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Abstract

The Histogram of Oriented Gradient (HOG) descrip-
tor has led to many advances in computer vision over the
last decade and is still part of many state of the art ap-
proaches. We realize that the associated feature computa-
tion is piecewise differentiable and therefore many pipelines
which build on HOG can be made differentiable. This
lends to advanced introspection as well as opportunities for
end-to-end optimization. We present our implementation of
∇HOG based on the auto-differentiation toolbox Chumpy
[18] and show applications to pre-image visualization and
pose estimation which extends the existing differentiable
renderer OpenDR [19] pipeline. Both applications improve
on the respective state-of-the-art HOG approaches.

1. Introduction

Since the original presentation of the Histogram of Ori-
ented Gradients (HOG) descriptor [4] it has seen many use
cases beyond its initial target application to pedestrain de-
tection. Most prominently it is a core building block of the
widely used Deformable Part Model (DPM) object class de-
tector [9] and exemplar models [23] which both on their
own have seen many follow-up approaches. Most recently,
HOG-based approaches have repeatedly shown good gen-
eralization performance to rendered [1] and artistic images
[2], while such type of generalizations are non-trivial to
achieve in recently very successful deep learning models in
vision [24].

As all feature representations also HOG seek a reduction
of information in order to arrive at a more compact repre-
sentation of the visual input that is more robust to nuisances
such as noise and illumination. It is specified as a mapping
of an image into the HOG space. The resulting representa-
tion is then typically further used in classification or match-
ing approaches to solve computer vision tasks.

While HOG is only defined as a feed-forward computa-
tion and introduces an information bottleneck, sometimes
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Figure 1: We exploit the piecewise differentiability of the
popular HOG descriptor for end-to-end optimization. The
figure shows applications on the pre-image reconstruction
given HOG features as well as the pose estimation task
based on the same idea.

we desire to invert this pipeline for further analysis. E.g.
previous work has tried visualize HOG features by solv-
ing an pre-image problem [28, 13]. Given a HOG repre-
sentation of an unobserved input image, the approaches try
to estimate an image that produces the same HOG repre-
sentation and is close to the original image. This has been
addressed by sampling approach and approximation of the
HOG computation in order to circumvent the problem of the
non-invertible HOG computation. Another example, is pose
estimation based on 3D models [31, 1, 25, 27] that exploits
renderings of 3D models in order to learn a pose prediction
model. Here the HOG computation is followed up by a De-
formable Part Model [9] or simplified versions that related
to the Exemplar Model [23]. Typically, these methods em-
ploy sampling based approaches in order to render discrete
view-points that are then used in a learning-based scheme
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to match to images.
In our work, we investigate directly computing the gra-

dient of the HOG representation which then can be used
for end-to-end optimization of the input w.r.t. the desired
output. For the visualization via pre-image estimation, we
observe the HOG representation and compute the gradient
w.r.t. the raw pixels of the input image. For pose estimation
we consider the whole pose scoring pipeline of [1] that con-
stitutes a model with multiple parts and a classifier on top
of the HOG representation. Here we show how to directly
maximize the pose scoring function by computing the gra-
dient w.r.t. the pose parameters. In contrast to the previous
approach, we do not reply on pre-rendering views exhaus-
tively and our pose estimation error is therefore not limited
by the initial sampling.

We compare to previous works on HOG visualizations
and HOG-based pose estimation using rendered images. By
using our approach of end-to-end optimization via differen-
tiation of the HOG computation, we improve over the state
of the art on both tasks.

