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Abstract

Semantic road labeling is a key component of systems
that aim at assisted or even autonomous driving. Consid-
ering that such systems continuously operate in the real-
world, unforeseen conditions not represented in any con-
ceivable training procedure are likely to occur on a regular
basis. In order to equip systems with the ability to cope with
such situations, we would like to enable adaptation to such
new situations and conditions at runtime.

Existing adaptive methods for image labeling either re-
quire labeled data from the new condition or even operate
globally on a complete test set. None of this is a desirable
mode of operation for a system as described above where
new images arrive sequentially and conditions may vary.

We study the effect of changing test conditions on scene
labeling methods based on a new diverse street scene
dataset. We propose a novel approach that can operate
in such conditions and is based on a sequential Bayesian
model update in order to robustly integrate the arriving im-
ages into the adapting procedure.

1. Introduction

Driving assistance systems have been rapidly evolving
lately due to a constantly increasing interest in real-world
application as well as studies conducted in the field of com-
puter vision. An important task of such systems is road
scene labeling in order to derive the semantic structure of
the observed scenes. One of the big challenges is making
such systems robust so that they can reliably operate in a
wide range of conditions. However, capturing and train-
ing every possible condition a car can encounter throughout
years of driving seems to be an impossible task.

Recently, there has been an increased interest in ap-
proaches of domain adaptation [11, 9] in computer vision
that are able to adapt existing classifiers to new domains
and conditions. These require supervision from the target
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Figure 1: Given an initial model, trained on existing data
with groundtruth labels, our algorithm simultaneously la-
bels images as they arrive and updates the model in a robust
manner.

domain, that can not be provided by the envisioned systems
that continuously operate in the real-world. Existing adap-
tive methods [1] allow the use of machine generated labels
in order to refine the classifier and help it to adapt to chang-
ing conditions. However, they perform only global adap-
tation, for which they require access to the whole test set.
Again, this is against the idea of a continuously operating
system.

In contrast, we aim at an adaptive algorithm that is able
to perform adaptation on the fly. Therefore, this paper pro-
poses a sequential bayesian update strategy that pursues
multiple model hypothesis for semantic scene labeling. Fig-
ure 1 presents an overview of how our algorithm works. In
order to circumvent typical problems of online learning by a
“self-training” procedure, we perform model updates under
the assumption of a stationary label distribution.

The main contributions of this paper are: (1) We present
a new dataset of diverse road scenes that allows us to study
the effect of drastic changes between training and test fea-
ture statistic for semantic scene labeling. (2) We evaluate
state-of-the-art scene labeling techniques to provide an ini-
tial benchmark on this new challenge set. (3) We propose a
novel method for sequential model update in a continuous
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learning and prediction setting. It is based on a Bayesian
update under structured scene prior. The evaluation on our
new challenge dataset shows performance improvements of
up to 10% compared to non-adaptive baselines.

2. Related Work
Road scenes labeling has been studied for a long time

and is predominantly addressed as a labeling problem mod-
eled by Conditional Random Fields (CRFs) [10]. Lots of
work has gone into improving the unary potentials [4, 14, 7]
as well as the connectivity [8]. Recent advances include:
Wojek et al. [15] who used appearance-based features and
dynamic CRF, Brostow et al. [4] who used structure from
motion point clouds, Alvarez et al. [2] used appearance fea-
tures based on illuminant invariance, and Structured Class-
Labels [7] that model unaries of label patches rather than in-
dividual pixels. While exciting progress has been achieved
in this domain, these technique do not have the ability to
adapt to changing visual conditions.

Domain adaptation techniques [11, 9] can help to solve
this problem, but they require at least some sample instances
with ground truth labels from the target domain. In contrast,
we are aiming for an algorithm which is able to perform
adaptation without any possible access to ground truth la-
bels at test-time.

Alvarez et al. [1] considered the setting of using machine
generated labels at test time for street scene segmentation,
but their approach requires access to the whole test set and
the quality heavily depends on acceptance threshold param-
eter. The latter defines which new samples are accepted or
rejected based on their likelihood and it cannot be chosen
automatically or optimized for. It can be chosen by hand or
grid search and therefore suffers from being tuned to a par-
ticular dataset. In contrast, our method is targeted at dealing
with a stream of incoming images, pursues multiple model
hypothesis simultaneously and proposes a more principled
way of dealing with the acceptance threshold of new sam-
ples for the model update.

