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Abstract

The broad deployment of wearable camera technology in the foreseeable future of-
fers new opportunities for augmented reality applications ranging from consumer (e.g.
games) to professional (e.g. assistance). In order to span this wide scope of use cases,
a markerless object detection and disambiguation technology is needed that is robust
and can be easily adapted to new scenarios. Further, standardized benchmarking data
and performance metrics are needed to establish the relative success rates of different
detection and disambiguation methods designed for augmented reality applications.

Here, we propose a novel object recognition system that fuses state-of-the-art 2D
detection with 3D context. We focus on assisting a maintenance worker by providing
an augmented reality overlay that identifies and disambiguates potentially repetitive ma-
chine parts. In addition, we provide an annotated dataset that can be used to quantify the
success rate of a variety of 2D and 3D systems for object detection and disambiguation.
Finally, we evaluate several performance metrics for object disambiguation relative to
the baseline success rate of a human.

1 Introduction
The advent of affordable, highly miniaturized wearable camera technology in combination
with the latest improvement of head-up display has intensified interest in augmented reality
applications. The availability of such devices in the foreseeable future as well as the large
scope of use cases in the consumer market (e.g. games) as well as industrial applications
(e.g. maintenance) begs the question if current computer vision techniques can shoulder the
expectations.

We investigate this question on a task of assisting a maintenance worker in a factory set-
ting. The system has to provide an overlay to the worker so that machines parts are correctly
identified. Depending on the application this simply supports successful completion of a
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task, averts dangers from the worker or prevents damage to the machine. In our study we
will focus on sensing by a monocular camera as this is still the most commonly deployed
modality in those devices to date.

Object recognition and detection has significantly matured over the last decade. We have
seen great progress in instance [11] as well as category recognition [7, 12]. However in many
of the aforementioned tasks we are faced with compositionality of objects from potentially
repetitive parts. Robust matching of parts with their relational structure is required to detect
the object as a whole and give semantics to the individual parts. We denote the task of
predicting the identities of parts as object disambiguation.

Although such an object disambiguation task is really at the core of many augmented
reality systems and systems for assistance in work environments in particular, there has been
little progress in quantifying performance in these settings. In general, computer vision re-
search has a strong tradition in building benchmarks that allow for measuring and comparing
performance of object recognition and detection approaches. Most prominently the PASCAL
challenge has greatly supported progress in object detection and the ImageNet challenge has
played a similar role for object recognition. Therefore we advocate the need of a benchmark
for augmented reality settings. We realize that it is very challenging to build such a bench-
mark in a completely task agnostic manner. In our study, we are focusing on a maintenance
work task.

In order to establish a well defined benchmark, a performance metric is needed that al-
lows for automatic evaluation. While there are widely adopted metrics for object recognition
and detection, those are not directly applicable to our settings. First, object disambiguation
has to deal with potentially repetitive objects whose identities are only resolved in context
and therefore it is not captured by previous object detection metrics. Second, we are interest
in the actual success of the user of the augmented reality system. Hence we seek a metric
that measures the user’s success in disambiguating the objects given the observation of the
system’s output.

We propose the first benchmark for augmented reality systems in maintenance work.
Different metrics are evaluated to judge the systems performance in the context of the appli-
cation. We propose a metric that closely follows the actual performance achieved by the hu-
man observer of the system’s output. We propose the first system for object disambiguation
that leverage 3d context from a SLAM system as well as flexible constraints on the matching
procedure in order to robustly interpret the output of state-of-the-art object detectors for the
task of object disambiguation.

2 Related Work
2D detection Our approach uses object detectors in order to evidence of machine parts
from the image. We evaluate a range of commonly used object detectors[4, 7, 11, 16, 19].
All of them meet real-time constraints. While some of the were already built with efficiency
in mind [4, 11, 19], other have seen recent extension by algorithms speed up as well as GPU
computation [5, 14, 17]. As we are facing the challenge of reoccurring parts, object detection
on it’s own is insufficient to resolve ambiguities.