2. Related Work
The HOG feature representation is widely used in many

computer vision based applications. Despite its popularity,
its appearance in the objective functions usually makes the
optimization problem hard to operate where it is treated as
a non-differentiable function [12, 32]. How to invert the
the feature descriptor to inspect its original observation in-
vokes a line of works of feature inversion and feature visu-
alization (pre-image) problem. There are plenty of works
on this interesting topic. Given the HOG features of a test
image, Vondrick et al. [28] tried in their baseline to op-
timize the objective with HOG involved by the numerical
derivatives but failed to get reasonable results, thus in their
proposed method the inversion is done by learning a paired
dictionary of features and the corresponding images. Wein-
zaepfel et al. [30] attempted to reconstruct the pre-image
of the given SIFT descriptors [21] based on nearest neigh-
bor search in a huge database of images for patches with
the closet descriptors. Kato et al. [13] study the prob-
lem of pre-image estimation of the bag-of-words features
and they rely on a large-scale database to optimize the spa-
tial arrangement of visual words. Although these and other
related works provide different ways to approximately il-
lustrate the characteristic of the image features, we nearly
have not seen the work directly addressing the differentiable
form of the feature extraction procedure. In contrast, our ap-
proach contributes to make the differentiation of HOG de-
scriptor practical such that it can be easily plugged into the
computer vision pipeline to enable direct end-to-end opti-
mization and extension to hybrid MCMC schemes [15, 16].
One most relevant work to ours is from Mahendran et al.
[22], which inverts feature descriptors (HOG [9], SIFT [21],

and CNNs [14]) for a direct analysis of the visual informa-
tion contained in representations, where HOG and SIFT are
implemented by Convolutional Neural Networks (CNNs).
However, their approach contains an approximation to the
orientation binning stage of HOG/SIFT and includes two
strong natural image priors in the objective function with
some parameters need to be estimated from training set. In-
stead in our work, we do not have any approximation in the
HOG pipeline and no training is needed.

Despite deep-learning based features are in fashion these
years, there are plenty of applications using HOG, in par-
ticular the Examplar LDA [11] for the pose estimation task
with rendered/CAD data [1, 17, 3]. In [6], slightly-modified
SIFT (gradient-histogram-based as HOG) can beat CNNs in
feature matching task. In this paper, we specifically demon-
strate the application of our ∇HOG on the pose estimation
problem for aligning 3D CAD models to the objects on 2D
real images, we briefly review some recent research works
here. Lim et al. [17] assume the accurate 3D CAD model
of the target object is given, based on the discretized space
of poses for initialization they estimate the poses from the
correspondences of LDA patches between the real image
and the rendered image of CAD model. Aubry et al. [1]
create a large dataset of CAD models of chair objects, with
rendering each CAD model from a large set of viewpoints
they train the classifiers of discriminative exemplar patches
in order to find the alignment between the chair object on
the 2D image and the most similar CAD model of the cer-
tain rendering pose. In additional to the discrete pose esti-
mation scheme as [1], there has been works on continuous
pose estimation [26, 3, 25]. For instance, Pepik et al. [25]
train a continuous viewpoint regressor and also the RCNN-
based [10] key-point detectors which are used to localize the
key-points on 2D images in an object class specific fashion,
with the correspondences between the key-points on the 2D
image and 3D CAD model, they estimate the pose of the
target object. However, for these current state-of-the-art ap-
proaches most of them need to collect plenty of data to train
the discriminative visual element detectors or key-point de-
tectors for the matching, or to render many images of CAD
models of various viewpoints in advance. Instead, our pro-
posed method manages to combine the ∇HOG based ex-
emplar LDA model with the approximate differentiable ren-
derer from [19] which enable us to have directly end-to-end
optimization for the pose parameters of the CAD model in
alignment with the target object on the real images.

3.∇HOG
Here we describe how we achieve the derivative of the

HOG descriptor. In the original HOG computation, there
are few sequential key-components, including 1) comput-
ing gradients, 2) weighted vote into spatial and orientation
cells, and 3) contrast normalization over overlapping spatial



blocks. In our implementation we follow the same proce-
dure. For each part we argue for piecewise differentiability.
The differentiability of the whole pipeline follows from the
chain rule of differentiation. Figure 2 shows an overview of
the computations involved in the HOG feature computation
pipeline which we describe in details in the following.

