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Abstract

People detection is an important task for a wide range
of applications in computer vision. State-of-the-art meth-
ods learn appearance based models requiring tedious col-
lection and annotation of large data corpora. Also, ob-
taining data sets representing all relevant variations with
sufficient accuracy for the intended application domain at
hand is often a non-trivial task. Therefore this paper inves-
tigates how 3D shape models from computer graphics can
be leveraged to ease training data generation. In particular
we employ a rendering-based reshaping method in order to
generate thousands of synthetic training samples from only
a few persons and views. We evaluate our data generation
method for two different people detection models. Our ex-
periments on a challenging multi-view dataset indicate that
the data from as few as eleven persons suffices to achieve
good performance. When we additionally combine our syn-
thetic training samples with real data we even outperform
existing state-of-the-art methods.

1. Introduction

People detection has been actively researched over the
years due to its importance for applications such as mo-
bile robotics, image indexing and surveillance. The most
powerful methods for people detection rely on appearance-
based features paired with supervised learning techniques.
This is true for full-body models such as [8] as well as part-
based models such as [1, 13, 15]. Key to best performance
for these methods is to collect representative and substan-
tial amounts of training data which is a tedious and time-
consuming task and often limits further improvements.

The question we are asking in this paper is if the real-
ism of today’s computer graphic models such as [3, 4, 21]
can help computer vision to reduce the tedious task of data
collection and at the same time improve the quality and the
relevant variability of the training data. Even in the early
days of computer vision, computer graphics has been seen

Figure 1: Sample detections at the equal error rate by the model trained on
synthetic data generated from 6 people (top row) and on the game engine
data of [26] (bottom row). Even training on a subset of data obtained from
only 6 different people, we are able to outperform the detector trained on
much more variable game engine data. (see Sec. 4.1 for more details)

as a rich source for object models [7, 24, 27]. While these
early models lacked realism in appearance more recent ren-
dering techniques have indeed allowed to learn models for
objects such as cars using computer graphics models alone
[23, 28]. Also in the context of people detection computer
graphics models have been used to generate training data.
[26], e.g., reports promising results using a game engine to
produce training data. While game engines have improved
dramatically over the years they are still not as realistic as
more elaborate 3D human models such as [3, 4, 21].

The first major contribution is to explore the applica-
bility of a state-of-the-art 3D person model from the com-
puter graphics community to learn powerful people detec-
tion models. We directly compare to state-of-the-art sys-
tems based on the well-known pictorial structures model [1]
as well as the Histogram of oriented gradients (HOG) model
[8] learned from hundreds of manually labeled training data.
Our findings indicate that surprisingly good results can be
obtained training from as few as 1 or 2 people only and that
comparable results can be obtained already with 11 people.
The second main contribution is to compare these results
to prior work such as [26]. The third contribution is to an-
alyze different combinations of real and synthetic training
data thereby outperforming the current-state-of-the-art us-
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ing standard training data only. These results are obtained
for two prominent people detection methods, namely the
pictorial structures model and the HOG model.
Related Work. Using computer graphics to support ob-
ject modeling in general and human modeling in particular
is obviously not a novel idea. A large number of silhou-
ettes rendered with the animation software Poser has been
used e.g. to learn a multi-view shape model for humans
[18]. A simple 3D human model is used by [6] to generate
training data for infrared-based people detection. More re-
cently [26] used a game engine to generate training data for
a HOG-based detector. While promising results have been
obtained, the employed computer graphics models still lack
realism and thus seem suboptimal to train state-of-the-art
detection models that rely on appearance based features.

Using an existing pool of training images, another line
of research aims to increase training data size by a mor-
phable 2D model based on silhouette and appearance mod-
eling [10]. Improved performance w.r.t. the original pool
of training images has been obtained even though a signif-
icant part of the improvement can be achieved by simply
adding spatial Gaussian noise (often called jittering) to the
training data [22]. The reason for this is that the employed
morphable model is still inherently 2D and thus limited in
generating relevant shape and appearance variations.