3D context Previous approach have explored improving object detection based on normal,
size, height information extracted from dense 3D data [9, 10]. The most related approach
to our work is using 3D layouts of object detectors in order for indoor scene understanding
[3]. Most notably, our approach differs as it uses the layout information for the purpose of
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Figure 1: Overview of our system for object disambiguation.

disambiguation, we add an expectation over the matched viewpoints as well as address a
different task (augmented reality).

Augmented Reality Application and maintenance work Augmented reality application
have been studied for over two decades [1]. A recent overview of approaches, techniques
and datasets can be found in [18] and is beyond the scope of exposition. The predominant
body of work deals with registration and matching based on markers, low-level features or
single objects. We argue for object centric evidence for ease of deployment. In particular,
our use case of maintenance work calls for compositional models of multiple objects that
allow for object disambiguation within the 3D context. We are not aware of previous efforts
of establishing a public dataset for this purpose.

3 Object Disambiguation
As outlined before we seek a monocular system that operates markerless and exploits state-
of-the-art object detectors in order to disambiguates objects as parts of a machine. For dis-
ambiguating multiple visual identical parts we fuse the object detector output with a SLAM
system that allows us resolve ambiguities by reasoning over the spatial context. Figure 1
shows an overview of our system.

2D object detection At the core of our model are objects of which a machine is composed
off. In order to localize them at test time we investigate a set of recent detectors: LINE-
MOD2D[11], cascade with haar features [19] as well as HOG features [4], color-DPM[16].
As such models are all learning-based we can easily adopt our model to new machines and
scenarios by training new detectors from examples and plugging them into our model. While
the instance based detectors as well as the cascades are fast by design also the more complex
detectors have seen recent extension so that they can be computed at interactive rates [5, 14,
17].

Sparse 3D from SLAM A sparse 3D point cloud is extracted from video using a monocu-
lar simultaneous localization and mapping (SLAM) system [13]. An extrinsic camera matrix
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is estimated based on the set of map points visible in the current frame, and the map is ex-
panded as the camera is moved. The use of monocular image-based SLAM avoids the need
for specialized sensors but also introduces challenges. In particular, tracking can fail if in-
sufficient map points are visible (e.g. due to severe motion blur, absence of image features)
to reliably triangulate the camera position as well as 3D estimate can be noisy due to com-
plex scene geometry, occlusions and reflective surfaces. Tracking can be reinitialized at the
cost of resetting the SLAM coordinate system. Direct use of the sparse 3D information has
shown to yield unreliable matches wherefore we opt for integrating 2D and 3D information
in the following step.

Temporal accumulation and reprojection to 3D We use the sparse 3D information gen-
erated by the SLAM system in order to reproject the 2D object detections to 3D. The depth
for a particular detection is computed as the average over the covered SLAM features. As
all preceding frames are connected by the SLAM track, we accumulate the reprojected 2D
object detections over time. The benefits are threefold. First, object evidence is accumulated
over time and can therefore compensate for missing or weak 2D detections in individual
frames. Second, potential lag of the detection system can be compensated for as detections
from previous frames are already available. Third, partial and ambiguous views of the ma-
chine that occur due to zooming in or shifting the viewpoint can be compensated due to
previous viewpoints.

3D machine layout of parts We require a 3D machine layout that specifies the relative
locations of each object. Such description are often provided by the machine specifications.
Please note that the model does not have to be metric – nor do we require a complete 3D
model or 3D scan of the machine. This is desirable for easy deployment and adaptation to
new scenarios as a complete model can be specified by providing object detectors and a 3D
layout.