3.1. Gradients Computation

If a color image I ∈ Rw×h×3 is given, we first compute
its gray-level image:

Igray = I(:, :, 0)∗0.299+I(:, :, 1)∗0.587+I(:, :, 2)∗0.114
(1)

Then we follow the best setting for gradient computation
as in Dalal’s approach [4], to apply the discrete derivative
1–D [−1, 0, 1] masks on both horizontal and vertical direc-
tions without Gaussian smoothing. We denote the gradient
maps on horizontal and vertical directions as Gx and Gy ,
while the magnitude ‖∇‖ and direction Θ of gradients can
be computed by:

‖∇‖ =
√
G2

x +G2
y

Θ = arctan(Gy, Gx)
(2)

Note that here we use unsigned orientations such that the
numerical range of the elements in ‖∇‖ ∈ [0, 180]. The L2
norm is denoted by ‖·‖ through this paper for consistency.

Differentiability: The conversion to gray as well as the
derivative computation via linear filtering are linear opera-
tions and therefore differentiable. arctan is differentiable
in R and the gradient magnitude ‖∇‖ is differentiable due
to the chaining of the differentiable squaring function and
the square root over values in R+.

3.2. Weighted vote into spatial and orientation cells

After we have the magnitude and direction of the gradi-
ents, we proceed to do the weighted vote of gradients into
spatial and orientation cells which provides the fundamen-
tal nonlinearity of the HOG representation. The cells are the
local spatial regions where we accumulated the local statis-
tics of gradients by the histogram binning of their orienta-
tions. Assume we divide the image region into N c

w × N c
h

cells of size cw × ch, for each pixel located within the cell
we compute the weighted vote of its gradient orientation to
an orientation histogram (In our setting we use the same set-
ting as Dalal’s to have the histogram of 9 bins spaced over
0◦ − 180◦ which ignores the sign of the gradients).

Normally for each cell its orientation histogram is rep-
resented in a 1–D vector of length B (number of bins), but
this operation will miss the positions of the pixels which
contribute to the histogram. This does not lead to a formu-
lation that allows for derivation of the HOG representation

with respect to different pixel positions. Our main observa-
tion here is to view each orientation binning as a filter fob
applied to each location in the gradient map. We store the
filtered results in F o ∈ Rw×h×B . Analogously, the pixel-
wise orientational filters {fob }b=1···B are chosen to follow
the bi-linear interpolation scheme of the gradients in neigh-
boring orientational bins:

fob (Θ) = clipmax=1
min=0 (1− |Θ− µb| ×

B

180
) (3)

F o
b = ‖∇‖ � fob (Θ), ∀b ∈ 1 · · ·B (4)

where µb is the central value of orientation degree for fil-
ter fob , clipmax=1

min=0 function clamps the numerical range be-
tween 1 and 0, and � is an element-wise multiplication.
(Note that for the first filter fo1 we also take care of the nu-
merical range. See the visualization shown in Figure 2.)

We have the F o for orientational binning, we then ap-
ply spatial binning for each cell. Here as in the Dalal’s
method, to reduce the aliasing, for each pixel location it
will contribute to its 4 neighboring cells proportional to the
distances to the centers of those cells, in another word, the
votes are interpolated bilinearly. Following the similar trick
as in orientational binning, by creating a 2cw × 2ch bilinear
filter fs where its maximum value 1 is in the center with
decreasing values toward four corners to minimum value 0,
as shown in Figure 2, we convolve it with all F o

b to get the
spatial filtered results F s

b :

F s
b = F o

b ∗ fs, ∀b ∈ 1 · · ·B (5)

then the spatial binning for cells can be easily fetched from:

F s
b (x, y|x ∈ X , y ∈ Y), ∀b ∈ 1 · · ·B (6)

where (X ,Y) are the (x, y) coordinates of the centers for
all cells.

Note that till here when you concatenate v =
{F s

b (x, y|x ∈ X , y ∈ Y)}b=1···B then actually we get ex-
actly the same representation as from original HOG ap-
proach.

Differentiability By re-representing the data, we have
shown that the histograming and voting procedure of the
HOG approach can be viewed as linear filtering operations
followed up by a summation. Both steps are differentiable.

