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Abstract

The underlying idea of multitask learning is that learn-
ing tasks jointly is better than learning each task individu-
ally. In particular, if only a few training examples are avail-
able for each task, sharing a jointly trained representation
improves classification performance. In this paper, we pro-
pose a novel multitask learning method that learns a low-
dimensional representation jointly with the corresponding
classifiers, which are then able to profit from the latent
inter-class correlations. Our method scales with respect to
the original feature dimension and can be used with high-
dimensional image descriptors such as the Fisher Vector.
Furthermore, it consistently outperforms the current state
of the art on the SUN397 scene classification benchmark
with varying amounts of training data.

1. Introduction
It is often observed that the best performance is obtained

with high dimensional image descriptors [3]. Recent work
[15] showed that feature encoding based on the Fisher Ker-
nel [8], which combines the benefits of generative and dis-
criminative approaches, yields significantly better results
when compared to the standard bag of visual (BoV) words
model on a number of computer vision benchmarks. The
Fisher Vector (FV) encoding was also shown recently to
be crucial in achieving state of the art performance on the
MIT Scene 67 dataset [9]. However, as discussed in [15],
one of the biggest disadvantages of the FV compared to the
BoV is that the FV is dense. When combined with high di-
mensionality (in our experiments we work with over 260K
dimensional features), this obviously presents a scalability
problem not only storage-, but also computation-wise.

The de facto standard to address image, object or scene
classification today is to train separate classifiers in a one-
vs-all regime. On the other hand, it has long been argued
that co-learning of class representations and transferring
knowledge across classes is a key-ingredient in scaling to
a large number of categories as well as in learning from a
small number of training examples per class. This calls for

a multitask learning framework where each binary classi-
fier becomes a separate task and all classifiers as well as
the representation are learned jointly. In contrast to the in-
dependent one-vs-all training, this enables the classifiers to
exploit potential inter-class correlations.

While there has been significant progress in the area of
multitask learning in the last decade [1, 2, 13, 10, 14] both
on the theoretical as well as the algorithmic side, most of the
proposed methods do not scale well to very large feature di-
mensions. Thus, in order to enable inter class transfer for
such high-dimensional representations which are encoun-
tered in computer vision problems today, we propose, as our
first main contribution, a new scalable formulation of mul-
titask representation learning. It jointly learns a linear map-
ping into a lower dimensional space which is then used to
build the classifiers for each class. In order to deal with the
resulting large scale optimization problem, we adapt the re-
cently developed stochastic dual coordinate ascent (SDCA)
method [16, 17, 18]. The SDCA algorithm can be applied
to smooth as well as Lipschitz losses (e.g. the hinge loss), it
has a clean stopping criterion (the duality gap) and fast con-
vergence rate which is superior to that of the vanilla stochas-
tic gradient descent. It is also important that the method
operates on dual variables, because the number of training
examples in our setting is much smaller than the feature di-
mension. Our adaptation is very efficient as variable up-
dates for the hinge loss can be computed in closed form.

There is also a connection between multitask learning
[13] and supervised dictionary learning [12]. However, dic-
tionary learning is additionally aiming at optimizing the re-
construction error, while our primary goal is to find a new
representation where the classes are well separated.

Apart from our framework for multitask representation
learning (MTL-SDCA), we apply, as a second main contri-
bution, our novel approach on the challenging scene clas-
sification SUN397 benchmark [21]. An important ingredi-
ent for the best performance on this dataset is the high di-
mensional Fisher Vector encoding which achieves excellent
performance even with a single image descriptor (SIFT).
The latter is obtained when the feature extraction pipeline
is carefully designed following the current best practices
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[3, 9, 15]. With our novel approach we improve upon the
state of the art thus validating both efficiency as well as ef-
fectiveness of our MTL-SDCA method. Furthermore, we
validate that the approach performs well even in the case
when only little training data is available, as it is expected
from a multitask learning method.

2. Multitask Representation Learning
In this section we introduce the multitask representa-

tion learning framework and discuss its scalable solution via
stochastic dual coordinate ascent (SDCA) methods. We dis-
cuss a general multitask setting first, even though we later
specialize to a multiclass classification problem where we
jointly learn the representation and the classifiers.