Therefore in this paper we follow a different route by
leveraging the latest developments in 3D human shape and
appearance modeling pioneered by [3, 4]. This kind of mod-
els are truly 3D and as such can – at least in principle – gen-
erate all relevant 3D human shape variations. More specif-
ically we employ the model proposed in [21] and train the
corresponding appearance from a small set of recordings (in
the order of one to eleven people). Models trained on such
data are compared both to models trained from a large pool
of real training images as well as to models trained from
images generated by a game engine [26].

2. People Detection Models
In this section we briefly recapitulate the two prominent

people detection models used as the basis for our study. We
will start with the pictorial structures model [16] which has
been made popular by [1, 14] and then briefly introduce the
sliding-window detection model with HOG features [8].
Pictorial structures model. In this model the human
body is represented by a flexible configuration L =
{l0, l1, ..., lN} of N body parts. The state of part i is given
by li = (xi, yi, θi, si), where (xi, yi) denotes the part po-
sition in image coordinates, θi the absolute part orientation,
and si denotes the part scale relative to the part size in the
scale normalized training set. Given image evidence E, the
posterior of the part configuration L is given by

p(L|E) ∝ p(E|L)p(L) (1)

where p(L) is the kinematic tree prior and p(E|L) corre-
sponds to the likelihood of image evidenceE under the par-
ticular body part configuration L. The tree prior expresses
the dependencies between parts and can be factorized as

p(L) = p(l0)
∏

(i,j)∈G

p(li|lj) (2)

where G is the set of all directed edges in the kinematic tree,
l0 is assigned to the root node (torso) and p(li|lj) are pair-
wise terms along the kinematic chains. p(l0) is assumed to
be uniform, and pairwise terms are modeled to be Gaussians
in the transformed space of part joints [1, 14].

The likelihood term is decomposed into the product of
individual part likelihoods:

p(E|L) = p(l0)
N∏

i=0

p(ei(li)) (3)

where ei(li) is the evidence for part i at image location li.
As we use the publicly available implementation pro-

vided by [1], part likelihoods are computed by boosted part
detectors, which use the output of an AdaBoost classifier
[17] computed from dense shape context descriptor [5]. In-
ference is performed by means of sum-product belief prop-
agation to compute marginal posteriors of individual body
parts. For pedestrian detection, the marginal distribution of
the torso location is used to predict the bounding box, simi-
lar to the work of [1].

We slightly adapt the pictorial structures model of [1] to
use 6 body parts which are relevant for pedestrian detection:
left/right lower and upper legs, torso and head. Also, we
use a star prior on the part configuration, as it was shown
to perform on par with a tree prior [1] while making the
inference much simpler.

In the experiments reported below the part likelihoods as
well as the star prior are learned on different training sets
ranging from real images as used by [2], over game-engine
produced data as used by [26] to images produced from a
state-of-the-art 3D human shape model introduced in the
section 3.

Sliding-window detection with HOG features. In the
sliding-window detection framework the image is scanned
over all positions and scales and each window is repre-
sented by a feature and classified independently to contain a
pedestrian or not. Contrary to the pictorial structures model
pedestrians are often represented by a monolithic template
without the notion of body parts. In this work we employ
HOG features [8]. This feature has been shown to yield
state-of-the-art performance for pedestrian detection in a re-
cent benchmark [9]. For a 128×64 detection window HOG
features vote the gradient orientation into 8 × 8 pixel large
cell histograms weighted by the gradient’s magnitude. To
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Figure 2: Overview of the approach to generate training data from real examples using a morphable 3D body model that drives a 2D image deformation.

tolerate slight variations in position and scale the responses
are interpolated with respect to orientation and location and
distributed into neighboring bins and cells. More robustness
with respect to lighting conditions is achieved by normaliza-
tion over 2× 2 groups of cells. As a classifier we employ a
histogram intersection kernel SVM which can be computed
efficiently at test time [25]. To merge nearby detections on
the same object we employ mean-shift mode search as a
non-maximum suppression step.

