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Abstract. Object detection and pixel-wise scene labeling have both
been active research areas in recent years and impressive results have
been reported for both tasks separately. The integration of these differ-
ent types of approaches should boost performance for both tasks as ob-
ject detection can profit from powerful scene labeling and also pixel-wise
scene labeling can profit from powerful object detection. Consequently,
first approaches have been proposed that aim to integrate both object
detection and scene labeling in one framework. This paper proposes a
novel approach based on conditional random field (CRF) models that ex-
tends existing work by 1) formulating the integration as a joint labeling
problem of object and scene classes and 2) by systematically integrating
dynamic information for the object detection task as well as for the scene
labeling task. As a result, the approach is applicable to highly dynamic
scenes including both fast camera and object movements. Experiments
show the applicability of the novel approach to challenging real-world
video sequences and systematically analyze the contribution of different
system components to the overall performance.

1 Introduction

Today, object class detection methods are capable of achieving impressive re-
sults on challenging datasets (e.g. PASCAL challenges [1]). Often these methods
combine powerful feature vectors such as SIFT or HOG with the power of dis-
criminant classifiers such as SVMs and AdaBoost. At the same time several
authors have argued that global scene context [2, 3] is a valuable cue for ob-
ject detection and therefore should be used to support object detection. This
context-related work however has nearly exclusively dealt with static scenes. As
this paper specifically deals with highly dynamic scenes we will also model object
motion as an additional and important cue for detection.

Pixel-wise scene labeling has also been an active field of research recently. A
common approach is to use Markov or conditional random field (CRF) models
to improve performance by modeling neighborhood dependencies. Several au-
thors have introduced the implicit notion of objects into CRF-models [4–7]. The
interactions between object nodes and scene labels however are often limited to
uni-directional information flow and therefore these models have not yet shown
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the full potential of simultaneously reasoning about objects and scene. By for-
mulating the problem as a joint labeling problem for object and scene classes,
this paper introduces a more general notion of object-scene interaction enabling
bidirectional information flow. Furthermore, as we are interested in dynamic
scenes, we make use of the notion of dynamic CRFs [8], which we extend to deal
with both moving camera and moving objects.

Therefore we propose a novel approach to jointly label objects and scene
classes in highly dynamic scenes for which we introduce a new real-world dataset
with pixel-wise annotations. Highly dynamic scenes are not only a scientific chal-
lenge but also an important problem, e.g. for applications such as autonomous
driving or video indexing where both the camera and the objects are moving
independently. Formulating the problem as a joint labeling problem allows 1) to
model the dynamics of the scene and the objects separately which is of particular
importance for the scenario of independently moving objects and camera, and 2)
to enable bi-directional information flow between object and scene class labels.

The remainder of this paper is structured as follows. Section 2 reviews related
work from the area of scene labeling and scene analysis in conjunction with
object detection. Section 3 introduces our approach and discusses how object
detection and scene labeling can be integrated as a joint labeling problem in
a dynamic CRF formulation. Section 4 introduces the employed features, gives
details on the experiments and shows experimental results. Finally, section 5
draws conclusions.

2 Related work

In recent years, conditional random fields (CRFs) [9] have become a popular
framework for image labeling and scene understanding. However, to the best
of our knowledge, there is no work which explicitly models object entities in
dynamic scenes. Here, we propose to model objects and scenes in a joint label-
ing approach on two different layers with different information granularity and
different labels in a dynamic CRF [8].

Related work can roughly be divided into two parts. First, there is related
work on CRF models for scene understanding, and second there are approaches
aiming to integrate object detection with scene understanding.