Model Matching In order to match the 3D layout with N objects gn to the observed de-
tections d, we define an energy function that is taking into account the object appearance
(Eappearance), deformation of the layout (Ede f ormation), scale (Escale), viewpoint (Eviewpoint ) as
well as amount of matched objects (optional part in the deformation energy). The energy
on scale and viewpoint capture an expectation of typical viewpoints the machine is viewed
in. We seek the best match by finding an assignment of detections d1, . . . ,dN as well as a
projection matrix M so that the following objective:

argmin
d1,d2,...,dN ,M

Ede f ormation +Eappearance +Escale +Eviewpoint (1)

where

Ede f ormation =
∑

N
n=1 δn

N

N

∑
n=1

δn · log(
∥∥M̄(Pgn)−Pdn

∥∥)
Eappearance =−

N

∑
n=1

δn ·Adn

Escale =

{
0, s̄ ∈ [µs−2 ·σs,µs +2 ·σs]

∞, otherwise

Eviewpoint =

{
0, x̄ ∈ [µx−2 ·σx,µx +2 ·σx] ,∀x = {α,β ,γ}
∞, otherwise

(2)
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Figure 2: Visualization of the distribution for viewpoints in each machine. The red cameras
are from the testing videos while the blue ones are from the training sets. The coordinate
system is based on the 3D machine layout.

Pgn and Pdn denotes the 3D coordinate of gn and dn, while Adn is the detection score of
the match dn. The indicator variable δn is for handling the non-matched machine parts,
where δn = 1 if

∥∥M̄(Pgn)−Pdn

∥∥ smaller than a threshold ε , and δn = 0 otherwise. The 3D
transformation M(·) includes the scale factor s, rotation matrix composed of three rotation
angles {α,β ,γ} and also a translation vector t. From the training videos of each machine, we
compute the distribution of the scale factors and the rotation angles to get their mean µ and
standard deviations σ . In the energy terms for both scale Escale and the viewpoint Eviewpoint ,
we hard-constraint the scale factor s̄ and rotation angles x̄,∀x = {α,β ,γ} extracted from
estimate 3D transformation M̄ to be within 2 times of standard deviation from the mean.
Figure 2 shows the viewpoints of training (blue) and testing (red) in the coordinate system
of the machine layout.

In order to minimize the objective, we follow a RANSAC [8] pipeline by randomly
selecting candidate alignments between the detections and the machine layout which results
in an initial geometric transformation. According to this initial fitting, we iteratively refine
the estimate [2] and re-associate the transformed groundtruth points to the closest detection
points.

4 Experiments
We propose the first benchmark for an object disambiguation task in maintenance work that
is composed of an annotated dataset as well as a metric that approximates human judgement.
Furthermore, we evaluate our proposed model as well as its components.

4.1 Object Disambigutation DataSet (ObDiDaS)

We present the first annotated dataset that allows to quantify performance on a object dis-
ambiguation task as it frequently occurs in augmented reality settings and assistance for
maintenance work. The dataset captures 4 machines composed of 13 components. Each
machine is built of a subset of these potentially repeating components that occur in differ-
ent spatial arrangements. We provide 14 videos with different viewing scenarios. For each
videos we provide human annotation on every 60 frames (at 30fps), with in total 249 frames
annotated and 6244 object annotations that specify the type as well as a unique identity. We
take one video per machine as testing set and the rest is used for training. Examples are
shown in the Figure 3. There are various types of difficulties in this dataset, including the
wide changes in viewing angles of different object classes, occlusions and motion blur in
the videos, reflective surfaces. The dataset allows studies of machine part detection and dis-
ambiguation, combination of 2D and and 3D cues based on monocular input, generalization
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Figure 3: Example images for the dataset. In each image we use different color codes for
different classes of machine parts. And each instance of the machine parts are labelled with
unique identities of the machine.

between machines and adaptation to new scenarios. The ObDiDaS dataset is available at
http://datasets.d2.mpi-inf.mpg.de/object-disambiguation/.

4.2 Object Disambiguation Metrics
While object detection metrics assess the performance of object localization in isolation, we
are interested in a metric that captures the object disambiguation performance of a human
if provided with the produced overlay. Therefore we propose a set of candidate metrics and
then evaluate which one is closest to actual human judgement on the task.