3. Sequential Model Update for Semantic Im-
age Labeling

As we aim for vision systems that continuously operate
in the real-world, unforeseen conditions not represented in
the training set are likely to occur. In order to equip systems
with the ability to cope with such situations, we would like
to enable adaptation to such new situations and conditions.

There is a large body of work on adaptive learning
method which allow the update of models at test time. How-
ever, predominantly the availability of labeled data is as-
sumed. If the new data is assumed as unlabeled, we enter
the regime of semi-supervised or transductive learning. In
such settings, the availability of the full test set is assumed,

which is not practical for any continuously operating sys-
tem.

Therefore we investigate ways how to achieve a sequen-
tial model update based on lately arrived, unlabeled data.
Such approaches are often associated with the term “self-
training”. They are troubled with effects of “model drift”,
which denote effects that occur when erroneous predictions
on the test data are used to update the model. Due to
these problems and their unprincipled nature, they can di-
verge and instead of benefiting from the new data, deterio-
rate in performance. In this section, we first describe how
such “self-training” method are typically formulated, then
describe how to exploit scene priors and finally propose a
new method that improves on “self-training” by a Bayesian
model update.

3.1. Naı̈ve Model Update

Typical self-training approaches are based on a two step
procedure. First, a lately arrived batch of images is labeled
using the current model. Second, after an optional threshold
on a confidence rating, these samples are used to update/re-
train the model. In more detail, we get an output probability
distribution P (x(i,j)) from our classifier for each pixel (i, j)
and the predicted class-label for it

c∗ = argmax
c∈Y

P (x(i,j) = c). (1)

Then, as in such setting there is no way of checking whether
the given labeling is correct or not, we take features of only
those pixels, for which the following holds

P (x(i,j) = c∗) > λ, (2)

where λ is a acceptance threshold parameter. High proba-
bility P (x(i,j) = c∗) should indicate high confidence of the
classifier in the predicted label. This is a completely heuris-
tic approach, as the classification of the test data is only an
approximation to the un-accessible groundtruth. The pre-
viously described problems of model drift stem from this
approximation.

3.2. Model Update under Scene Prior

It was mentioned in the previous section, that taking
new samples with the predicted labels which have high
confidence is not necessarily a reliable way of updating
the model due to inaccuracies in the intermediate models.
While we want to be robust w.r.t. changes in the feature
distribution, stationarity of the label distribution is a milder
assumptions in many scenarios. We adopt ideas from J. Al-
varez et al. [1] who employ a pixel-wise, normalized class-
histogram on the off-line data as a prior distribution to
weight the output probability distribution of the classifier
at testing time.



In detail, we compute histogram for each pixel and after
per-pixel L1-normalization we get a prior P (i,j)

pr for each
pixel (i, j), i = 1, . . . ,Wpr, j = 1, . . . ,Hpr. In our ex-
periments images in the testing dataset all have various di-
mensions, so we perform nearest-neighbor sampling from
the prior distribution P

(i,j)
pr . Then at testing time output

probability distribution P (x(i,j)) for all pixels (i, j), i =
1, . . . ,W, j = 1, . . . ,H from our classifier for an image
with dimensions W ×H is element-wised multiplied with
the corresponding prior

P̃ (x(i,j)) ∝ P (x(i,j))P
(biHpr

H c,bj Wpr
W c)

pr . (3)

This is used for accepting or rejecting new training exam-
ples on a per-pixel-basis

P̃ (x(i,j) = c∗) > λ, (4)

where c∗ is given by (1) and λ is some predefined thresh-
old parameter. We take the corresponding pixel’s features
together with the predicted label c∗ as a new sample if (4)
holds.