3.3. Contrast normalization

In the original procedure of Dalal’s HOG descriptor,
contrast normalization is performed on every local region
of size 3 × 3 cells, which they call blocks. As many re-
cent applications that we are interested in [1, 2, 13, 28, 9]
do not use blocks, we do not consider them either in our
implementation. While this step is possible to incorporate,
it would also lead to increased computational costs due to



h Igray

w

krk
w

h

⇥

w

h 0 20  40  60  80  100  120  140  160  180 

1

0 20  40  60  80  100  120  140  160  180 

1

0 20  40  60  80  100  120  140  160  180 

1

0 20  40  60  80  100  120  140  160  180 

1

...

{fo
b }b=1···NB

orientation filter

fo
1 (⇥)

fo
B(⇥)

...

�

�

F o
1

F o
B

...

⇤

⇤

2cw

2ch

spatial filter fs

...

F s
1

F s
B

2
6666666664

F s
1 (x, y|x 2 X , y 2 Y)

...

F s
B(x, y|x 2 X , y 2 Y))

3
7777777775

HOG vector v as:

vp
kvk+✏

(X , Y) are (x, y) positions
of the center for all cells.

contrast
normalization

Figure 2: Visualization of the implementation procedure for our∇HOG method.

multiple representation of the same cell. We instead only
use the global normalization by using the robust L2-norm.
Given the HOG representation v from previous steps, the
global contrast normalization can be written as:

vnormalized =
v√
‖v‖+ ε

(7)

where ε is a small positive constant.

Differentiability: This is a chain of differentiable func-
tions and therefore the whole expression is differentiable.

Difference to Original HOG While there is a large diver-
sity of HOG implementations available by now, we summa-
rize the two main difference to the standard one as proposed
in [4]: First, the original HOG compute the the gradients
on different color channels and apply the maximum opera-
tor on the magnitudes over all channels to get the gradient
map. In our implementation we simply first transform the
color image into gray scale and compute the gradient map
directly. Second, we do not include the local contrast nor-
malization for every overlapping spatial blocks. But we do
include the global, robust L2 normalization.

3.4. Implementation

In the above equations (Eq. 1, 2, 3, 5, 7) all the opera-
tions are (piecewise-) differentiable (summation, multipli-
cation, division, square, square root, arc-tangent, clip), with
the use of the chain rule, our overall HOG implementation
is differentiable on each pixel position. Overall, this is not
surprising as visual feature representations are designed to
vary smoothly w.r.t. to small changes in the image. We
have implemented this version of the HOG descriptor by us-
ing the Python-based auto-differentiation package Chumpy
[18], which evaluates an expression and its derivatives with
respect to its inputs. The package and our extension in-
tegrate with the recently proposed Approximate Differen-
tiable Renderer OpenDR [19]. We will make our imple-
mentation publicly available in the near future.

4. Experimental Results
4.1. Reconstruction from HOG descriptors

We evaluate our proposed ∇HOG method on the image
reconstruction task based on the feature descriptors. We are
interested in this task since it provides a way to visualize
the information carried by the feature descriptors and open
the opportunity to examine the feature descriptor itself in-
stead of based on the performance measures of certain tasks
as proxies. There is already prior work on this problem.
[13, 28, 5] focus on different feature representations such
as Bag-of-Visual-Words (BoVW), Histogram of Orientated
Gradients (HOG), and Local Binary Descriptors (LBDs).
However, state-of-the-art approaches typically need to use
large-scale image bases for learning the reconstruction.

Objective As we have derived the gradient of the HOG
feature w.r.t. the input, we can – given a feature vector –
directly optimize for the reconstruction of original image
without any additional data needed. To define the problem
more formally, let I ∈ RX×Y be an image and its HOG rep-
resentation as φ(I), we optimize to find the reconstructed
image Î whose HOG features φ(Î) have the minimum eu-
clidean distance E to φ(I):

Î = argmin
Î∈RX×Y

E

= argmin
Î∈RX×Y

∥∥∥φ(I)− φ(Î)
∥∥∥

(8)

The option to approach the problem in this way was men-
tioned in [28], however there was no result achieved as nu-
merical differentiation is very computational expensive in
this setting. Direct optimization is facilitated for the first
time using our∇HOG approach.