Given a video frame with the SLAM extrinsic matrix H and the ground-truth annotation
of N visible machine parts by bounding boxes Bgt . By using H to project the matches in
RANSAC to this frame as bounding boxes, we denote the M visible ones with Best . For each
bounding box in ground-truth annotation or RANSAC estimation, they have the labels of
their object classes and instance ids. (Note that we define C(·) and I(·) as functions to get
the object class label and instance id of the bounding box)

Pascal Object Detection Criterion [Pascal] Inspired by the Pascal Challenge [6], for each
bn

gt ,n = 1 · · ·N, we find the corresponding bounding box bm
est with the same class label C(bn

gt)
and instance id I(bn

gt) as bn
gt from Best , and measure the intersect-over-union metric between

bn
gt and bm

est :

O(bn
gt ,b

m
est) =

bn
gt ∩bm

est

bn
gt ∪bm

est
(3)

Then we define the Pascal metric as:

Scorepascal =
1
N

N

∑
n=1

ρn , where ρn =

{
1, O(bn

gt ,b
m
est)> th

0, otherwise
(4)

The variable th is the overlapping threshold, which we set it to be 0.001 in our experiments.

Nearest Neighbor (within/across) We define the pairwise distance dist(bn
gt ,b

m
est) between

bn
gt and bm

est as the euclidean distance between their box centers in the image coordinate. For
each bn

gt ,n = 1 · · ·N, we find its nearest neighbor bNNwithin
est from Best with the same object

class label: BC
est =

{
bm

est |C(bm
est) =C(bn

gt)
}

. Then we define the NNwithin metric as:

ScoreNNwithin =
1
N

N

∑
n=1

ρn , where ρn =

{
1, I(bn

gt) = I(bNNwithin
est )

0, otherwise
(5)
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machine 1 machine 2 machine 3 machine 4 average
Human Judge. 74.12% 100.00% 99.68% 70.57% 86.09%

Pascal 60.92% 98.68% 95.60% 25.10% 70.08%
NN (within) 57.05% 94.76% 88.06% 72.88% 78.19 %
NN (across) 56.07% 91.97% 65.20% 56.84% 67.52 %

1-to-1 (within) 77.55% 99.18% 99.68% 79.25% 88.92%
1-to-1 (across) 74.63% 96.92% 93.10% 72.45% 84.28 %

Table 1: Evaluation of different metrics.

Instead of finding the nearest neighbor with the same object class label, in metric NNacross we
extend to search from all the bounding boxes in Best , we denote the found nearest neighbor
as bNNacross

est . Then the metric NNacross is represented as:

ScoreNNacross =
1
N

N

∑
n=1

ρn , where ρn =

{
1, C(bn

gt) =C(bNNacross
est ) and I(bn

gt) = I(bNNacross
est )

0, otherwise
(6)

One-to-One (within/across) In comparison to computing the nearest neighbor, we fur-
ther restrict to have one-to-one matching between bn

gt and bm
est and turn it to be a weighted

bipartite matching scenario, where the weights are the dist(bn
gt ,b

m
est). We use Hungarian

method [15] to solve this problem. Assume there are in total L object classes shown in this
video frame, for each class l we build up the distance matrix by Bl

gt =
{

bnl
gt |C(bnl

gt) = l
}

and Bl
est =

{
bml

est |C(bml
est) = l

}
. Then for each bnl

gt we have the match b
Onel

within
est after applying

Hungarian method. We define the Onewithin metric as:

ScoreOnewithin =
1
N

L

∑
l=1

Nl

∑
nl=1

ρnl , where ρnl =

{
1, I(bnl

gt) = I(b
Onel

within
est )

0, otherwise
(7)

Similar in nearest-neighbor metrics, we can also extend to do the one-to-one matching across
classes. Hence we build up the distance matrix between Bgt and Best . For each bn

gt we have
the match bOneacross

est . and the metric Oneacross is written as:

ScoreOneacross =
1
N

N

∑
n=1

ρn , where ρn =

{
1, C(bn

gt) =C(bOneacross
est ) and I(bn

gt) = I(bOneacross
est )

0, otherwise
(8)