We first fix some notation and then introduce the prob-
lem. Let {(xi, yti) : 1 ≤ t ≤ T, 1 ≤ i ≤ n} be the
input/output pairs of the multitask learning problem, where
xi ∈ Rd, yti ∈ {±1}, T is the number of tasks, and n is the
number of training examples per task. We assume that all
tasks have the same training examples even though this can
be easily generalized. The setting we have in mind is that
the feature space is high dimensional, which is quite com-
mon in computer vision problems, e.g. one has d ≥ 105

with the Fisher Vector encoding [15], see Section 4. We
learn a matrix U in Rd×k with k � d which is used to gen-
erate the new low dimensional representation of the data
zi = U>xi. Moreover, we learn linear predictors wt in
Rk that operate on the lower dimensional data representa-
tion. Let X in Rd×n be the matrix of stacked feature vec-
tors xi, W in Rk×T the matrix of stacked predictors wt,
K = X>X the Gram matrix, and M = W>W .

Multitask Representation Learning: We formulate
multitask representation learning as the following optimiza-
tion problem:

min
U∈Rd×k

1

T

T∑
t=1

min
wt∈Rk

PU,t(wt) +
µ

2
‖U‖2F , (1)

where the objective for task t given a fixed U is

PU,t(wt) =
1

n

n∑
i=1

`ti
(〈
wt, U

>xi
〉)

+
λ

2
‖wt‖22 , (2)

and λ > 0, µ > 0 are the regularization parameters, `ti is
a convex margin-based loss function (e.g. hinge loss, that is
`ti(a) := max(0, 1 − ytia) for a ∈ R), and ‖·‖F denotes
the Frobenius norm. We keep the general notation for the
loss function but fix it to be the hinge loss in the following.

The inner subproblems are standard independent one-vs-
all SVMs trained in a lower dimensional subspace which is
determined by the matrix U ∈ Rd×k. The latter is learned
jointly for all t = 1, . . . , T which facilitates knowledge
transfer across the tasks. This is of particular interest when

Algorithm 1 MTL-SDCA

Input: data {(xi, yti)}, initial U (0), parameters λ, µ, ε
Let: W (0) = 0.
repeat {s = 1, . . .}

for t = 1 to T do
Let w(s)

t = arg minw PU,t(w), see (2)

(via SDCA [16] on {(U (s−1)>xi, yti)})
end for
Let U (s) = arg minU PW (U), see (4)

(via SDCA with updates (7))
until change in variables is below ε

the amount of training examples per task is limited and at
least some of the tasks are related.

Let us discuss the relation to multitask feature learning
formulation proposed in [1]:

min
U∈Rd×d,UUT=I

W∈Rd×T

T∑
t=1

n∑
i=1

`ti
(〈
wt, U

>xi
〉)

+ γ ‖W‖22,1 ,

where ‖W‖22,1 =
∑d
i=1

∥∥w(i)

∥∥
2

and w(i) ∈ RT are the
rows of W . The key difference is that we work with a low-
dimensional representation U ∈ Rd×k whereas the method
above works with a square matrix U ∈ Rd×d and enforces
certain features to be discarded via the sparsity inducing pe-
nalizer ‖W‖22,1, which also couples the tasks. While [1] has
the strong theoretical guarantee of convergence to the global
optimum, they are by construction not able to scale to a
high dimensional feature representation since U ∈ Rd×d
is a square, dense matrix and thus requires O(d2) mem-
ory. Our approach is scalable as our matrix requires only
O(k d) memory and k � d. Moreover, we enforce the
coupling of the tasks directly by requiring that U maps to
a low-dimensional subspace. Thus we do not need to ad-
ditionally enforce the coupling of the tasks via a sparsity
enforcing regularizer on the predictors wt. This allows us
to formulate the optimization problem in a way that it re-
duces to standard multiclass SVM when µ = 0, which is
not possible in the framework of [1].

2.1. MTL-SDCA Algorithm

The optimization problem (1) of our multitask represen-
tation learning framework is biconvex, that means it is con-
vex in W ∈ Rk×T for fixed U and vice versa. It is not
jointly convex in U and W . This is common to most mul-
titask formulations and the standard optimization method is
block coordinate descent (see Algorithm 4.1 in [7]), that is
we alternate between fixing U and optimizing W and then
fixing W and optimizing U . Each subproblem is convex
and one achieves monotonic descent in each iteration. This



guarantees (sub)-convergence to a critical point of the ob-
jective of (1), see [7], which is the standard convergence
result for non-convex problems.

