
v

which return infinity if the constraints are violated. Note that
usually pairwise terms T are truncated terms, e.g. Tt ¼minðT,tÞ.
While this allows efficient optimization methods as for example fast
distance transforms [31], it is impossible to simultaneously guaran-
tee smooth warpings.
3. Warping algorithms

As stated before, it is NP-complete to find a global optimum of
Eq. (3). Therefore, either the criterion has to be relaxed, or the



Table 2
Dependency structures of warping algorithms. The lowest column shows dependencies between pixels by mutual color. In ZOW, all pixels are optimized independently.

For P2D-like methods, pixel displacements are dependent within each column, and an additional HMM (green) optimizes column alignments. In TSDP, each column is

optimized independently but estimates of horizontal branches are taken into account. Finally, graph-based methods try to optimize all displacements simultaneously. (For

interpretation of the references to color in this table legend, the reader is referred to the web version of this article.)

Zero-order First-order

Point-based Column-based Tree-based Graph based

ZOW P2D (þFOSE) (C-)TSDP (C-)TRW-S
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solution can only be approximated. In this section, we will review
four principled approaches which are summarized in Table 2. We
asses the strengths and weaknesses of all methods, and besides
for the most simple one provide extensions significantly improv-
ing their performances.

3.1. Zero-order warping

In the most simple approximation no geometrical dependen-
cies between neighboring pixels are considered, which leads to a
point-based optimization. The smoothness function is replaced by
a term TDðij,wijÞ which penalizes the absolute deviation of each
pixel ij from the position wij and restricts the maximum displace-
ment in horizontal and vertical direction to a warping range D.
This allows to rewrite energy function (2) as

EðX,R,fwijgÞ ¼
X

ij

½dðXij,Rwij
ÞþTDðij,wijÞ�: ð4Þ

Minimization of the energy (4) can be done efficiently by optimizing
the alignment of each pixel ij independently from the others. We call
this approach zero-order warping (ZOW) which has been intro-
duced, e.g. as Image Distortion Model in [32]. Despite this method
being by far the fastest warping algorithm, its downside clearly is
the lack of spatial information leading to unsmooth deformations.
Additionally, the warp range D has to be chosen w.r.t. the task to
disallow ‘good’ matches between images of different classes.

3.2. Pseudo two-dimensional warping

Another way of relaxing the original 2DW problem is to
decouple the horizontal and vertical displacements. The resulting,
column-based optimization is commonly denominated as Pseudo
Two-Dimensional Warping (P2DW) [27,33,26]. Here, the decou-
pling leads to separate one-dimensional optimization problems
which can be solved efficiently and optimally. An intra-column
optimization finds an optimal matching between pixels in corre-
sponding columns, while an inter-column optimization finds the
column-to-column matching. This leads to the energy function (3)
being transformed as follows:

EðX,R,fwijgÞ ¼
X

ij

½dðXij,Rwij
ÞþTvðvij,vi,j�1ÞþThðui,ui�1Þ�

¼
X

i

J � Thðui,ui�1Þþ
X

ij

½dðXij,Rwij
ÞþTvðvij,vi,j�1Þ�, ð5Þ

where the horizontal smoothness is only preserved between entire
columns by the slightly changed term Th. The optimization then
corresponds to solving two 1D HMMs, which can be optimized
globally using dynamic programming (DP) [27]. While the found
optimum is global, the resulting alignment can not be guaranteed to
be smooth since column-to-column matchings are optimized inde-
pendently. Also, all pixels of a column must be aligned to pixels of
one corresponding column, restricting the warping severely.

3.3. Extended pseudo two-dimensional warping

In [23], we proposed to permit horizontal deviations from the
column centers while retaining the first-order dependencies
between alignments in a strip. This results in a first-order strip
extension of P2DW (P2DW-FOSE). The proposed approach allows
for flexible alignments of pixels within a strip of width D of
neighboring columns rather than within a single column.