Evaluation of metrics In Table 1 we compare the proposed metrics to actual human judge-
ment. We use the output of our full model. For the human judgement, we present the pro-
duced overlay to a human observer and assess in how many cases the correct object was
identified. We observe that pascal metric significantly underestimates the system perfor-
mance. We attribute this to an implicit matching that the human observer performs between
the overlay and the observed machine parts. The nearest neighbor metric narrows the gap –
at least for the case of matching within the object types (NNwithin). The closest match to the
true performance is obtained by the one-to-one metric. It takes further into account that the
human observer also makes use of the context in order to align the overlay with the observed
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LINE-MOD Haar cascade HoG cascade LBP cascade color-DPM
avg. precision 10.81% 8.37% 13.38 % 8.90 % 36.73 %

Table 2: Evaluation of 2D object detectors.

machine 1 machine 2 machine 3 machine 4 average
full model 74.63% 96.92% 93.10% 72.45% 84.28 %

no appearance 67.29% 93.32% 64.05% 51.06% 68.93%
no deformation 83.89% 95.05% 61.44% 40.30% 70.17%

no scale constraint 67.29% 98.53% 53.94% 43.57% 65.84%
no viewpoint constraint 38.01% 88.89% 43.04% 10.21% 45.04%
no scale and viewpoint 38.01% 88.89% 43.04% 10.21% 45.04%
no non-matched objects 74.61% 74.16% 64.10% 55.65% 67.13%

Table 3: Evaluation of different model components.

objects. As the “within” variant overestimates the performance we suggest and use the one-
to-one (across) metric in the following experiments. A more detailed analysis of correlation
scores on the individual object level has yielded the same ranking of metrics.

4.3 Evaluation
2D detectors in isolation We compare a range of 2D object recognition/detection algo-
rithms on our new dataset: LINE-MOD2D[11], cascades with haar features [19] or histogram
of gradient features [4] and color-DPM[16]. Table 2 shows average precision scores for the
individual methods averaged across all objects and machines. This evaluation uses the pascal
criterion as it evaluates object detection in isolation. We conclude that the color-DPM model
outperforms the competitors by a large margin on this task. Therefore we will use it as a
object detector throughout our experiments.

Full and partial models on object disambiguation task We evaluate our full model as
well as switching energy terms off one at a time in order to provide further insights. Ta-
ble 3 shows the individual performance numbers of the object disambiguation task (under
the one-to-one-across metric), Figure 5 shows example results of our system in compari-
son to the groundtruth annotations and Figure 4 illustrates the effect on the output if parts
of the matching energy are not used. We observe the most dramatic drop in performance
if the viewpoint and scale constraints are not used, which results in a performance drop of
almost 40%. The corresponding visualizations show that disabling this part of our model
leads to estimates that exhibit a strong camera roll or suggest a fit beyond working distance.
Appearance and the model deformation seem roughly equally important and both boost the
performance by over 10%. Also our explicit treatment of non-matched objects is similarly
important. Effects can again be observed in Figure 4 where a mismatch caused by a partial
visible machine is remedied by the full model.

While our full model shows strong performance on machine 2 and 3, there is still a need
for improvement on the other two. We attribute the missing performance to reflective sur-
faces (mirror in the back) that cause problems to the SLAM and detection system, complex
3D structure of machine layout, weak evidence from detector for certain objects and back-
ground clutter.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Top figure shows output of full model; result in bottom figure has a particu-
lar energy switched off (a)with/without appearance term (b)with/without deformation term
(c)with/without non-matched objects handling (d)with/without scale term (a)with/without
viewpoint term (a)with/without scale and viewpoint term

Figure 5: Example results. First row are examples for the groundtruh of each machine.
Second row are the corresponding results from our proposed method.