3.3. Sequential Bayesian Model Update under
Structured Scene Prior

We propose a new model to leverage unlabeled data for a
sequential model update for scene labeling. Our approach is
based on a Bayesian model update. We maintain a popula-
tion of models (particles) that approximate the distribution
over the model-space p(ht|Lt), instead of relying on a sin-
gle model, as in the previous formulations. The required in-
tegration over the model-space is solved by a Monte-Carlo
method – just like in Condensation and Particle Filters that
are well known from tracking applications [6, 5]. Conse-
quently, scene labeling at test time will be performed by
marginalization over the model distribution

p(X|Lt) =

∫
p(X|ht)p(ht|Lt) dht, (5)

where X is the labeling of a test image for which we want
to do prediction.

While the above-mentioned tracking formulations have
a measurement step that evaluates image evidence, we mea-
sure the compatibility with the scene prior S. This is again
based on the assumption of a stationary label distribution
P

(i,j)
pr as for the previous method.

Bayesian Model Update We are interested in modeling
an evolving target distribution over models in order to ac-
count for the uncertainty in the unobserved scene labels.
Therefore, we model the unobserved scene labels lt of the
unlabeled data ut at time step t as a latent variable. Rather
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Figure 2: Bayesian network for the proposed model. Adap-
tation is done at discrete time-steps t. ht is a set of model
hypothesis at time-set t (unobserved), lt is a set of unknown
labelings (unobserved), ut denotes the set of unlabeled raw
images (image features) at time-step t (observed), and S is a
statical parameter, an average labeling over the training set.

than sticking to a single model hypothesis, we seek to
model a distribution over model hypothesis ht. Therefore
we update a distribution over model hypothesis given labels
p(ht|Lt). Here Lt = {l0, l1, . . . , lt−1, lt}.

We describe the incorporation of the unlabeled examples
in a Bayesian framework by integrating over all model hy-
pothesis

p(ht|Lt−1) =

∫
p(ht|ht−1, ut)p(ht−1|Lt−1) dht−1. (6)

In the measurement step, we apply the Bayes’ rule in
order to get the updated distribution over model hypothesis

p(ht|Lt) =
p(lt|ht−1, S)p(ht|Lt−1)

p(lt|Lt−1)
, (7)

with
p(lt|ht−1, S) = p(lt|ht−1)p(lt|S), (8)

where p(lt|ht−1) is the probability of a certain scene label-
ing prediction given a model hypothesis ht−1 and p(lt|S)
is a scene labeling prior. Figure 2 gives an overview of our
model.

Sampling We perform inference with a Monte-Carlo
approach [6]. At each time step the model distribution
p(ht|Lt) is represented by a set of particles s

(N)
t with

weights π(N)
t . Next, the particles are propagated to the next

time step via p(ht|ht−1, ut) that takes into account the ex-
isting models and the unlabeled data. In traditional tracking
application this transition is modeled with a deterministic
part and a stochastic component. In our setting, we propose
to do model propagation by randomly choosing a subset of
images which are provided to a particular classifier to re-
train as well as picking a randomized acceptance threshold
λ per particle. The benefits are twofold. First, a diverse set



of models is generated for the next iteration. Second, pa-
rameters like the acceptance thresholds are dealt with within
the model and no hard choices have to be made.

In summary, our particle filter over model space works
as follows. For each particle i out of N :

1. Pick a particle sit from s
(N)
t , which represents

p(ht|Lt), according to the weights π(N)
t

2. Sub-sample set of unlabeled images ut to ût

3. Predict labels l̂t = argmaxl p(l|ht) for subset ût

4. Accept or reject samples based on some threshold λ

5. Retrain model using (ût, l̂t) and Lt−1

Traditional tracking approaches would now follow up
with a measurement in order to update the weights π(N)

t .
Similarly, we update the weight π(N)

t of each sample
(model hypothesis) according to (7). In this equation
p(ht|Lt−1) is the distribution represented by our particles
after the propagation step from above and p(lt|ht−1, S) is
the product of the likelihood of the labeling times the likeli-
hood of the labeling given the scene labeling prior. We don’t
compute the denominator - but rather directly normalize the
weights of the particles π(N)

t to sum to 1.