Especially for large D, it is important to enforce structure-
preserving constraints within a strip, since otherwise one facilitates
matching of similar but non-corresponding pixels, degrading the
discriminative power. Therefore, we model horizontal deviations
from column centers while enforcing the structure-preserving con-
straints given in Table 1. They can easily be implemented in the
smoothness penalty function Tv by setting the penalty to infinity if
the constraints are violated. Instead, we prevent the computation of
all alignments by considering only those permitted by the con-
straints, by hard coding them in the optimization procedure.

According to the explained changes, we rewrite Eq. (5) as

EðX,R,fwijgÞ ¼
X

i

J � Thðui,ui�1Þ

þ
X

ij

½dðXij,Rwij
ÞþTcvðwij,wi,j�1ÞþTDðui,ui,jÞ�: ð6Þ

Here, TD penalizes the deviations from the central column ui of a
strip, and TD ¼1 if 9ui�ui,j94D; Tcv is the smoothness term with
continuity and monotonicity constraints. Compared to P2DW, the
minimization of (6) is of slightly increased complexity, linearly
depending on parameter D.

Fig. 3(b) (bottom row) exemplifies the advantages of the pro-
posed approach over the original P2DW. It can clearly be seen that
the deviations from columns allow to compensate for local and
global misalignments, while the monotonicity and continuity con-
straints preserve the geometrical structure of the facial image. Both
improvements lead to a visibly better quality of image warping. We
accentuate that preserving structural constraints within a strip does
not guarantee global smoothness, since strips are optimized inde-
pendently. The latter can lead to intersecting paths in neighboring
columns.



Fig. 3. The reference image (d) is warped to the query image (a) using P2DW (top

row) and P2DW-FOSE approach (bottom row). The aligned reference image

(b) shows vertical artifacts for P2DW while P2DW-FOSE allows for much better

alignment due to flexible warping; (c) shows respective warping grids.

Fig. 4. Comparing TSDP without (top row) and with (bottom row) structural

constraints on an example of the CMU-PIE poses database. Note that for poses, the

alignment direction is reversed because of inaccurate cropping of the test images (cf.

Section 5.3). The alignment using hard structural constraints is much smoother, while

the original implementation contains obvious discontinuities both in the aligned

reference image and the alignment grid. The alignment has been computed using SIFT

features and applied to gray images. (a) Reference. (d) Test.
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3.4. Tree-based optimization

Tree-serial dynamic programming (TSDP) [28] relaxes 2DW by
representing the two-dimensional pixel grid as a series of individual
pixel neighborhood trees. Each pixel tree in has its own assignment
stem (column), but shares the horizontal branches with other trees.
This allows to optimize each tree in independently:

Ein ðX,R,fwijgÞ ¼
X

j

X
i

½dðXij,Rwij
ÞþThðwi�1,j,wijÞþTDðij,wijÞ�

"

þTvðwin ,j�1,win jÞ

#
: ð7Þ

The solution for Eq. (7) can be efficiently found by dynamic
programming (DP) and the final global alignment is a composition
of the alignments of the separate trees’ stems. In [28], no hard
pairwise geometrical constraints are enforced in the binary smooth-
ness function. In order to keep the complexity of the optimization
feasible, the authors penalize the absolute deviation of ij and wij by
the term TDð�Þ, s.t. TDð�Þ ¼ 0 if deviation rD and TDð�Þ ¼1 other-
wise. Therefore, we refer to this version of TSDP as TSDP-D.

3.5. TSDP with structural constraints

The original TSDP mainly suffers from the complexity being
quadric in D, which restricts optimization to small absolute
displacements. In [22], we presented constrained TSDP (CTSDP),
which includes hard geometric constraints for a much more
efficient optimization. We replace Tv,Th in Eq. (7) with Tc

h,Tc
v,

leading to increased effectiveness which allows us to discard
absolute position penalty term TD:

Ein ðX,R,fwijgÞ ¼
X

j

X
i

½dðXij,Rwij
ÞþTc

hðwi�1,j,wijÞ�þTc
vðwin ,j�1,winjÞ

" #
:

ð8Þ

Given the hard constraints in the smoothness terms, paths in the
DP recursion containing violated constraints have an infinite cost
and will be discarded at the top level. Therefore, we can discard
any recursion containing violated constraints or conversely, just
recurse through trees with allowed label combinations. DP can
easily be implemented by dedicated loops, leading to a complex-
ity in O(IJUV), while the complexity of the original TSDP-D is in
OðIJD4

Þ. The latter rapidly outgrows the former for increasing D,
because for each alignment wij all ð2Dþ1Þ2 possible alignments of
neighboring positions have to be considered. We visually com-
pare alignments resulting from TSDP-D with D¼ 17 and CTSDP in
Fig. 4, which shows that the alignment becomes much smoother
using the hard structural constraints. Here, we deform the test
image (d) to best fit the reference (a) and show both the deformed
test image in (b) and the deformed regular pixel grid in (c). Large
artifacts are visible in the deformed test image due to huge
displacement inconsistencies which are allowed in the original
TSDP formulation, although penalized. In CTSDP, constraints
between vertically neighboring pixels can be violated due to the
independent optimization of the column trees. This is not likely
though, since all column trees use the same horizontal branches.

3.6. Graph based optimization

Recent advances in Markov random field (MRF) inference makes
the direct optimization of criteria Eq. (3) feasible. However, for non-
convex priors, a globally optimal solution can not be guaranteed
[34]. Tree-reweighted message passing algorithm (TRW-S) [29]
ensures convergence to a (local) optimum and gives a lower bound
on the energy which is guaranteed to monotonically increase. This
can be utilized to asses the global quality of the local optimum
(which is global if equal to the lower bound), and can be exploited
for pruning nearest-neighbor (NN) search (cf. Section 4). TRW
iteratively approximates this lower bound, which is a dual of the
LP-relaxation of Eq. (3). TRW-S sequentially computes min-margin-
als FijðwijÞ, which are forced to be equal among subproblems, and
performs re-parameterization by passing messages between neigh-
boring nodes. Exploiting the structure of the subproblems, these
computations can be efficiently combined.

3.7. TRW-S with structural constraints

We have shown in [19] that using hard constraints in a warping
scheme approximating the optimal solution leads to smoother
warpings and increased recognition performance. Here, we will
briefly review the main idea.

Updating messages in TRW-S involves finding a local mini-
mum w.r.t. a pixel alignment pair ðw,w0Þ. Eq. (9) exemplary shows
the update of the forward message Mfw from (ij) to ðiþ1,jÞ w.r.t.
the label w0 and consists of minimizing over all labels w of the
sum of the corresponding pairwise potential, the respective
backward message and the local unary potential:

M̂
fw

ðijÞ,ðiþ1,jÞðw
0Þ ¼min

w
fTc
ðijÞ,ðiþ1,jÞðw,w0Þ�Mbw

ðijÞ,ðiþ1,jÞðwÞþdðXij,RwÞg:

ð9Þ

This minimum does not change when only pairs with
Tc
ðw,w0Þo1 are considered, therefore these allowed pairs can

be pre-computed and the minimization can be restricted to these



Table 3
Comparison of theoretical complexities of pre-

sented warping approaches.

Warping algorithm Complexity

ZOW IJð2Dþ1Þ2

P2DW 3IUð1þ JVÞ

P2DW-FOSE 3IUð1þ3DJVÞ

TSDP 3IJð2Dþ1Þ4

CTSDP 3 � 9IJUV

TRW-S N � 2IJðUVÞ2

CTRW-S N � 2IJð9UVÞ Fig. 5. 2D warping of reference to test image without (top row) and with (bottom

row) occlusion handling on a sample from the AR-Face occlusion database. (a) Test.

(b) Aligned reference, (c) deformation grid and (d) local similarity map between test

and aligned reference image. Dark blue pixels denote low similarity and red pixels

mean high similarity. The alignment computed using CTRW-S with SIFT features and

applied to gray images. (e) Reference. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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pairs. According to the constraints in Table 1, the maximum
number of allowed pairs is 9, leading to a speedup of the message
update from OððUVÞ2Þ to Oð9 � UVÞ. Since the updating of messages
is the main speed bottleneck of TRW-S, this provides a very
significant speed-up, especially if the reference image is large.