3. MovieReshape: 3D Human Shape Model

In order to generate synthetic training data for the peo-
ple detection models, we adopt an approach to reshape hu-
mans in videos [21]. The core component of this work is a
morphable 3D body model that represents pose and shape
variations of human bodies. Starting from an image se-
quence of an individual this model allows to generate large
amounts of synthetic training data representing 3D shape
and pose variations of the recorded individual. Fig. 2 shows
an overview of the approach. To generate the required in-
put data, we ask subjects to perform movements in front
of a uniformly colored background in our motion capture
studio. Each person is captured with 8 HD cameras with a
resolution of 1296 × 972 pixels. First, the subject is seg-
mented from the background and the extracted silhouettes
are used to automatically fit the morphable 3D body model
to the input sequences. We then randomly sample from the
space of possible 3D shape variations that is defined by the
morphable body model. These shape parameters drive a 2D
deformation of the image of the subject. In the last step, an
arbitrary background is selected and is composited with the
image of the deformed subject. To generate large amounts
of training data for each subject, the random selection of the
3D shape parameters and the background is repeated several
times resulting in an arbitrary number of composited train-
ing images with different body shapes for all subjects, all
performed poses, and all camera views.

Morphable 3D body model. The morphable body model
is generated from a database of 3D laser scans of humans
(114 subjects in a subset of 35 poses). Additionally, body
weight, gender, age, and several other biometric measures
of the subjects are recorded [20]. From this data a mor-
phable 3D body model is built, similar to the well known
SCAPE model [3]. This morphable model is capable of rep-
resenting almost all 3D pose and shape variations available
in the database. The pose variations are driven by a skele-
ton in combination with linear blend skinning that is defined
once manually for the template mesh fitted to all 3D scans
in the database. The shape variations across individuals are
analyzed and represented via principal component analysis
(PCA). The first 20 PCA components are used capturing
97% of the variations in the observed body shapes.

Markerless motion capture. Given the segmented input
images, we employ a particle filter-based estimator [21] to
fit the parameters of the morphable body model to the ex-
tracted silhouettes. The estimated parameters are the 28
joint angles of the skeleton and the 20 PCA coefficients.
The approach selects those particles whose parameters pro-
duce the lowest silhouette error in all camera views.

Image deformation. Once we know the parameters of
the subject in the video this defines our deformation
source. The corresponding deformation target is defined
by randomly selecting different shape parameters from our
database. Thereby, we allow samples from 3 times the stan-
dard deviations that was observed in the 3D shape database
of scanned subjects (corresponding to a 99% confidence in-
terval). The difference between the 3D source and target
model defines 3D offset vectors for all the vertices of the
morphable model template mesh. As detailed in [21], a sub-
set of these 3D offset vectors can be used to drive a 2D de-
formation in the image plane. This 2D deformation is con-
sequently motivated by the knowledge about the shape vari-
ations of subjects in the database and the results are different
from simple image transformations (like non-uniform scal-
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Figure 3: Sample Reshape images of a person with modified height. The leftmost and the rightmost images represent extreme deviations and the middle
image corresponds to the original height; the 2nd and 6th images show deviations of 2σ, while the 3rd and 5th images correspond to the deviations of 1σ
from the original height.

ing or shearing). It is, e.g., possible that the depicted sub-
ject only becomes bigger at the belly, or gets shorter legs, or
enjoys more muscular arms. The image deformation is re-
peated multiple times with randomly sampled body shapes.

Background compositing. In the final step, we sample
randomly from a database of backgrounds containing im-
ages of urban scenes without pedestrians. We blend the
segmentation masks of persons with a Gaussian with σ of
2 pixels. Then, we composite the background with the de-
formed images of subjects by adding weighted background
and foreground pixel values together. See Fig. 3 for sample
outputs of the system varying the height of the person.