In [10] Kumar&Hebert detect man-made structures in natural scenes using
a single-layered CRF. Later they extend this work to handle multiple classes
in a two-layered framework [5]. Kumar&Hebert also investigated object-context
interaction and combined a simple boosted object detector for side-view cars
with scene context of road and buildings on a single-scale database of static
images. In particular, they are running inference separately on their two layers
and each detector hypothesis is only modeled in a neighborhood relation with
an entire region on the second layer. On the contrary, we integrate multi-scale
objects in a CRF framework where inference is conducted jointly for objects and
context. Additionally, we propose to model edge potentials in a consistent layout
by exploiting the scale given by a state-of-the-art object detector [11]. Torralba
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et al. [7] use boosted classifiers to model unary and interaction potentials in
order to jointly label object and scene classes. Both are represented by a dic-
tionary of patches. However, the authors do not employ an object detector for
entire objects. In our work we found a separate object detector to be essential for
improved performance. Also Torralba et al. use separate layers for each object
and scene class and thus inference is costly due to the high graph connectivity,
and furthermore they also work on a single-scale database of static images. We
introduce a sparse layer to represent object hypotheses and work on dynamic
image sequences containing objects of multiple scales. Further work on simul-
taneous object recognition and scene labeling has been conducted by Shotton
et al. [6]. Their confusion matrix shows, that in particular object classes where
color and texture cues do not provide sufficient discriminative power on static
images – such as boat, chair, bird, cow, sheep, dog – achieve poor results. While
their Texton feature can exploit context information even from image pixels
with a larger distance, the mentioned object classes remain problematic due to
the unknown object scale. Furthermore, He et al. [4] present a multi-scale CRF
which contains multiple layers relying on features of different scales. However,
they do not model the explicit notion of objects and their higher level nodes
rather serve as switches to different context and object co-occurrences. Simi-
larly, Verbeek&Triggs [12] add information about class co-occurrences by means
of a topic model. Finally, several authors proposed to adopt the CRF framework
for object recognition as a standalone task [13–15] without any reasoning about
the context and only report results on static single-scale image databases.

Dynamic CRFs are exploited by Wang&Ji [16] for the task of image seg-
mentation with intensity and motion cues in mostly static image sequences.
Similarly, Yin&Collins [17] propose a MRF with temporal neighborhoods for
motion segmentation with a moving camera.

The second part of related work deals with scene understanding approaches
from the observation of objects. Leibe et al. [18] employ a stereo camera system
together with a structure-from-motion approach to detect pedestrians and cars in
urban environments. However, they do not explicitly label the background classes
which are still necessary for many applications even if all objects in the scene
are known. Hoiem et al. [3] exploit the detected scales of pedestrians and cars
together with a rough background labeling to infer the camera’s viewpoint which
in turn improves the object detections in a directed Bayesian network. Contrary
to our work, object detections are refined by the background context but not
the other way round. Also, only still images are handled while the presence of
objects is assumed. Similarly, Torralba [2] exploits filter bank responses to obtain
a scene prior for object detection.

3 Conditional random field models

The following section successively introduces our model. It is divided into three
parts: the first reviews single layer CRFs, the second additionally models objects
in a separate layer and the last adds the scene’s and objects’ dynamics.
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We denote the input image at time t with xt, the corresponding class labels
at the grid cell level with yt and the object labels with ot.

3.1 Plain CRF: Single layer CRF model for scene-class labeling

In general a CRF models the conditional probability of all class labels yt given an
input image xt. Similar to others, we model the set of neighborhood relationships
N1 up to pairwise cliques to keep inference computationally tractable. Thus, we
model

log(PpCRF (yt|xt, N1, Θ)) =
∑
i

Φ(yti ,x
t;ΘΦ)+

∑
(i,j)∈N1

Ψ(yti , y
t
j ,x

t;ΘΨ )− log(Zt)

(1)
Zt denotes the so called partition function, which is used for normalization.