3.8. Complexity

Different assumptions on dependencies which hold between
single coordinates during image warping significantly influence the
complexity of optimization. Here we compare theoretical complex-
ities of the presented approaches. The results are listed in Table 3.
Clearly, ZOW has the lowest complexity among warping methods
due to independent local optimization of the displacement of each
pixel. The complexity of P2DW is remarkably larger due to respecting
first-order dependencies between coordinates in a column and entire
columns. Additional flexibility implemented in P2DW-FOSE comes at
a price of larger complexity, while the extension of pseudo two-
dimensional optimization to trees further increases the complexity of
warping, as then the optimization is also performed along tree
branches. Comparing the complexities of CTSDP to CTRW-S, the
optimization of CTSDP has an equal complexity to a single forward
pass of CTRW-S. Since the latter has to perform both a forward and a
backward pass, and additionally multiple iterations in order to
converge, the runtime of CTSDP is at least two times faster then
one single iteration of CTRW-S.
4. Implementation details

In this section we shortly describe implementation details
which make the presented approaches robust to un-alignable
pixels and help to reduce the overall complexity of recognition.

4.1. Occlusion handling

Facial occlusions represent a challenging problem for finding a
dense alignment between local features. In general, they can be
created by something as simple as sunglasses or a scarf, but also
some parts of face may be invisible due to, e.g. closed eyes or rotation
of the head (cf. Fig. 2). Therefore, in [22] we propose to use a local
distance thresholding to deal with occlusions. Formally, the truncated
distance function is expressed as ~dtðXij,Rwij

Þ ¼minðt,dðXij,Rwij
ÞÞ,

where t is a threshold. This has several advantageous properties.
First, it can be directly implemented in the local distance computa-
tion which is of minor complexity compared to the optimization.
Second, it both reduces the impact of occluded pixels on the total
distance and allows the optimization algorithms to more easily align
non-occluded pixels while keeping influence of the occluded pixels
low. It can be seen in Fig. 5 that thresholding produces a much
smoother alignment and in addition local distances are influenced far
less by occluded areas, since thresholded areas should be roughly the
same for all reference images.
4.2. Caching

We extract a 128-dimensional SIFT [6] descriptor at each
position of the regular pixel grid. As proposed by [35], we reduce
the descriptor to 30 dimensions by means of PCA estimated on
the respective training data and subsequently normalize each
descriptor to unit length. For speedup, we cache all pairwise
distances of the PCA-reduced SIFT feature descriptors during the
initialization phase. We also extend the local distance d to include
the local context of a pixel pair ij, wij. Assuming a context of 5�5,
the context-size normalized local distance becomes

d5�5ðXij,Rwij
Þ ¼

1

25

X
Dx

X
Dy

dðXiþDx ,jþDy
,RuijþDx ,vijþDy

Þ, ð10Þ

with Dx and DyA�2, . . . ,2. At image borders, the usable context
and therefore the normalization term becomes smaller. Naively
replacing d with d5�5 in Eq. (3) leads to a huge computational
overhead, since local contexts of neighboring pixels strongly
overlap and local distances are computed multiple times. We
thus cache all local distances on the fly.

4.3. Pruning

As we propose in [19], optimizing the deformation between a
test and a reference image can be stopped or even completely
skipped if the lower bound on the energy of current comparison
surpasses the lowest energy found so far. It was shown that the
lower bound of TRW-S can be exploited without loosing accuracy
due to its guaranteed monotonicity. For all other warping methods,
the sum of the lowest distances for all coordinates ij is used as a
weak lower bound. This sum can be found during the distance pre-
computation and thus speeds up the NN search, especially if a good
warping is computed early.
5. Results

In this section, we present experimental results and show that
preserving most neighborhood dependencies together with occlu-
sion modeling helps to noticeably improve the results on four
challenging face recognition tasks. First, we evaluate warping
algorithms in a setting when only one training image (mugshot) is
available, while test images have significant variations due to
partial occlusions and changes in facial expression and head pose.
Then, we show that when having more data the improved
methods can cope with strong misalignments due to face regis-
tration errors which make the expression- and illumination-
invariant face recognition even more challenging.