An overview of our approach is shown in Figure 1. We
compute derivatives ∂E

∂ix,y
with respect to the intensity val-

ues ix,y of all the pixel positions (x, y) on Î via auto-
differentiation. By gradient-based optimization we are able



to find a local minimum of E and corresponding recon-
structed image Î . In order to regularize our estimation,
we introduce a smoothness prior that penalizes gray value
changes of adjacent pixels. Intuitively, this encourages
propagation of information into areas without strong edges
for which no signal from the HOG features is available.

Î = argmin
Î∈RX×Y

∥∥∥φ(I)− φ(Î)
∥∥∥+ ξ

∑

p,q∈N
‖ip − iq‖ (9)

where p, q ∈ N means that pixel p and q are neighbors, and
ξ is the weight for the smoothness term which we usually
set to a big number as 102 in our experiments. Although
we give a high weight for the smoothness term, it will only
play a key role in the first few iterations of the optimization
procedure then the euclidean distance E will dominate to
find the local minimum.

The evaluation is based on the image reconstruction
dataset proposed in [13] which contains 101 images for all
the categories from Caltech 101 dataset [8] and all have
a resolution of 128 × 128. We compare our method with
few state-of-the-art baselines on image reconstruction from
feature descriptions: the BoVW method from [13], the
HOGgles method from [28], also CNN-HOG and CNN-
HOGb(CNN-HOG with bilinear orientation assignments)
from [22].

Note that our ∇HOG described in Section 3 is
based on Dalal’s-type HOG[4], while for HOGgles/CNN-
HOG/CNN-HOGb baselines they are using UoCTTI-type
HOG[9] which additionally considers directed gradients.
To have a fair comparison, we also implement UoCTTI
HOG under our proposed framework.

We propose two additional variants for reconstruction
that exploit multi-scale information as shown in Figure 3.

∇HOG multi-scale We use the single scale HOG de-
scriptor as input, but we first reconstruct Î 1

s
with s times

smaller resolution than I (the cell size for φ(Î 1
s
) is 1√

s
of

the original one used for φ(I), s ∈ {4, 16, 64} in our ex-
perimental setting.). After few iterations of updates in op-
timization process, we up-sample Î 1

s
to higher resolution

and continue the reconstruction procedure. These steps are
repeated until we reach the initial resolution of I .

∇HOG multi-scale-more We use the multi scale HOG
vectors of the original image I as the input. For the recon-
struction on different scale s, the corresponding HOG de-
scriptor φ(I 1

s
) extracted on the same scale is used in the eu-

clidean distance E, as shown in Figure 3(b). As additional
HOG descriptors are computed from the original image at
different scales, we use more information than in the origi-
nal setup and therefore the results of the “multi-scale-more”
approach cannot be directly compared to prior works.

�(I)

HOG

Î

�(Î)

up-sam
ple

�(Î 1
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@Î 1
4

@E 1
16

@Î 1
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�(Î 1
16

)

�(Î 1
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���

diff.HoG

diff.HoG

up-sam
ple

�(I 1
16

)

E 1
4

=
����(I 1

4
) � �(Î 1
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@Î

@E 1
4

@Î 1
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Figure 3: Visualizations of variants of the proposed method
for the task of image reconstruction from feature descrip-
tors.

The optimization is done based on the nonlinear opti-
mization using Powell’s dogleg method [20] which is im-
plemented in Chumpy [18]. Example results of the multi
scale approaches can be seen in Table 1.

test 1/64 1/16 1/4 1/1

(a)

(b)

test iter-0 iter-1 iter-2 iter-final

(c)

Table 1: Example results for (a)(b) ∇HOG multi-scale
and ∇HOG multi-scale-more in which both are based on
Dalal-HOG[4]; and (c) for∇HOG on UoCTTI-HOG[9].

Results In order to quantify the performance of image re-
construction, different metrics have been proposed in prior
works. For instance, in [13] the mean squared error of
raw pixels is utilized, while in [28] the cross-correlation is
chosen to compare the similarity between the reconstructed
image and the original one. In addition to using cross-
correlation as the metric for qualitative evaluation, we also
investigate different choices used by the research works on
the problem of image quality assessment (IQA), includ-



ing mutual information and Structural Similarity (SSIM)
[29]. In particular, mutual information measures the mutual
dependencies between images hence gives another metric
for similarities, while SSIM measures the degradation of
structural information for the distorted/reconstructed image
from the original one, under the assumption that human vi-
sual perception is adapted to discriminate the structural in-
formation from the image.