N1 is the set of all spatial pairwise neighborhoods. We refer to this model as
plain CRF.
Unary potentials Our unary potentials model local features for all classes C
including scene as well as object classes. We employ the joint boosting framework
[19] to build a strong classifier H(c, f(xti);ΘΦ) =

∑M
m=1 hm(c, f(xti);ΘΦ). Here,

f(xti) denotes the features extracted from the input image for grid point i. M is
the number of boosting rounds and c are the class labels. hm are weak learners
with parameters ΘΦ and are shared among the classes for this approach. In
order to interpret the boosting confidence as a probability we apply a softmax
transform [5]. Thus, the potential becomes:

Φ(yti = k,xt;ΘΦ) = log
expH(k, f(xti);ΘΦ)∑
c expH(c, f(xti);ΘΦ)

(2)

Edge potentials The edge potentials model the interaction between class
labels at two neighboring sites yti and ytj in a regular lattice. The interaction
strength is modeled by a linear discriminative classifier with parameters ΘΨ =
wT and depends on the difference of the node features dtij := |f(xti)− f(xtj)|.

Ψ(yti , y
t
j ,x

t;ΘΨ ) =
∑

(k,l)∈C

wT

(
1

dtij

)
δ(yti = k)δ(ytj = l) (3)

3.2 Object CRF: Two layer object CRF for joint object and scene
labeling

Information that can be extracted from an image patch locally is rather limited
and pairwise edge potentials are too weak to model long range interactions.
Ideally, a complete dense layer of hidden variables would be added to encode
possible locations and scales of objects, but since inference for such a model
is computationally expensive we propose to inject single hidden variables ot =
{ot1, . . . , otD} (D being the number of detections) as depicted in figure 1(a). To
instantiate those nodes any multi-scale object detector can be employed.
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The additional nodes draw object appearance from a strong spatial model
and are connected to the set of all corresponding hidden variables {yt}ot

n
whose

evidence {xt}ot
n

support the object hypotheses. The new nodes’ labels in this
work are comprised of O = {object, background}; but the extension to multiple
object classes is straight forward. Thus, we introduce two new potentials into
the CRF model given in equation (1) and yield the object CRF :

log(PoCRF (yt,ot|xt, Θ)) = log(PpCRF (yt|xt, N2, Θ)) + (4)∑
n

Ω(otn,x
t;ΘΩ) +

∑
(i,j,n)∈N3

Λ(yti , y
t
j , o

t
n,x

t;ΘΨ )

Note that N2 ⊂ N1 denotes all neighborhoods where no object is present in the
scene, whereas N3 are all inter-layer neighborhoods with hypothesized object
locations. Ω is the new unary object potential, whereas Λ is the inter-layer edge
potential.
Unary object potentials To define object potentials we use a state-of-the-
art object detector. More specifically, we use a sliding window based multi-scale
approach [11] where a window’s features are defined by g({xt}ot

n
) and classified

with a linear SVM, the weights being v and b being the hyperplane’s bias. To
get a probabilistic interpretation for the classification margin, we adopt Platt’s
method [20] and fit a sigmoid with parameters s1 and s2 using cross validation.

Ω(otn,x
t;ΘΩ) = log

1
1 + exp(s1 · (vT · g({xt}ot

n
) + b) + s2)

(5)

Consequently, the parameters are determined as ΘΩ = {v, b, s1, s2}.
Inter-layer edge potentials For the inter-layer edge potentials we model the
neighborhood relations in cliques consisting of two underlying first layer nodes
yti , y

t
j and the object hypothesis node otn. Similar to the pairwise edge potentials

on the lower layer, the node’s interaction strength is modeled by a linear classifier
with weights ΘΛ = u.

Λ(yti , y
t
j , o

t
n,x

t;ΘΛ) =
∑

(k,l)∈C;m∈O

uT
(

1
dtij

)
δ(yti = k)δ(ytj = l)δ(otn = m) (6)

It is important to note, that the inter-layer interactions are anisotropic and scale-
dependent. We exploit the scale given by the object detector to train different
weights for different scales and thus can achieve real multi-scale modeling in the
CRF framework. Furthermore, we use different sets of weights for different parts
of the detected object enforcing an object and context consistent layout [15].