4. Results
This section experimentally evaluates the applicability of

training data obtained by the 3D human shape model de-
scribed in section 3. These results are compared to train-
ing data obtained from real images [2] as well as from a
game engine [26]. First, we briefly introduce the different
datasets used for training and evaluation. Then, we show
that already a small number of people in our training dataset
allows to achieve performance almost on par with the de-
tector trained on real data containing hundreds of different
people. We also show that combining detectors trained on
real and synthetic data allows to outperform the detectors
trained only on real data.

Reshape training dataset. In order to obtain synthetic
training data, we collected a dataset of 11 subjects each de-
picted in 6–9 different poses corresponding to a walking cy-
cle. Each pose is seen from 8 different viewpoints separated
by 45 degrees apart from each other. Synthetic images were
obtained as described in section 3. For each original image
we generated 30 gradual changes of height: 15 modifica-
tions making a person shorter and 15 making a person taller,
which results in almost 2000 images per person and 20400
positive training samples in total (see for samples Fig. 3).
We note that the applied transformation is non-linear and
therefore different from simply scaling the original image.
The MovieReshape model also allows to automatically ob-
tain bounding box as well as body part annotations which
are required for the pictorial structures model. The anno-
tations for the unmodified image are obtained by backpro-

jecting the morphable 3D model to the image plane. For
the reshaped images we apply the same inverse mapping to
these annotations which is used to morph appearance. This
is one of the key advantages which facilitates the genera-
tion of large amounts of data without the need to manually
annotate each image. All persons are rescaled to 200 pixel
in height and embedded in background images of driving
sequences containing no pedestrians. To record the back-
ground sequences a calibrated camera has been used and
thus synthetically generated pedestrians can be easily em-
bedded at geometrically plausible positions on the ground
plane. Some sample images are shown in Fig. 4 (top row).
We additionally perform smoothing along the shape bound-
aries separating persons from background in order to get
more realistic gradients for the shape context descriptor. Fi-
nally, we adjust the luminance of the embedded pedestri-
ans such that their mean approximately matches the back-
grounds’ mean luminance.

CVC training dataset. The second dataset contains syn-
thetic images produced by a game engine which were kindly
provided by the authors of [26]. These images of virtual
pedestrians are generated by driving through virtual cities
in the computer game Half-Life 2. The CVC dataset which
we were provided with consists of 1716 pedestrians shown
from arbitrary views with annotated bounding boxes. In
comparison to our Reshape dataset, the appearance variabil-
ity of the CVC dataset is significantly larger (c.f . Fig. 4,
middle row). We manually annotated the body parts of peo-
ple and also rescaled the images so that all subjects have the
same height of 200 pixels. Finally, we mirrored all images
in order to obtain more training data, resulting in 3432 im-
ages in total. This data is complemented by a negative set
of 2047 images of the same virtual urban scene environment
without pedestrians.

Multi-viewpoint dataset. The third dataset we used in
our experiments is the challenging multi-viewpoint dataset
[2] consisting of real images of hundreds of pedestrians
shown from arbitrary views. The dataset comes with 1486
part-annotated pedestrians for training, 248 for testing and
248 for validation. The images from the training set were
mirrored in order to increase the amount of training data.
Sample images for different viewpoints can be seen in Fig. 4
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Figure 4: Samples from the training data used in our experiments: Reshape images (top row), CVC virtual pedestrians (middle row) and multi-viewpoint
dataset (bottom row). Synthetic Reshape images look similar to the real ones while being much more realistic than CVC pedestrians. Real images often
contain persons wearing long or wide clothes and caring a bag, which does not occur in the synthetic data.

(bottom row).