We solve both convex subproblems via two variants of
stochastic dual coordinate ascent (SDCA) [18, 17], which is
currently among the state of the art methods in large scale
optimization. The final algorithm MTL-SDCA for multi-
task representation learning is summarized in Algorithm 1.

The scalability of our approach crucially depends on the
algorithm for learning U ∈ Rd×k. The choice of an algo-
rithm that solves the dual problem is primarily motivated
by our experimental setting for the SUN scene classifica-
tion dataset. We use dense high dimensional feature vectors
with the number of dimensions d being an order of mag-
nitude larger than the number of training examples n, thus
making dual optimization a natural choice.

For simplicity, we describe the algorithm in terms of pri-
mal variables U and W . However, to be computationally
efficient, our implementation works only with the corre-
sponding dual variables α and precomputed kernel matrices
K and M , which in our setting fit into memory. The actual
U and W are never computed at any stage. Further details
can be found in the supplementary material at our website.

Learning W : Note that learning the predictor matrix
W ∈ Rk×T when U is fixed is the easier subproblem as the
problems for each task decouple. Thus they can be trained
in parallel via any solver for a standard SVM and the choice
of SDCA here is more a matter of convenience.

Learning U : We show how the matrix U can be learned
efficiently via an adaptation of the SDCA algorithm [16].

Let W be fixed. Then problem (1) reduces to

min
U∈Rd×k

PW (U), (3)

PW (U) =
1

nT

∑
i,t

`ti
(〈
wt, U

>xi
〉)

+
µ

2
‖U‖2F . (4)

The analogy to the SVM now comes from the fact that〈
wt, U

>xi
〉

=
〈
U, xiw

>
t

〉
,

and thus we can see U as the weight vector of an SVM for
the feature representation xiw>t . Moreover, note that the
Frobenius norm of U is nothing else but the Euclidean norm
of the matrix U rearranged as a vector. However, as this
correspondence might not be obvious, we give the explicit
details of the SDCA for this case.

The Fenchel dual problem of (3) is

max
α∈RT×n

DW (α), (5)

DW (α) =
1

nT

∑
i,t

−`∗ti (−αti)−
µ

2

∥∥∥ 1

µnT

∑
i,t

αtixiw
>
t

∥∥∥2
F
,

where `∗ti is the convex conjugate of `ti, e.g. for the hinge
loss one has

`∗ti(−b) =

{
−ytib 0 ≤ ytib ≤ 1,

∞ otherwise.

Let

U(α) =
1

µnT

∑
i,t

αtixiw
>
t , (6)

then it is well known that U∗ = U(α∗), where U∗ is the
solution of the primal problem (3) and α∗ is the solution of
the dual problem (5).

The dual problem is solved via SDCA. At every step s,
an i in {1, . . . , n} and a t in {1, . . . , T} are chosen uni-
formly at random and an update of α(s)

ti is computed as

α
(s)
ti = α

(s−1)
ti + ∆αti,

where ∆αti is the stepsize chosen to achieve maximal as-
cent of the dual objective DW (α) when all other variables
are fixed. To achieve maximal dual ascent one has to solve

∆αti = arg max
a∈R

−`∗ti
(
− (α

(s−1)
ti + a)

)
− a
〈
U(α(s−1)), xiw

>
t

〉
− a2

2µnT

∥∥xiw>t ∥∥2F ,
which for the hinge loss can be computed in closed form.

Efficient updates of α: In analogy to [17], we provide
a closed form solution for ∆αi when `ti(a) = φγ(ytia) is
the smooth hinge loss, where φγ is defined as in [17]:

φγ(a) =


0 a ≥ 1,

1− a− γ/2 a ≤ 1− γ,
1
2γ (1− a)2 otherwise.

In our experiments, we always set γ = 0 which recovers
the standard (non-smooth) hinge loss used in the SVM. The
formula for the update ∆αti is given below:

∆αti = yti max

(
− ytiα(s−1)

ti ,min

(
1− ytiα(s−1)

ti ,

1− ytix>i U(α(s−1))wt − γytiα(s−1)
ti

1
µnT ‖xi‖

2
2 ‖wt‖

2
2 + γ

))
.

(7)
Note that the norms ‖xi‖22 and ‖wt‖22 are directly available
from the precomputed kernel matrices K and M , and the
inner product x>i U(α(s−1))wt can be computed via (6). For
details, see the supplementary material.