Fig. 6. Sample images from the AR Face database with automatically detected

faces.
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Fig. 7. Error rates of warping algorithms on the AR-Face sunglasses, session 2,

with different levels of distance thresholding.

Table 4
Recognition error rates [%] on the AR-Face occlusion task using

warping algorithms with and without occlusion modeling.

Model Occlusion handling

No Yes

No warping 39.22 38.10

ZOW 6.79 2.46

P2DW 7.21 1.91

P2DW-FOSE 6.00 1.48
TSDP-D 6.79 1.69

CTSDP 9.45 1.48
CTRW-S 8.27 1.69

SURF [1] 10.54 –

DCT [37] 3.59 –

Partial Dist. [12] 4.67a –

Stringface [41] 13.00 –

PWCMr [11] – 16.00

LGBPHS [8] 16.00 –
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AR Face: The database [36] contains frontal facial images with
different facial expressions, illuminations, and occlusions. The
images correspond to 126 persons: 56 women and 70 men. Each
individual participated in two sessions separated by 14 days.
During each session 13 pictures per person were taken under the
same conditions. Similar to [37], only a subset of 110 individuals
for which all variability is available is used in our experiments.

CMU-PIE. The CMU-PIE [38] database consists of over 41 000
images of 68 individuals. Each person is imaged under 43 different
illuminations, 13 poses and four various facial expressions. To
evaluate the methods on 3D transformations, we use a subset of
all subjects in 13 poses with neutral expressions.

Preprocessing: In the mugshot setting (AR Face Occlusions, AR
Face Expressions, CMU-PIE poses) the original face images were
manually aligned by eye-center locations [39], while in the
setting with more training data (AR Face VJ) faces were auto-
matically detected using publicly available OpenCV implementa-
tion of the Viola & Jones (VJ) face detector [40]. In both cases faces
were cropped to 64�64 resolution. See for samples Figs. 2 and 6.

Experimental setup: As proposed by [35], we extract PCA-
reduced SIFT feature descriptor [6] at each position of the regular
pixel grid and then normalize each descriptor to unit length. We
use a nearest-neighbor (NN) classifier for recognition directly
employing the obtained energy as dissimilarity measure and the
L1 norm as local feature distance. For comparison, we use our
publicly available implementation1 of the presented warping
algorithms except for CTRW-S for which we re-implement the
approach of [19].
a Used only a subset of occlusions.
5.1. AR-Face occlusions

We evaluate presented warping approaches on partially
occluded faces from the subset of the AR-Face database (cf.
Fig. 2). We use the neutral non-occluded faces from session 1 as
reference and all occluded faces from sessions 1 and 2 as test
images leading to 440 test and 110 reference images.

We empirically found a suitable occlusion threshold ðt¼ 0:7Þ
value on the sunglasses occlusion subset of session 2 together
with warping range D¼ 10 for TSDP-D and ZOW, and strip width
D¼ 5 for P2DW-FOSE. Results for different thresholds and meth-
ods are shown in Fig. 7. Interestingly, the optimal threshold leads
to a strong decrease in error. This value is very similar for all
algorithms and thus most probably depends on the feature
descriptor respective the distribution of the local distances. Too
small thresholds lead to high error as too much discriminative
information is pruned.

Comparison of the results with and without distance thresh-
olding is provided in Table 4. It can be seen that warping
algorithms with stricter dependencies and constraints suffer more
from occluded parts of the face. This confirms our assumption
that occluded pixels are not smoothed out by the global depen-
dencies, but instead propagate to the entire image decreasing the
overall quality of the match. In case of thresholding, all methods
except ZOW produce nearly equally excellent recognition results
1 http://www.hltpr.rwth-aachen.de/w2d/
with CTSDP and P2DW-FOSE achieving the best performance. Two
points should be noted:
1.
 CTSDP which implements structural constraints performs super-
ior to the original version with absolute constraints despite being
much more general and efficient. For TSDP-D, the warping range
D¼ 10 performs best, while CTSDP models deformations of
arbitrary magnitude.
2.
 Good performance of P2DW can be accounted to pre-aligned
face images, in which virtually no global rotations are present.
Additional flexibility implemented in the P2DW-FOSE helps to
further reduce the recognition error, as this approach is able to
cope with local rotations.