Experimental setup. To evaluate all trained models we
use the multi-viewpoint dataset’s test data and are thus di-
rectly comparable to the state-of-the-art on this dataset [2].
Thus, whenever we use the multi-viewpoint training data we
refer to the experiment as Andriluka. For our experiments
which use the Reshape dataset we use the multi-viewpoint
dataset’s negative training data. Experiments on the CVC
data showed minor performance differences between using
the negative data provided with the CVC data or the nega-
tive data provided by the multi-viewpoint data. In the fol-
lowing we thus only report results obtained with the CVC
negative dataset. All results are provided as precision vs.
recall curves and throughout this chapter we use the equal
error rate (EER) to compare results. EERs for each exper-
iment are also reported in the respective plots’ legend. To
match ground truth annotations to objects detections we use
the PASCAL criterion [12], which demands at least 50%
overlap of ground truth bounding box and detection.

4.1. Results using the Reshape data

We start by evaluating the pictorial structures model’s
performance when it is trained on the Reshape data and
compare its performance to training on the multi-viewpoint
training dataset and the CVC training dataset.

Fig 5(a)-(c) show the results obtained using one, six, and
eleven people to train a generic pictorial structures model.
To understand the influence of different parameters of the
model we vary the employed subset of the Reshape data.
The green lines in figure Fig 5(a)-(c) show the results ob-
tained using the original training sequences acquired from

one, six and eleven people without applying the human re-
shape model of section 3. While the performance increases
with more people the maximum performance obtained with
eleven people is only 69.2% EER (equal error rate).

Although the wide range of height modifications allows
to cover 99% of data variability spanned in this direction,
having extremely short and tall pedestrians in the training
set can be unnecessary, since they are quite rare in real
world data. This consideration motivates to subsample the
Reshape data w.r.t. maximal and minimal height of subjects.
For that purpose we train pictorial structures model on sub-
sets of images corresponding to no modification, ±1, 2 and
3σ (standard deviation) from the original mean height of
people. The results for 1, 6 and 11 persons are again shown
in Fig. 5. It can be observed that in all cases including
the images with increasing number of height modifications
helps to improve performance.

In order to understand whether the improvement comes
from the increased variability of data rather than from the
increased amount of positive samples, we also train the
model on the set of original images enriched by jittering
[22]. The results are shown in Fig. 5(a)-(c) in yellow. As
expected, the performance of the model in the latter case is
worse, as nonlinear data transformation due to height mod-
ifications allows to capture more realistic variability of the
data than simple 2D jittering. The largest difference can
be observed when using a single person only for training
(c.f . Fig. 5(a)). In this case, jittering helps to improve the
performance from 18.7% to 40.1% EER, while training on
the data with height modification ±1σ results in an EER of
51.8%. When using six and eleven people the difference
between using ±2 or ±3σ becomes less pronounced. For
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Reshape 11 person, height ± 1 sigma (76.7%)
Original + jittering (76.1%)
Original (69.3%)

(c) 11 people

Figure 5: Results using Reshape data. Shown are results using 1 (a), 6 (b) and 11 (c) people to train a generic pictorial structures model. Each plot show
results obtained by [1] on real data (red), training on the unmodified training data (green), the reshape model with different variations of σ (violet, blue,
black) and results using jittering (yellow)
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Figure 6: Detection rate w.r.t. the number of different persons represented
in the training data. Already one person is enough to provide reasonable
variability in the Reshape data. The increasing number of persons results
in significant improvement which allows to achieve performance almost on
par with the detector trained on the real data. The model trained on CVC
data performs well, but noticeably worse than ours.

instance, for six people this difference constitutes 3.9% on
EER. As ±2σ corresponds to faster training times due to
less data we use this setting for the remainder of the paper.

Fig. 6 summarizes how the number of different persons
contained in the Reshape dataset affects performance. Sur-
prisingly, already training data from a single person obtains
an EER of 55.0% suggesting that this data already cov-
ers a reasonable variability (this performance can be fur-
ther improved using ±3σ as shown in Fig 5(a)). Not sur-
prisingly, increasing the number of people improves perfor-
mance considerably. More interesting however is the fact
that with as few as 11 people we are able to achieve per-
formance of 80.9% EER, which is almost on par with the
model trained on the real multi-viewpoint data (red curve,
82.5% EER) containing hundreds of different people.