10 CHIU ET AL.: OBJECT DISAMBIGUATION FOR AUGMENTED REALITY APPLICATIONS

5 Conclusion
We have investigated a object disambiguation task in a markerless augmented reality sce-
nario, where object identities are inferred from monocular input by exploiting contextual
information. To the best of our knowledge, we present the first dataset that allows to quan-
tify the performance of such a system. We propose different metrics and compare them
to human judgement. Our proposed metric gives a more realistic estimate of the system
performance than a traditional object detection metric that consistently underestimates the
system performance. Finally, we present an automatic system for object disambiguation that
shows strong performance due to a matching formulation that is based on a composite energy
function. We analyze the contribution of each component which underlines in particular the
importance of modeling expectations over viewpoints and scales in the matching process.

Acknowledgement We acknowledge support from the Intel Visual Computing Institute
(Intel VCI).

References
[1] Ronald T. Azuma. A survey of augmented reality. In Presence: Teleoperators and

Virtual Environments, 1997.

[2] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Robotics-DL
tentative, pages 586–606. International Society for Optics and Photonics, 1992.

[3] W. Choi, Y. W. Chao, C. Pantofaru, and S. Savarese. Understanding indoor scenes
using 3d geometric phrases. In CVPR, 2013.

[4] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In CVPR, 2005.

[5] Thomas Dean, Mark A. Ruzon, Mark Segal, Jonathon Shlens, Sudheendra Vijaya-
narasimhan, and Jay Yagnik. Fast, accurate detection of 100,000 object classes on
a single machine. In CVPR, 2013.

[6] Mark Everingham, Luc van Gool, Chris Williams, John Winn, and Andrew Zisserman.
Pascal visual object class challenge. http://pascallin.ecs.soton.ac.uk/
challenges/VOC/.

[7] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. A discriminatively
trained, multiscale, deformable part model. In CVPR, 2008.

[8] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography. Commu-
nications of the ACM, 24(6):381–395, 1981.

[9] Mario Fritz, Kate Saenko, and Trevor Darrell. Size matters: Metric visual search con-
straints from monocular metadata. In Advances in Neural Information Processing Sys-
tems (NIPS). 2010.

http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/


CHIU ET AL.: OBJECT DISAMBIGUATION FOR AUGMENTED REALITY APPLICATIONS 11

[10] Stephen Gould, Paul Baumstarck, Morgan Quigley, Andrew Y. Ng, and Daphne Koller.
Integrating visual and range data for robotic object detection. In Workshop on Multi-
camera and Multi-modal Sensor Fusion, 2008.

[11] Stefan Hinterstoisser, Stefan Holzer, Cedric Cagniart, Slobodan Ilic, Kurt Konolige,
Nassir Navab, and Vincent Lepetit. Multimodal templates for real-time detection of
texture-less objects in heavily cluttered scenes. In ICCV. IEEE, 2011.

[12] Yangqing Jia. Caffe: An open source convolutional architecture for fast feature embed-
ding. http://caffe.berkeleyvision.org/, 2013.

[13] Georg Klein and David Murray. Parallel tracking and mapping for small AR
workspaces. In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM
International Symposium on, pages 225–234. IEEE, 2007.

[14] Iasonas Kokkinos. Shufflets: Shared mid-level parts for fast object detection. In ICCV,
2013.

[15] Harold W Kuhn. The hungarian method for the assignment problem. In 50 Years of
Integer Programming 1958-2008, pages 29–47. Springer, 2010.

[16] Fahad Shahbaz Khan, Rao Muhammad Anwer, Joost van de Weijer, Andrew D Bag-
danov, Maria Vanrell, and Antonio M Lopez. Color attributes for object detection. In
CVPR, 2012.

[17] Hyun Oh Song, Stefan Zickler, Tim Althoff, Ross Girshick, Mario Fritz, Christopher
Geyer, Pedro Felzenszwalb, and Trevor Darrell. Sparselet models for efficient multi-
class object detection. In ECCV, 2012.

[18] Hideaki Uchiyama and Eric Marchand. Object detection and pose tracking for aug-
mented reality: Recent approaches. In Korea-Japan Joint Workshop on Frontiers of
Computer Vision, 2012.

[19] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. In CVPR, 2001.

http://caffe.berkeleyvision.org/