Compared to the state of the art, we conclude that all presented
warping methods clearly outperform the competition. Since all
competitive approaches are outperformed even by the ZOW despite
using zero-order-like matching algorithms themselves, it can be
concluded that the SIFT descriptor in combination with occlusion
modeling already provides a significant advantage. Here, [37] uses
DCT features extracted from non-overlapping blocks, LGBPHS [8] use
local Gabor binary pattern histograms and [1] evaluates both SURF
and SIFT features using a locally restricted matching scheme. Another
two non-learning approaches, namely Stringface [41] and Partial
Distance [12], employ matching procedure for recognition and hence
are similar to our method: the former one is inspired by a string-
based matching after representing a face as an attribute string, while
the latter one uses nonmetric partial similarity measure. In opposite

http://www.hltpr.rwth-aachen.de/w2d/
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to warping approaches, the remaining two methods build a model
from the training data, where SOM [42] learns a self-organizing map
feature representation from data and PWCMr [11] learns occlusion
masks in order to reconstruct invisible parts from other faces where
corresponding regions are not occluded. It is worth to point out that
being model-free and hence very general, warping methods are able
to achieve much better results, especially in comparison to the
learning-based methods.

5.2. AR-Face expressions

Appearance variability due to changes in facial expressions is
one of the challenging problems for face recognition algorithms.
In order to achieve high recognition accuracy the presented
approaches have to be able to cope with strong non-linear images
deformations often occurring due to expression changes. We thus
evaluate warping methods of a subset of the AR-Face database
containing three different expressions taken in each of the two
sessions and use the neutral expressions of Session 1 as reference
images. Detailed recognition results are presented in Table 5. It
can clearly be seen that both temporal and strong non-linear
variation due to the scream expression poses the most difficult
recognition task. All warping algorithms greatly outperform the
un-aligned distance, while again the methods with structural
constraints and additional flexibility of warping provide small but
noticeable improvements with CTSDP consistently achieving the
best performance. In comparison to the state of the art the
presented approaches achieve much better recognition results.
This is interesting since all competitive methods except for Partial
Distance [12] use an essentially larger amount of training data to
learn a representative subspace via Gaussian mixtures [43] and
self-organizing maps [3,12]. Although the competitors perform
worse than the presented warping algorithms, they are probably
more efficient.

5.3. CMU-PIE poses

Pose invariant face recognition is a difficult problem due to
ambiguities which contained in two-dimensional projections of
three-dimensional head pose transformations. As the presented
approaches do not rely on any 3D model, all variability has to be
inferred in 2D space. We test the ability of warping algorithms to
cope with head pose changes by evaluating them on the pose
subset of the CMU-PIE database. We consider the pictures of 68
individuals with neutral facial expression shown from 13 view-
points. The frontal image is used as reference and all remaining 12
Table 5
Recognition error rates [%] on the AR-Face expressions obtained by warping

algorithms with occlusion handling and comparison to the state of the art.

Model Session 1 Session 2 Avg.