Initialization: In all our experiments we fix k = T . This
choice is motivated by a two layer architecture, where the
output of all one-vs-all SVMs is fed into a second layer of



one-vs-all classifiers. For this particular case there is a nat-
ural initialization for U , namely we can use U (0) = WSVM,
where WSVM ∈ Rd×T is the matrix of stacked predictors
wt, which have been trained in the original feature repre-
sentation. This choice is used in all experiments.

Stopping criterion: We use the relative duality gap
defined as (P (U(α)) − D(α))/max(|P (U(α))| , |D(α)|)
with ε = 10−3 as stopping criterion for both subproblems
of learning W and U . In the master problem, we stop when
the change in dual variables of the two subproblems is be-
low ε = 10−3 as measured by the root-mean-square error
(RMSE) defined as RMSE(∆) =

√
(
∑m
i=1 ∆2

i )/m.

2.2. MTL-SDCA Extensions

Our method fully benefits from the generality of the
SDCA framework which can be applied to different loss
functions and different regularizers [16, 17]. We discuss
a few examples below.

Other scalar losses: The method can be directly applied
to other loss functions, e.g. the squared loss, for which a
closed form solution for updates can also be derived. Even
if there is no closed form solution (e.g. there is none for
the logistic loss), then ∆αi can still be computed via a few
iterations of the Newton method.

Other regularizers: Another straightforward general-
ization would be the introduction of `1/`2 regularization,
also known as the elastic net [22], which would require
keeping a copy of the primal variable and performing stan-
dard `1 shrinkage after every update.

Structured losses: Finally, the SDCA method can be
also applied to structured loss functions. A classic example
would be the loss used e.g. in Latent SVMs [6].

3. Initial Experiments
Before discussing the scene classification problem for

the high-dimensional SUN397 dataset in Section 4, we be-
gin with a first set of experiments on two datasets where
a direct comparison to other methods is possible. Our al-
gorithm is compared against two baselines: (a) the multi-
task feature learning method of Kang et al. [10] that out-
performed a number of multitask baselines on the data used
here (see Table 2 in [10]), and (b) a single task learning ap-
proach termed STL-SDCA. The latter corresponds to the
standard one-vs-all technique where the binary SVMs are
trained via SDCA [16]. The main purpose of the experi-
ment is two-fold. First, we want to compare to a state of the
art multitask learning algorithm, and second, we want to ex-
perimentally verify that the shared multitask representation
learned within our framework and given by U>x can be su-
perior to single task learning in the original feature space.

We use two handwritten digit recognition datasets (sub-
sets of USPS and MNIST) provided by Kang et al. [10]
and follow their evaluation protocol: parameters are tuned

on a validation set, which is not used for training, and per-
formance is evaluated on a fixed test set of 500 examples.
Training and validation subsets are sampled randomly 5
times from a fixed set of 1500 examples. Results are re-
ported in Table 1.

On the USPS dataset (upper part of Table 1), single task
and multitask learning algorithms perform on par when 100
training examples are used per class (Kang et al. outper-
forms our methods in this case). When the amount of train-
ing data is successively reduced from 100, over 50, 20, 10,
to 5 examples, the performance of the STL-SDCA as well as
our MTL-SDCA approach decreases as expected. However,
the advantage of the multitask algorithm (MTL-SDCA)
w.r.t. to the single task version (STL-SDCA) becomes ev-
ident as it consistently improves performance. Similarly,
we observe improvement for our MTL-SDCA approach on
the MNIST dataset, where our methods also outperform the
multitask algorithm of Kang et al. [10].

Discussion: The results suggest that our approach is
competitive with the state of the art multitask method of
Kang et al. The benefit of multitask learning is more pro-
nounced on smaller training sets, which agrees both with the
general intuition behind multitask learning and the related
theoretical results of Maurer et al. [13].

4. SUN397 Experiments
This section reports our main experimental results on

SUN397 [21] which is a challenging scene classification
benchmark containing over 100K images of 397 categories.
We also discuss important implementation details that lead
to the state of the art performance on this dataset.

4.1. Experimental Setup

We follow the protocol of Xiao et al. [21] and use 5, 10,
20, and 50 images per class for training and 50 images per
class for testing. We use the 10 splits provided on the web-
site of the dataset1 and measure top-1 recognition accuracy.
We report mean accuracy and standard deviation over the 10
splits. We treat every training subset in each split as an in-
dependent dataset and run the whole experimental pipeline
(including feature extraction, codebook learning, model se-
lection, etc.) on each of them separately.