We report the performance numbers from all the metrics
in Table 2. The proposed method using UoCTTI-type HOG
outperforms the state-of-the-art baselines by a large margins
for all metrics. Visually inspected, our proposed method
can reconstruct many details in the images and also give ac-
curate estimate on gray-scale values if using UoCTTI HOG.
Please note again, our method does not need any additional
data for training while in baselines training is necessary.

4.2. Pose estimation

We also evaluate our ∇HOG approach on a pose esti-
mation task where 3D CAD models have to be aligned to
objects in 2D images. We build on openDR [19] which is
an approximate differentiable renderer. It parameterizes the
forward graphics model f based on vertices locations V ,
per-vertex brightness A and camera parameters C, which is
shown on the left part of Figure 5, where U is for the 2D
projected vertex coordinate position. Based on the auto-
differentiation techniques, openDR provides a way to de-
rive the derivatives of the rendered image observation with
respect to the parameters in the rendering pipeline.

Approach We extend openDR in the following ways as
illustrated in Figure 5: 1) We parameterize the vertices lo-
cations V of CAD models by three parameters: azimuth θ,
elevation ψ, and distance to the camera γ; 2) During the
pose estimation procedure, as in [1], the matching between
the objects on real images and the rendered images from
the CAD models are addressed by the similarities between
the HOG descriptors of the visual discriminative elements
extracted from them. The detailed procedure of extracting
visual discriminative elements is discussed in [1]. In our
method, we use our ∇HOG method φ(Pf ) for the image
patches Pf which have the same regions as the visual ele-
ments PI extracted from the test image I , and the similarity
between the Pf and PI is the dot product between HOG
descriptors φ(PI) of PI and φ(Pf ). As shown in the right
part of Figure 5 this similarity can be traversed back to the
pose parameters {θ, ψ, γ} and the derivatives of the simi-
larity with respect to the pose parameters can be again com-
puted by the auto-differentiation, our method can directly
optimize to maximize the similarity to estimate the poses.

Setup We follow the same experimental setting as [1],
where we test on the images annotated with no-occlusion,
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Figure 4: Visualization of the similarity and its gradients
w.r.t azimuth. The red boxes on the HOG representations
are the visual discriminative patches.

no-truncation and not-difficult of the chairs validation set
on PASCAL VOC 2012 dataset [7], therefore in total 247
chairs from 179 images are used for the evaluation. To
purely focus on evaluation of the pose estimation, we ex-
tract the object images based on their bounding boxes anno-
tation, and resize them to have at least length of 100 pixels
on the shortest side of image size.

The baseline [1] is applied on the chair images to search
over a chair CAD database of 1393 models which includes
the rendered images from 62 different poses relative to cam-
era for each of them, then to detect the chairs, match the
styles of the chairs, and simultaneously recover their poses
based on rendered images. We select the most confident
detection for each chair together with the estimated pose.

We apply our proposed method on pose estimation by
using the elevation and azimuth estimates of [1] as a ini-
tialization of pose, and add few more initializations for az-
imuth (8 equidistantly distribute over 360◦). We use gradi-
ent descent method with momentum term for optimization
in order to optimize for the azimuth parameter and inter-
leave iterations in which we additionally optimize for the
distance to camera. In Figure 4 we visualize an example
of the similarity between the chair object on the real image
and the CAD model on the rendered image, as well as its
gradients w.r.t azimuth θ (full 360◦). We can see how gra-
dients change related to different local maximums and the
corresponding poses of the CAD model.