Implementation details It is important to note, that the
update of weights happens at the next time step. We have to
do this in order to get a faithful estimation of performance
of each of the retrained particles on the same data, which
was not in turn used in the retraining of any of the parti-
cles. In our implementation we pick the acceptance thresh-
old randomly from the interval 1/3 to 0.9. In all our ex-
periments we use 16 particles – each being a Random For-
est classifier. In fact, Figure 3 shows that already a small
number of particles allows to get considerable improve-
ments. In each step t we process a batch of 10 images in
order to pick a subset as described in the sampling proce-
dure. For the Naı̈ve adaptive approach we set the accep-
tance thresholding parameter λ = 0.8. and for the Model
Update under Scene Prior we set λ = 0.5. These are the
best performing parameters we found for those two base-
lines. Code and the new dataset are available on the follow-
ing website: https://www.d2.mpi-inf.mpg.de/
sequential-bayesian-update.

4. Diverse Road Scenes Dataset
In order to study the problem of adaptation we need a

dataset, which exhibits considerable amount of appearance
variation between the training and test set. Typical road
scene datasets like [15, 2] (Figure 4, first column) already
exhibits some visually difficult situations like changes in
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Figure 3: Dependency of average class error on the number
of tracking particles.

object appearances due to motion blur effect, deep shad-
ows which appear and disappear suddenly, changes in light-
ning conditions like over- or under-saturated regions, but
the overall statistics stays similar between training and test.

Therefore, we have collected a new dataset which ex-
hibits much richer appearance variation. In order to get the
diversity we are aiming for, we turned to Internet resources.
We searched over the Internet, and particularly considered
Flickr R©, looking for images depicting roads mostly in con-
ditions which we called “autumn” and “winter” – weather
conditions that are typically avoided in existing datasets.
We used the search engine of Flickr R© and used tags “dirty
roads”, “autumn roads”, “roads with mud”, “winter roads”.
This resulted in a collection of 220 images, about half of
which represent roads in autumn conditions and another
half – roads in winter conditions. We performed pixel-wise
hand labeling of the gathered images into three classes: road
(blue), sky (red), and background (green).

Figure 4 shows examples from each of the “seasons” in
our dataset. The dataset expose a much stronger appearance
variation than previous datasets. Typical challenges include
roads covered in autumn leaves or snow as well as different
types of roads such as dirt and gravel roads and even images
taken at night, although we leave out such issues like bad
lighting, low contrast, or rain.

5. Experimental Results

In our experiments we establish a baseline on our new di-
verse road scene dataset and compare different non-adaptive
techniques for scene segmentation that have different fea-
tures to increase robustness. Then we evaluate our novel
sequential Bayesian update scheme and compare it to dif-
ferent baselines and state-of-the-art in adaptive scene seg-
mentation [1].

Setup and features In our implementations we employed
a Random Forest [3] classifier consisting of 10 trees each
having depth of at most 15 with 20% bagging of the training

https://www.d2.mpi-inf.mpg.de/sequential-bayesian-update
https://www.d2.mpi-inf.mpg.de/sequential-bayesian-update


Road Scenes [15] New Diverse Road Scene Dataset

Figure 4: First column shows examples of road scene dataset from [15]. Other columns show examples of the new diverse
road scene dataset exhibiting very different appearances and a wider range of conditions.

Method Error, %
Road Background Sky Average

Random Forest 43.8 10.5 29.1 27.7
Random Forest+FC-CRF 40.8 11.0 22.2 24.7
Structured class-labels 38.6 11.1 33.1 27.6

Table 2: Comparison of different non-adaptive techniques of enhancing labelings. Bold font highlights the best numbers.

Test set Fully connected CRF error, %
Road Background Sky Average

Old 0.7 2.2 2.7 1.9
New 52.7 6.5 35 31.4

Table 1: Comparison of Krähenbühl et al. [8] semantic im-
age labeling algorithm on the old and the new test test.

set, i.e. each tree sees at most 20% of the training set to
decrease correlation among different trees. This classifier
has good accuracy [14], is robust to noisy labels, and its
update can be parallelized [13] and be very efficient in terms
or running time [12].