Our feature extraction pipeline follows closely the one
described in [15]. Images are resized to 100K pixels if
larger and approximately 10K descriptors are extracted per
image from 24×24 patches on a regular grid every 4 pixels
at 5 scales 2−2:.5:0. We use 128-dim SIFT descriptors of
Lowe [11] and 96-dim Local Color Statistic (LCS) descrip-
tors of Clinchant et al. [4].

The descriptors are processed by PCA as discussed be-
low and we use on the order of 106 descriptors to learn the

1http://people.csail.mit.edu/jxiao/SUN/

http://people.csail.mit.edu/jxiao/SUN/


Method Dataset Ntrain=5 Ntrain=10 Ntrain=20 Ntrain=50 Ntrain=100

Kang et al. [10] 91.6 (0.3)
STL-SDCA USPS [10] 69.4 (0.6) 76.3 (1.1) 83.7 (0.2) 88.5 (0.5) 90.8 (0.3)
MTL-SDCA 71.4 (0.7) 77.2 (0.5) 84.6 (0.4) 90.0 (0.5) 90.6 (0.2)

Kang et al. [10] 84.8 (0.3)
STL-SDCA MNIST [10] 65.6 (0.7) 73.6 (0.8) 79.8 (1.0) 83.1 (0.6) 85.7 (0.4)
MTL-SDCA 66.2 (0.7) 74.0 (1.0) 79.7 (0.9) 83.4 (0.6) 86.0 (0.2)

Table 1: Mean accuracy (%) across 5 splits on two handwritten digit recognition datasets (numbers in parenthesis show
standard deviation scaled by 1/

√
5 as reported in [10]). Ntrain - number of training examples per class. The original images

were preprocessed with PCA reducing dimensionality to d = 87 (USPS) and d = 64 (MNIST) retaining 95% of the variance.

Ntrain=5 Ntrain=10 Ntrain=20 Ntrain=50
LCS PN L2 PCA Lin Sqr Chi Lin Sqr Chi Lin Sqr Chi Lin Sqr Chi

64 18.5 20.6 20.8 26.0 28.8 28.8 33.6 35.8 36.0 43.2 45.1 45.7

� 64 18.6 20.8 20.8 27.0 29.3 29.1 35.2 37.6 37.5 45.0 47.2 47.2
� � 64 18.6 20.5 20.6 27.2 29.2 29.3 35.3 37.3 37.4 45.0 47.4 47.3
� � 64 18.2 19.4 19.5 26.4 28.8 28.7 36.7 39.2 39.1 44.0 45.9 46.0
� � � 64 18.5 20.4 20.3 26.7 29.1 29.2 34.1 36.8 36.7 44.4 46.1 46.1

� 128 19.0 21.4 21.4 26.9 29.6 29.8 35.8 39.1 39.0 44.7 47.4 47.6
� � 128 18.6 21.0 21.1 26.8 29.5 29.5 35.3 38.3 38.0 44.3 47.0 47.2
� � 128 19.5 21.8 21.8 28.0 30.6 30.8 35.9 38.2 38.2 45.8 48.0 48.3
� � � 128 20.0 22.3 22.5 28.5 31.2 31.2 36.1 38.6 38.6 46.2 48.3 48.4

Table 2: STL-SDCA accuracy (%) on the first split of the SUN397 [21] dataset. LCS - Local Color Statistic descriptor; PN -
LCS with power normalization; L2 - LCS with `2-normalization; PCA - independent PCA of SIFT and LCS to 64-dim each,
or joint PCA to 128-dim; Lin/Sqr/Chi - linear/Hellinger/χ2 kernel; Ntrain - number of training examples per class.

PCA projections. Finally, descriptors are encoded via the
Fisher Vector (FV) and pooled over a spatial pyramid with 4
regions (the entire image and three horizontal stripes). The
codebook for FV is given by a GMM with 256 Gaussians
learned via the EM algorithm. This yields the following
feature dimensions of the final descriptor: d = 131, 072
(SIFT) and d = 262, 144 (SIFT+LCS).

We use VLFeat 0.9.17 [20] and our feature extraction
scripts are based on the code provided with the library (lo-
cated in apps/recognition). This way we follow cur-
rently established best practices in image classification.