Smile Anger Scream Smile Anger Scream

No warping 2.73 9.10 37.27 5.45 6.36 52.73 18.23

ZOW 0.00 0.00 3.64 0.91 1.82 17.27 3.93

P2DW 0.00 0.00 3.64 0.91 0.91 19.09 4.09

P2DW-FOSE 0.00 0.00 2.73 0.91 0.91 17.27 3.64

TSDP-D 0.00 0.00 3.64 0.91 1.82 17.27 3.94

CTSDP 0.00 0.00 4.55 1.82 0.91 13.64 3.49
CTRW-S 0.00 0.00 3.64 0.91 0.91 16.36 3.64

Partial Dist. [12] 0.00 3.00 7.00 12.00 14.00 37.00 12.00

Aw-SpPCA [3] 0.00 2.00 12.00 12.00 10.00 36.00 12.00

SOM [42] 0.00 2.00 12.00 12.00 10.00 36.00 12.00

SubsetModel [43] 3.00 10.00 17.00 26.00 23.00 25.00 17.00
poses are used as testing images. As reference (frontal) image is
more accurately cropped compared to the test images containing
much background (cf. Fig. 2 (bottom row)), we reverse the
alignment procedure and deform the test image to the reference
image, which helps to minimize the impact of background pixels,
as proposed in [18]. Following the same work, we automatically
generate and additionally use the left and right half of the
reference face images in order to recognize near profile faces.
Slightly larger threshold t¼ 1:1 is used for this task because of the
higher background variability. Also, for ZOW and TSDP-D warping
range D has to be increased to 17 leading to a prominent increase
in complexity. Further increasing D might decrease error rate, but
becomes infeasible because of the quadric complexity in TSDP-D
method.

Detailed recognition results of warping algorithms over poses
are shown in Fig. 8. It can be seen that obeying strong geometric
constraints leads to a large improvement in recognition accuracy
provided by CTSDP in comparison to TSDP-D. Also, P2DW-FOSE
noticeably outperforms P2DW due to more flexible deformation.
Overall, the enhanced methods outperform the weaker approaches
by a large margin when compared on difficult near profile facial
images (Fig. 8, left and right parts of the plot). Performance
difference is formalized in Table 6. According to the results, it is
clear that using structural constraints and occlusion modeling
is imperative for achieving excellent recognition performance. This
is supported by the fact that CTRW-S with occlusion handling
obeyed constraints in the models.

Table 6
Average error rates (%) on CMU-PIE groups of poses.

Model Near frontal Near profile Avg.

No warping 40.69 86.27 63.48

ZOW 0.49 31.61 16.05

P2DW 0.25 17.63 8.94

P2DW-FOSE 0.25 10.39 5.32

TSDP-D 0.98 25.36 13.17

CTSDP 0.25 7.35 3.80

CTRW-S 0.49 6.37 3.43

Hierarch. match. [18] 1.22 10.39 5.76

3D shape mod. [16] 0.00 14.40a 6.55a

Prob. learning [17] 7b 32b 19.30

a Missing poses.
b Estimated from graphs.



Table 7
Recognition error rate (%) on the subset of AR Face

with VJ-detected faces.

Model ER (%)

No warping 22.3

ZOW 3.1

P2DW 2.7

P2DW-FOSE 1.8
TSDP-D 2.2

CTSDP 2.1

CTRW-S 2.0

SURF-Face [1] 4.1

DCT [37] 4.7a

Av-SpPCA [3] 6.4a

a With manually aligned faces.
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outperforms all other weaker warping methods, as well as the
state-of-the-art approaches. In particular, CTSDP and CTRW-S out-
perform the hierarchical matching algorithm [18] that uses no
occlusion modeling and decouples horizontal and vertical displa-
cements, which allows for fast distance transforms but leads to a
less tight lower bound. Zhang et al. [16] use an additional profile
shot (pose 22) as reference and generate virtual intermediate poses
by means of a 3D model. Since they use more training data and
omit the most difficult pose in recognition, their experiments are
not entirely comparable. The method of [17] uses automatically
cropped images, which is an interesting task to be tackled with
warping algorithms.

Comparing the runtimes for one image warping on a recent
CPU, CTSDP is about ten times faster than TSDP-D (33 s vs. 350 s)
and also 1.5 faster compared to one iteration of CTRW-S (45 s).
P2DW-FOSE requires 43 s which is noticeably more than the
runtime of P2DW (30 s) due to additional flexibility which comes
at a price of higher complexity.
5.4. AR Face VJ

Face registration errors can have a large impact on the
performance of face recognition approaches [44] due to strong
misalignments of facial images. Here we show that, when using
more training data, enhanced warping algorithms are not only
able to cope with local variability caused by expression and
illumination changes, but also robust to global changes due to
registration errors. For that purpose, we use the subset of the AR
Face database with different expressions and illumination condi-
tions. Seven images of each person from the first session are used
for training and the same number from the second session for
testing. Simulating a real world environment we detect and crop
the faces automatically, as described before.