Method cross correlation mutual information structural similarity (SSIM) [29]
BoVW [13] 0.287 1.182 0.252

U
oC

T
T

I
H

O
G

[9
] HOGgles [28] 0.409 1.497 0.271

CNN-HOG [22] 0.632 1.211 0.381
CNN-HOGb [22] 0.657 1.597 0.387
our ∇HOG (single scale) 0.760 1.908 0.433

D
al

al
’s

H
O

G
[4

]

our ∇HOG (single scale) 0.170 1.464 0.301
our ∇HOG (multi-scale: 1

64 ) 0.058 1.444 0.121
our ∇HOG (multi-scale: 1

16 ) 0.076 1.470 0.147
our ∇HOG (multi-scale: 1

4 ) 0.108 1.458 0.221
our ∇HOG (multi-scale: 1

1 ) 0.147 1.478 0.293
our ∇HOG (multi-scale-more: 1

64 ) 0.147 1.458 0.251
our ∇HOG (multi-scale-more: 1

16 ) 0.191 1.502 0.291
our ∇HOG (multi-scale-more: 1

4 ) 0.220 1.565 0.320
our ∇HOG (multi-scale-more: 1

1 ) 0.236 1.582 0.338

Table 2: Comparison on the performance of reconstruction from feature descriptors.
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Figure 5: (left) The differentiable rendering procedure from
openDR [19]. (right) The visualization of our model for
pose estimation.

Results In order to quantify our performance on pose
estimation task, we use the continuous 3D pose anno-
tations from PASCAL3D+ dataset [31]. Following the
same evaluation scheme, the view-point estimation is
considered to be correct if its estimated viewpoint label is
within the same interval of the discrete viewpoint space
as the ground-truth annotation, or its difference with
ground-truth in continuous viewpoint space is lower than a
threshold. We evaluate the performance based on various
settings of the intervals and thresholds in viewpoint space:
{4 views/90◦, 8 views/45◦, 16 views/22.5◦, 24 views/15◦}.
In Table 3 we report the performance numbers for Aubry’s
baseline and our proposed approach. We are outperforming
the previous best performance up to 10% points on the
coarse and fine measures. Some example results which

show improvements of the baseline method are shown in
Table 4.

Discussion One advantage of our proposed method is that
we are able to parameterize the vertexes coordinates of
the CAD models by the same pose parameters as used in
[1], then the differentiable rendering procedure provided by
openDR [19] and our ∇HOG representations enable us to
directly compute the derivatives of the similarity with re-
spect to the pose parameters, and optimize for continuous
pose parameters. In another word, for the proposed ap-
proach we do not need to discretize the parameters as [1]
and do not need to render images from many poses in ad-
vance for the alignment procedure either.

4 views 8 views 16 views 24 views
Aubry et al. [1] 47.33 35.39 20.16 15.23

our method 58.85 40.74 22.22 16.87

Table 3: Pose estimation results based on the groundtruth
annotation from PASCAL3D+ [31].

5. Conclusions
We investigate the feature extraction pipeline of HOG

descriptor and exploit its piecewise differentiability. Based
on the implementation using auto-differentiation tech-
niques, the derivatives of the HOG representation can be
directly computed. We study two problems of image re-
construction from HOG features and HOG-based pose es-
timation while the direct end-to-end optimization becomes
practical with our∇HOG. We demonstrate that our∇HOG-
based approaches outperforms the state-of-the-art baselines



test images

Aubry et al. [1]

our method

Table 4: Example results for pose estimation.

Example HOG
BOVW

[13]

HOGgles
[28]

UoCTTI-HOG

CNN-HOG
[22]

UoCTTI-HOG

CNN-HOGb
[22]

UoCTTI-HOG

Our ∇HOG
(single-scale)

UoCTTI-HOG

Our ∇HOG
(single-scale)
Dalal-HOG

Our ∇HOG
(multi-scale)
Dalal-HOG

Our ∇HOG
(multi-scale-more)

Dalal-HOG

Table 5: Example results for image reconstruction from feature descriptors.

for both problems. We have demonstrated that the approach
can lead to improved introspection via visualizations and
improved performance via direct optimization through a
whole vision pipeline. Our implementation is integrated
into an existing auto-differentiation package as well as the
recently proposed Approximately Differentiable Renderer
OpenDR [19] and is publicly available. Therefore it is easy
to adopt to new tasks and is applicable to a range of end-to-
end optimization problems.
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