Both STL-SDCA and MTL-SDCA solvers were imple-
mented in C++ and are available at our website.

4.2. Feature Implementation Details

This section explores the impact of several implemen-
tation details on the final performance. Sánchez et al.
[15] provide extensive evaluation of the effects of PCA,
`2-normalization, power normalization (sign(z) |z|ρ, 0 <
ρ ≤ 1), and other parameters on the PASCAL VOC 2007
dataset. While their findings suggest that these details have
significant effect on the final performance, a similar evalua-
tion was not done on SUN397 and it is also not clear which

options, in particular for the LCS descriptor, would perform
best. We aim to fill this gap in this section.

To save computation time and to avoid overfitting to
other splits, we perform all experiments in this section on
the first split only. We set the SVM parameter C by 2-fold
cross-validation and retrain models on the full training sub-
sets. Results are summarized in Table 2.

Impact of PCA: When both SIFT and LCS descrip-
tors are used, there are two ways to perform PCA pre-
processing: reduce each descriptor to 64-dim independently
and then concatenate, or perform a joint PCA reducing the
combined descriptor to 128-dim. We observe that perform-
ing PCA jointly is generally better (except for the Ntrain=20
setting) and we use this strategy in our further experiments.

Impact of power normalization: We observe that per-
forming power normalization with ρ = 0.5 (a.k.a. “square
rooting”) on the LCS descriptor improves classification per-
formance when it is combined with the `2-normalization
and joint PCA. This setting yields the best accuracy.

Impact of `2-normalization: The results for `2-
normalization seem to depend on the way PCA pre-
processing is done and generally improve performance
when dimensionality reduction is performed jointly.



Method Features Ntrain=5 Ntrain=10 Ntrain=20 Ntrain=50

Xiao et al. [21] 12 combined 14.5 20.9 28.1 38.0
Su and Jurie [19] Context+Semantic 35.6 (0.4)
Donahue et al. [5] DeCAF6 40.9 (0.3)

Sánchez et al. [15] SIFT 19.2 (0.4) 26.6 (0.4) 34.2 (0.3) 43.3 (0.2)
STL-SDCA, Lin SIFT 17.4 (1.5) 25.8 (0.2) 33.6 (0.3) 43.2 (0.2)
STL-SDCA, Sqr SIFT 20.4 (0.3) 28.2 (0.3) 35.9 (0.3) 45.1 (0.3)
STL-SDCA-Stacked, Sqr SIFT 20.6 (0.4) 28.4 (0.3) 36.1 (0.3) 45.3 (0.3)
MTL-SDCA, Sqr SIFT 20.8 (0.4) 28.9 (0.4) 37.6 (0.3) 46.9 (0.3)

Sánchez et al. [15] SIFT+LCS 21.1 (0.3) 29.1 (0.3) 37.4 (0.3) 47.2 (0.2)
STL-SDCA, Sqr SIFT+LCS 21.0 (0.5) 29.2 (0.3) 37.8 (0.6) 47.2 (0.4)
STL-SDCA-Stacked, Sqr SIFT+LCS 21.1 (0.4) 29.3 (0.3) 37.9 (0.6) 47.3 (0.4)
MTL-SDCA, Sqr SIFT+LCS 21.2 (0.2) 29.4 (0.4) 38.5 (0.5) 47.9 (0.5)

STL-SDCA, Sqr SIFT+LCS+PN 20.4 (0.6) 29.0 (0.4) 37.4 (0.4) 47.1 (0.3)
STL-SDCA-Stacked, Sqr SIFT+LCS+PN 20.8 (0.3) 29.1 (0.4) 37.5 (0.4) 47.2 (0.4)
MTL-SDCA, Sqr SIFT+LCS+PN 20.9 (0.4) 29.2 (0.4) 38.2 (0.4) 48.1 (0.4)

STL-SDCA, Sqr SIFT+LCS+L2 21.4 (0.4) 29.8 (0.5) 38.2 (0.4) 47.9 (0.3)
STL-SDCA-Stacked, Sqr SIFT+LCS+L2 21.6 (0.3) 30.0 (0.5) 38.3 (0.4) 48.0 (0.4)
MTL-SDCA, Sqr SIFT+LCS+L2 21.7 (0.3) 30.3 (0.5) 39.0 (0.4) 49.0 (0.5)