In-plane face rotations due to noticeable misalignments of
automatically detected faces can only be compensated by the
approaches allowing deviations from columns during image warp-
ing. We study the extent of required flexibility by evaluating the
strip width in P2DW-FOSE. The results are presented in Fig. 9 which
shows the recognition error for the increasing deviation d. It can be
seen that already the smallest deviation helps to remarkably reduce
the recognition error. Although the error decreases further after-
wards, the return is diminishing quickly. This gives rise to two
interpretations: on the one hand, it seems most important to allow
(even slight) horizontal movements of individual pixels. On the
other hand, big strip widths increase the chance of intersecting
column paths, making the deformation less smooth.

In Table 7, we summaries our findings and compare performance
of the presented methods with the results from the literature. It is
clear that increasing the flexibility by strip extension in P2DW-FOSE
greatly improves the accuracy compared to P2DW. Strong geome-
trical constraints in CTSDP and CTRW-S help to consistently improve
the performance over weaker TSDP-D, which again supports the
intuition that preserving image structure during the deformation is
2
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Fig. 9. Error rate on automatically detected faces for different strip widths D,

where D¼ 0 is equivalent to the P2DW.
a key to achieving good recognition results in the presence of strong
misalignments and non-linear image deformations.

The presented warping algorithms greatly outperform state-
of-the-art feature matching approaches [1–3] which are though
more efficient. Moreover, [2,3] use manually pre-register faces
and thus solve much easier recognition task.

5.5. Qualitative evaluation

Experimental results suggest that preserving strong neighbor-
hood dependencies is imperative for achieving high recognition
performance. For in-depth analysis we perform a qualitative evalua-
tion of the presented warping approaches and show computed
deformations for faces with partial occlusions, variable expressions
and poses. The results are shown in Table 8. For each task, we
provide a test image and resulting deformations of the reference
image belonging to the correct and competing class. As it can be
seen, occlusion handling helps to compute relatively smooth defor-
mations even by methods which does not preserve strong neighbor-
hood constraints (occlusion task). Smooth warping by those
methods can also be explained by a low variability in facial images
which look similar apart from sunglasses. However, when variability
increases (as in case of pose and expression), the visual difference in
image warpings gets more remarkable. ZOW and TSDP-D compute
unsmooth deformations of the reference image and tend to recon-
struct the test image more strictly. This makes it harder to
discriminate between the correct and competing classes, which
negatively affects the classification performance. This is important,
since in general the dissimilarity measure obtained by the warping
algorithms is not optimized for discriminativeness, but tries to find
the most similar transformation of the reference. Image deforma-
tions computed by P2DW and P2DW-FOSE are smooth for pose, but
suffer from column artefacts clearly seen in the expression task.
Expectedly, P2DW-FOSE can better reconstruct image areas having
small rotations (e.g. eyes of the reference image in the pose task)
compared to P2DW. Results obtained by CTSDP and CTRW-S clearly
show that suitable geometric models with structure-preserving
constraints are imperative to obtain a discriminative distance
measure as well as visually smooth warpings.
6. Conclusion

In this work we performed a systematic analysis and thorough
comparison of existing warping algorithms on the challenging
tasks of face recognition in highly variable domains. For better
understanding of the strengths and weaknesses of presented
approaches we arrange them into a global hierarchy of groups
of methods w.r.t. neighboring dependencies which hold during



Table 8
Qualitative evaluation of the presented warping approaches.
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optimization. By gradually proceeding from very simple locally
optimal methods towards more complex approaches which try to
optimize all dependencies simultaneously we showed that the
increasing number of neighborhood relations facilitates the com-
putation of smoother image warpings and leads to more accurate
face recognition results. Compared to other warping algorithms, it
becomes clear that using weaker smoothness paradigms is less
reliable when trying to cope with the variability induced by pro-
jections of 3D transformations. While results on the expressions and
occlusions tasks do not vary strongly over presented warping
approaches, significant differences can be observed on the CMU-
PIE database, where the approaches optimizing all dependencies
simultaneously perform the best while being almost as efficient as
more simple heuristics.
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