Fig. 6 also contains a curve (in violet) for the model
trained on the CVC dataset. As expected, the model trained
on the virtual people and thus less realistic data performs
worse achieving 71.8% EER, despite much larger number
of different appearances contained in the dataset. For com-
parison, the model trained on a subset of our data from just

six persons achieves 76.1% on EER. We also provide some
sample detections obtained in this case which are shown in
Fig. 1. These results clearly show the advantage of using
our Reshape data for training.

4.2. Combining different datasets for training

In the previous section good results have been obtained
using the Reshape data from as few as eleven different peo-
ple as well as using training data from real images. There-
fore this section explores the possibility to combine mod-
els trained on different types of data in order to boost per-
formance further. In order to combine detectors, we fol-
low a detector stacking strategy (also used in [2]). More
precisely we train detectors on different datasets first and
then combine them by an another SVM that is trained using
the vectors of detector outputs as features (normalized by
mean/variance). For SVM training, we use the validation
set provided with the multi-viewpoint dataset.

We consider two different settings. First, we consider
the combinations of the models trained on all viewpoints of
the corresponding data, as it is done in the previous section.
The results are shown in Fig. 7(a), where single detectors
are denoted by solid lines, and combined ones are marked
by dotted lines. The combination Andriluka+CVC (84.1%
EER) improves performance slightly over Andriluka alone
(82.5% EER) whereas the combination Reshape+CVC
(79.9%) does not improve performance w.r.t. Reshape
(80.9%). The combination Reshape+Andriluka (85.8%)
does improve both over Andriluka alone as well as Reshape
alone. Further adding CVC (Reshape+Andriluka+CVC)
slightly improves the performance achieving 87% EER.
Overall this combination obtains the best performance re-
ported in the literature for this setting (multi-viewpoint pic-
torial structures model). The combination Reshape+CVC
performs similarly to Reshape data alone. This might be
due to the fact that in both types of data subjects wear tight
clothes such as trousers, jackets and T-shirts, but no coats or
dresses which sometimes occur in the test data. Addition-
ally this combination suffers from less realistic appearance
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(a) Combination of generic detectors
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(b) Combination of viewpoint specific detectors

Figure 7: Combination of generic detectors (a) and viewpoint specific de-
tectors (b). In both cases, the combination of our detector with the one
trained on the real data helps to improve detection performance.

of the virtual pedestrians. Hence, the additional CVC sam-
ples are not complementary to the Reshape samples. This
intuition is also confirmed by a noticeable improvement ob-
tained by combining the detector trained on Reshape data
with the one of [2] trained on real multi-viewpoint data.
As quite a few images in the real multi-viewpoint training
set contain persons wearing long clothes the training data
and thus the detectors are more complementary. For the
same reason, the combination of the CVC detector and the
Andriluka detector performs better than Andriluka’s detec-
tor, though the combination’s performance is slightly worse
than the combination with the Reshape data.

The second setting explored in this section is to com-
bine not only one detector trained on each dataset but to
first train viewpoint-specific detectors on appropriate sub-
sets of the different data and then train a stacked classi-
fier on combinations thereof. The main advantage is that
the part detectors as well as the kinematic tree prior are
more specific for each view and thus more discriminative.
The results are shown in Fig. 7(b). First, the combination
of 8 viewpoint-specific detectors trained on Reshape data
clearly outperforms those trained on CVC virtual pedes-
trians (79.3% against 76.1% EER) which again shows the
advantage of training on our synthetic Reshape data. How-
ever, the performance achieved is still below the results pro-
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Figure 8: Performance of the sliding window detector of on different
types of data. Similar to pictorial structures model, the best performance
achieved when trained on human reshape together with real data. Detector
trained on CVC pedestrians again performs worst.

vided by [2] (red curve) who combined 8 viewpoint-specific
detectors, 2 sideview detectors that contain feet and one
generic detector trained on all views. By enriching this set
of detectors by 8 viewpoint-specific and one generic detec-
tor trained on human Reshape data, we are able to outper-
form the results of [2] increasing the detection rate from
88.6% to 90.3% EER. The 8 CVC viewpoint-specific de-
tectors are not complementary enough to further boost per-
formance w.r.t. the combinations mentioned above.