STL-SDCA, Sqr SIFT+LCS+PN+L2 22.1 (0.6) 30.5 (0.6) 38.8 (0.3) 48.4 (0.2)
STL-SDCA-Stacked, Sqr SIFT+LCS+PN+L2 22.3 (0.6) 30.7 (0.6) 38.9 (0.3) 48.5 (0.2)
MTL-SDCA, Sqr SIFT+LCS+PN+L2 22.4 (0.5) 31.0 (0.7) 39.5 (0.3) 49.5 (0.3)

Table 3: Mean accuracy (%) and standard deviation across 10 splits on the SUN397 [21] dataset. STL-SDCA - single task
learning (one-vs-all SVMs trained via SDCA [16]); STL-SDCA-Stacked - two layer architecture (second layer SVMs are
trained on the outputs of the first layer); MTL-SDCA - multitask learning method described in Algorithm 1; Lin/Sqr/Chi
- linear/Hellinger/χ2 kernel; LCS - Local Color Statistic descriptor; PN - LCS with power normalization; L2 - LCS with
`2-normalization; Ntrain - number of training examples per class.

Impact of the kernel map: We compare three SVM ker-
nels: linear, Hellinger, and χ2-kernel. The Hellinger kernel
in our setting is equivalent to performing power normaliza-
tion with ρ = 0.5 on the full feature vector, i.e. both SIFT
and LCS combined. We observe that the Hellinger kernel
performs better than the linear one and is comparable to
the χ2-kernel at significantly lower computational cost. We
thus avoid the χ2-kernel in our further experiments.

4.3. Baselines

In this section we aim to establish a baseline by repro-
ducing the results of Sánchez et al. [15], which is the current
state of the art method on SUN397. We first show that this
strong baseline can be improved using the feature tuning
techniques discussed in Section 4.2. As before, the SVM
parameter C for single task learning is selected by 2-fold
cross-validation and the final model is retrained on the full
training subset. Results are given in Table 3.

First, we are able to confirm that the Fisher Vector encod-
ing has striking performance even when only a single type
of descriptor (SIFT) is used to represent an image. Using
only SIFT, this baseline (STL-SDCA, Sqr) yields an aver-

age of 45.1% accuracy across 10 splits and is further im-
proved to 48.4% when color (LCS+PN+L2) information is
added (we use the accuracies obtained for Ntrain = 50
in Table 3, but similar improvements are obtained for the
other cases). We note that these results are obtained using
the Hellinger kernel, joint PCA on both SIFT and LCS, and
performing power- and `2-normalization of the LCS fea-
ture. This baseline already outperforms the best published
results ([15] obtained 43.3% accuracy using SIFT only and
47.2% accuracy using SIFT+LCS) and also outperforms the
method proposed by the authors of the dataset [21] (38.0%),
as well as more recent work [19, 5] (35.6% and 40.9% re-
spectively). We note that the DeCAF features in [5] were
learned on ImageNet data which may explain why a deep
convnet is outperformed in this case.

The question we ask next is whether a jointly learned
lower dimensional representation can exploit commonali-
ties across scene classes to further improve performance.

4.4. Multitask Learning

The downside of having a dense high dimensional im-
age descriptor (apart from the scalability issues) is that it



also captures a significant amount of noise irrelevant to the
given object category. Hence, when the number of train-
ing examples is small, it is difficult to identify features that
generalize well and separate them from noise. The situation
becomes even worse when there are highly related tasks that
are trained using the one-vs-all approach.

The nature of the SUN dataset is such that there are in-
trinsically related classes that have very similar visual ap-
pearance. Let us consider an example. There are three dif-
ferent categories related to art: “art school”, “art studio”,
and “art gallery”. Visual differences between these classes
are rather subtle and are likely to be dominated by non-
discriminative information in the high dimensional image
descriptor. A classifier trained in the one-vs-all regime is
thus likely to pick a random subset of features that just hap-
pen to discriminate between these related classes on few
examples and will not generalize well.

Our multitask learning approach, on the other hand, ad-
dresses this issue by forcing all classifiers to first agree on
a significantly lower dimensional subspace of features and
only then attempt to discriminate between the classes.

One natural baseline for comparison in this case is a
two layer feed-forward architecture where the outputs of
SVMs from the first layer are used as features (inputs) to
the SVMs in the second layer. We refer to this approach as
STL-SDCA-Stacked. Note that the matrix of the first layer
predictors in this case is fixed and the resulting subspace
cannot be influenced by the second layer predictors. On
the contrary, our MTL method allows the matrix U to be
iteratively updated thus propagating information from the
second layer.