Unless stated otherwise, we used the training set
from [15] for training (Figure 4, first column) and
performed testing or adaptation on the new test set.
Groundtruth annotation of the test set is not used in any way,
other than for computing error rates. If not noted otherwise,
we employ the features from [15]. The resulting feature
vector consists of 194 values including: first 16 coefficients

of the Walsh-Hadamard transform, grid point’s coordinates
within the image, raw color features. The features are ex-
tracted at multiple scales from all channels of the input im-
age in CIE-Lab color space. As a preprocessing step, a and
b channels are normalized by means of gray world assump-
tion to cope with varying color appearance. The L channel
is mean-variance normalized to fit a Gaussian distribution
with a fixed mean to cope with global lighting variations.

Non-adaptive methods In order to show that non-
adaptive methods have a limited capability of generalizing
to a different and strongly varying feature distribution as
presented in our new dataset, we took one of the state-of-
the-art methods for semantic image labeling of Krähenbühl
et al. [8], and trained it on the training set and tested on both
the old and the new test set (Table 1). The old test set has
a similar appearance as the training set (Figure 4, first col-
umn), so the resulting numbers are very strong. But when
we test on the new test set, the method shows strong accu-
racy degradations caused by the changed feature distribu-



tion. Particularly, the road recognition rate gets more than
50 times worse, because background and sky have more or
less similar appearance as in the training set, while appear-
ance of the road usually does not resemble the one in the
training set.

We have also tried a number of algorithms, which can
help non-adaptive methods to perform better in situations
when appearance changes considerably by imposing certain
additional constrains. Table 2 shows results for: a Random
Forest with the above described features, a fully connected
CRF (FC-CRF) [8] applied on top of the Random Forest
output, and Structured Class-Labels [7]. We use Random
Forest as an initial classifier in our implementations of adap-
tive methods.

Fully connected CRF allows to enhance labeling and
make it less noisy by enforcing consistent labels of the
neighboring pixels. This method allows to get lower er-
rors for road (3%) and sky (around 7%). We used publicly
available implementation of the inference algorithm.

We also tried out our implementation of Structured
Class-Labels [7] with the same Random Forest classifier as
above. This approach takes also label statistics into account
at training time. In the presence of a stationary label statis-
tic (as it is in case for road scenes), it allows for a certain
degree of compensation for the changing feature distribu-
tion by enforcing an expected label structure for the unseen
data. In fact, it shows more than 5% improvement for the
road class, although decreasing the detection rate of the sky
class, so the average error almost doesn’t change.

Global adaptive methods Global adaptive methods con-
sider the whole test set at once and try to adapt to it. The
main restriction of such methods is that they require access
to the whole test set. In the real world setting, when new
images constantly arrive, global algorithms would have to
deal with a constantly increasing test set.

Recently, Alvarez et al. [1] proposed such an globally
adaptive scheme for road scene segmentation. Table 3 (first
row) presents resulting numbers for their original method,
which the authors kindly agreed to run on our test set. Their
method uses different features and a different training set,
but their training set also consists of road scenes represent-
ing comparable appearance with our training set. The main
algorithmic difference is that their method performs adap-
tation to the whole test set at once, while our Sequential
Bayesian Model Update performs sequential updates in a
Bayesian formulation allowing real world application, when
a fixed “test” set simply does not exist.

Their method doesn’t perform well on the new dataset,
as we think, because it is a global adaptive method and
it considers the whole test set at once and suffers from
many false positives. This gives insight to the weaknesses
of global adaptive methods in contrast to our sequential

method, which updates on small batches and can therefore
adapt to an evolving appearance distribution.

Sequential adaptive methods As initial model for this
set of experiments we use the Random Forrest model with
fully connected CRF from the non-adaptive methods pre-
sented above which showed an overall error of 24.7%. This
classifier is used as the initial point for an adaptive algo-
rithm and refined during the process of adaptation on the
test set.

Table 3 shows resulting numbers for adaptive methods
after they have processed the whole test set. The algorithms
were run 3 times and the results were averaged over. The
Naı̈ve method shows a considerable improvement of over
7% over its initial model. This method doesn’t perform any
checking of the new samples it accepts, setting λ reasonably
high should provide a good indicator that the predicted label
is likely to be true.