4.3. Sliding-window detection using HOG

For the combination of different datasets we additionally
verified our findings for a sliding-window detector frame-
work (see Fig. 8). For this experiment we trained a generic
detector for all viewpoints consisting of a monolithic HOG
feature representation [8] combined with a fast histogram
intersection kernel as classifier [25]. We used the exact
same training data as for the experiments reported above.
Overall the results obtained are slightly below the pictorial
structure model’s results in Fig. 7(a). This may be explained
by the test set’s difficulty, which contains people seen from
all viewpoints and under all poses for which a part-based
representation is favorable. As for the pictorial structures
model the combination of the Reshape data with the multi-
viewpoint data provided by Andriluka obtains best perfor-
mance with an EER of 82.1%. When we additionally add
the CVC virtual samples the performance drops to an EER
of 79.2% which can be explained by the less realistic ap-
pearance of these samples. However, both combinations
outperform the detector which is only trained on data by
[2] (EER 75.9%). Consistent with our finding for the pic-
torial structures model, the performance drops to an EER
of 73.6% when the CVC data is added. Also the detector
trained only on the Reshape data (EER 71.0%) performs
worse than the detector trained on real data. Similarly to
the real multi-viewpoint data, the combination of Reshape
with CVC data decreases performance (EER 69.1%). The
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performance with the detector only trained on the CVC vir-
tual samples is substantially worse. Interestingly Marin et
al. [26] have reported equal performance of virtual samples
and their real data when a sliding-window size of 48 × 96
pixels is used. This might be explained by the fact that real
data and virtual data appear more similar on the lower reso-
lution DaimlerDB [11] automotive test data (pedestrian me-
dian height is 47 pixels), while for higher resolution (me-
dian pedestrian height on the multi-viewpoint test data is
184 pixel) the classifier might loose performance due to un-
realistic appearance. Overall we find that the results for the
sliding-window detector framework to be consistent with
the results obtained by the pictorial structures model lead-
ing to the same conclusions. We would also like to high-
light that a detector trained on the combination of multi-
viewpoint and Reshape data clearly outperforms a detector
which is only trained on real multi-viewpoint data.

5. Conclusion
This paper explored the possibility to generate synthetic

training data from a state-of-the-art computer graphics 3D
human body model (called Reshape data in the paper).
Learning people detection models from as few as 11 peo-
ple enabled to achieve performance nearly on par with
state-of-the-art systems trained on hundreds of manually
labeled images. This result has been obtained for two of
the best known people detection models, namely the picto-
rial structures model (in two different settings) as well as
the HOG-detector. Using less realistic training data gener-
ated from a game engine [26] has led to far less compelling
results. Combining the detectors trained on the Reshape
data with detectors trained on the manually labeled data has
allowed to outperform the state-of-the-art for challenging
multi-viewpoint data introduced by [2].

Considering the fact that only 11 people have been
recorded and used to train the respective appearance mod-
els the results reported in this paper are indeed promising.
In fact, using recordings from several hundreds of people
should allow to reach performance levels that are beyond
what can be reached with today’s manually and tediously
labeled data. To further increase the variability in appear-
ance we also envision the combination of the Reshape data
generation with an additional model for clothing generation
such as Eigen Clothing [19].

Acknowledgements. We would like to thank Javier
Marin Tur for provided dataset of virtual pedestrians.
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