The regularization parameters for both the STL-SDCA-
Stacked and the MTL-SDCA methods were tuned on the
first split of SUN397 and then fixed for the other 9 splits.

When looking at the results obtained by STL-SDCA-
Stacked in Table 3, it becomes evident that the improve-
ment over single task is minor (.1%–.2%), but consistent.
This gives us hope that there are inter-class correlations that
could be exploited, even though the considered stacked ar-
chitecture may be suboptimal in this case.

Let us now discuss the results of our multitask approach.
Top-1 accuracy: Results in Table 3 clearly indicate su-

periority of a learned representation that is shared across
multiple classes. MTL-SDCA is consistently better for ev-
ery training subset and all choices of image descriptors.
Furthermore, the improvement is more significant than for
the stacked single task approach.

Take for example the performance for Ntrain=50. MTL-
SDCA achieves 46.9% using SIFT only and 49.5% using
SIFT with LCS+PN+L2. This is better than the best pub-
lished results as well as our strong baselines reported above.
While the improvement is not particularly strong (1.6% and
1% correspondingly when compared to the stacked classi-

fier), it is consistent across all settings (SIFT vs. SIFT+LCS
and different amounts of training data).

Top-K accuracy: Because there are intrinsically am-
biguous classes (like the art scenes mentioned above, or
a factory and assembly line scenes, or different types of
shops, etc.) we believe that the top-1 accuracy is a subopti-
mal performance measure on this dataset. We thus extend
our evaluation by reporting mean top-K accuracy for each
K = 1, . . . , 20 in Figure 1.

Again we observe that MTL-SDCA consistently im-
proves classification performance not only for every im-
age descriptor and every training subset, but also for ev-
ery number of allowed guesses K. Moreover, the improve-
ment is more significant atK ≥ 3, e.g. using SIFT only and
Ntrain=20 examples per class, MTL-SDCA improves top-5
accuracy by 3.7% and top-15 by 5%.

Finally, we also compare to the estimated human perfor-
mance based on the top-1 accuracy of the AMT workers
(68.48%), which is computed from the confusion matrix of
“good workers” provided by Xiao et al. [21]. We observe
that on average already 3-4 guesses are sufficient to reach
human performance on this dataset.

Runtime analysis: The overhead of multitask learning
is relatively small (approximately a factor of 4) if the cost
for computing the kernel matrices is taken into account, and
is close to negligible (6%–12%) when complete image clas-
sification pipeline is considered (since most of the time is
spent on computation of image descriptors). Further details
can be found in the supplementary material.

5. Conclusion
We proposed a novel multitask representation learning

scheme that scales to high-dimensional feature representa-
tions (such as the Fisher Vector) which are often used to ob-
tain the best performance in object and scene classification
tasks. The principle idea is to jointly learn a low dimen-
sional representation that is shared across all classes and
thus allows to leverage existing inter-class correlations.

Such inter-class relations exist in many tasks in computer
vision. The running example of this paper is scene classifi-
cation where different scene types, such as e.g. art schools
and art studios, share common visual features. Thus jointly
learning their respective representation has the potential to
increase both robustness and accuracy, as well as to allow
training classifiers from relatively small sample sizes.

Our multitask approach outperforms the state of the art
on the SUN397 dataset and consistently improves classi-
fication performance over the respective single task base-
lines. Moreover, the improvement is even more evident
when performance is evaluated via the top-K accuracy for
K > 1, which we interpret as the ability of the MTL method
to discover groups of related classes. We also conducted ex-
periments concerning feature implementation details, which
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(b) SIFT + Color
Figure 1: Mean top-K accuracy (%) and standard deviation across 10 splits on the SUN397 [21] dataset. The number of
guesses K is varied between 1 and 20. STL-SDCA - single task learning (one-vs-all SVMs trained via SDCA [16]); MTL-
SDCA - multitask learning method described in Algorithm 1; LCS - Local Color Statistic descriptor; PN - LCS with power
normalization; L2 - LCS with `2-normalization; Sqr - Hellinger kernel; Ntrain - number of training examples per class.

helped to improve performance. Note, however, that the
proposed multitask learning method is not tied to a particu-
lar choice of features and can be applied with other image
descriptors than the ones used in this work.
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