In order to provide another point of reference to previous
work, we compare to a sequential update by using a method
in the style of Alvarez et al. [1] as described in Section 3.2
based on our features and training set. This results in an im-
provement over the Naı̈ve (around 1.5%) approach in label-
ing the road (around 5%) and sky (around 3%). The average
error also decreases by more than 4%. This method shows
better performance, because it uses prior information to re-
weight the output of a classifier which allows to decrease
the number of false positive samples that are added into the
classifier. But still it is worth mentioning that both methods
have a considerable variance depending on the initialization
and the randomized nature of the algorithm.

We found the algorithm mentioned above to be quite sen-
sitive to the correct choice of the acceptance threshold pa-
rameter λ. In contrast, our Bayesian model picks the thresh-
old for each particle at random. Our method allows to get
even better labeling for road (around 2%) and sky (around
2%) over the Naı̈ve Model Update under Scene Prior. The
overall performance improves to 13.9%, which improves by
around 3% over the Naı̈ve Model Update and around 1.5%
over the Naı̈ve Model Update under Scene Prior. We would
also like to highlight small variance of our algorithm com-
pared to the two previous approaches.

It is interesting to note the inferior performance of our
method on the background class, which can be misleading
and can be easily explained by the following observation:
there are almost no images with the asphalt road in the new
dataset (as it is in the set of [15]), so for all other algorithms
it is always easier and safer to predict “background” due to
the class bias. Basically, for all other algorithms (both non-
and adaptive) output labelings often consisted of just back-
ground, which is undesirable. While we were interested in
treating all classes equally, so low Average error is a good
indicator, that our algorithm has improved the labeling qual-



Update type Method Error, %
Road Background Sky Average

global Alvarez et al. [1] 76.2 12.7 25.5 38.2

sequential
Naı̈ve 26 ±1.4 15.4±0.4 9.3±1.4 17±0.7
Naı̈ve + Scene Prior 21±2.7 18.5±0.6 6.5±0.9 15.5±1.4
Bayesian Model 19±0.6 18.3±0.6 4.5±0.4 13.9±0.3

Table 3: Comparison of different adaptive approaches after processing the whole test set (mean plus std). Bold font highlights
the best numbers.

ity.

Figure 5 shows some example of how labelings for cer-
tain images evolve as our Bayesian Model Update method
processes one batch of consequent images from the test
set after another. The last row represents a situation when
an image from the test set looks much like from the train
set, therefore our algorithm performs correct labeling in the
very beginning and does it throughout the run-time. This
shows that our algorithm is stable and does not drift. It is re-
markable how our approach can recover from initially poor
segmentation results and adapts to the new conditions. We
also show the results of the method of Alvarez et al. [1],
over which we show quantitative as well as qualitative im-
provements.

6. Conclusion

Today’s semantic scene labeling methods show good
performance if the training distribution is representative for
the test scenario. But when this feature distribution does
change, such techniques deteriorate in performance quickly.
We collected a challenging dataset of images which has
very different appearance statistic compared to the estab-
lished scene segmentation datasets. A state-of-the-art seg-
mentation algorithm by Krähenbühl et al. [8] shows up to 50
times worse recognition rate of scene classes, when tested
on the new set over a set of images with appearance similar
to the training one.

We showed that even Naı̈ve sequential model update al-
lows to benefit considerably from the new information at
test time. Although such method shows high variance of
the convergence results which depend on the initialization
as well as the choice of the acceptance threshold param-
eter. In order to cope with this challenge, we propose a
Bayesian Model Update that sequentially updates the seg-
mentation model as new data arrives. In contrast to previ-
ous algorithm, it gains robustness by maintaining a distri-
bution over models and avoids model drift by exploiting a
scene prior. The resulting method shows strong improve-
ments over state-of-the-art non-adaptive baselines as well
as recently proposed adaptive approaches.
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input evolution of labelings in our Sequential Bayesian Update groundtruth [1]

Figure 5: Example results showing the input image, evolution of the labelings through the proposed Sequential Bayesian
Update method. The last two columns show the corresponding ground truth annotation and the output of the global adaptive
method of Alvarez et al. [1]. Green color denotes background, red - sky, and blue - road.