3.3 Dynamic CRF: Dynamic two layer CRF for object and scene
class labeling

While the additional information from an object detector already improves the
classification accuracy, temporal information is a further important cue. We
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Fig. 1. (a) Graphical model for the object CRF ; note that different edge colors denote
different potentials; (b) Graphical model for our full dynamic CRF ; observed nodes are
grey, hidden variables are white, for the sake of readability we omit the spatial layout
of yt with the corresponding edge potential Ψ

propose two temporal extensions to the framework introduced so far. For highly
dynamic scenes – such as the image sequences taken by a driving car, which we
will use as an example application to our model, it is important to note that
objects and the remaining scene have different dynamics and thus should be
modeled differently. For objects we estimate their motion and track them with
a temporal filter in 3D space. The dynamics for the remaining scene is mainly
caused by the camera motion in our example scenario. Therefore, we use an
estimate of the camera’s ego motion to propagate the inferred scene labels at
time t as a prior to time step t+ 1.

Since both – object and scene dynamics – transfer information forward to
future time steps, we employ directed links in the corresponding graphical model
as depicted in figure 1(b). It would have also been possible to introduce undi-
rected links, but those are computationally more demanding. Moreover, those
might not be desirable from an application point of view, due to the backward
flow of information in time when online processing is required.
Object dynamics model In order to model the object dynamics we employ
multiple extended Kalman filters [21] – one for each object. For the dynamic
scenes dataset which we will use for the experimental section the camera cali-
bration is known and the sequences are recorded from a driving car. Additionally,
we assume the objects to reside on the ground plane. Consequently, Kalman fil-
ters are able to model the object position in 3D coordinates. Additionally, the
state vector contains the objects’ width and speed on the ground plane as well
as the camera’s tilt and all state variables’ first derivative with respect to time.

For the motion model we employ linear motion dynamics with the accel-
eration being modeled as system noise which proved sufficient for the image
sequences used below. The tracks’ confidences are given by the last associated
detection’s score. Hence, we obtain the following integrated model:

log(PtCRF (yt,ot|xt, Θ)) = log(PpCRF (yt|xt, N2, Θ)) + (7)∑
n

κt(otn,o
t−1,xt;Θκ) +

∑
(i,j,n)∈N3

Λ(yti , y
t
j , o

t
n,x

t;ΘΛ)
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where κt models the probability of an object hypothesis otn at time t given
the history of input images. It replaces the previously introduced potentials
for objects Ω. The parameter vector consists of the detector’s parameters and
additionally of the Kalman filter’s dynamics {A,W} and measurement model
{Ht, Vt} and thus Θκ = ΘΩ ∪ {A,W,Ht, Vt}.
Scene dynamic model In the spirit of recursive Bayesian state estimation
under the Markovian assumption, the posterior distribution of yt−1 is used as a
prior to time step t. However, for dynamic scenes the image content needs to be
transformed to associate the grid points with the right posterior distributions.
In this work we estimate the projection Q from yt to yt+1 given the camera’s
translation and calibration (Θ∆t). Thus, we obtain an additional unary potential
for yt.

∆t(yti ,y
t−1;Θ∆t) = log(PtCRF (yt−1

Q−1(i)|Θ)) (8)

The complete dynamic CRF model including both object and scene dynamics
as depicted in figure 1(b) then is

log(PdCRF (yt,ot,xt|yt−1,ot−1, Θ)) = log(PtCRF (yt,ot|xt, Θ)) +∑
i

∆t(yti ,y
t−1;Θ∆t) (9)

3.4 Inference and parameter estimation

For inference in the undirected graphical models we employ sum-product loopy
belief propagation with a parallel message update schedule. For parameter esti-
mation we take a piecewise learning approach [22] by assuming the parameters
of unary potentials to be conditionally independent of the edge potentials’ pa-
rameters. While this no longer guarantees to find the optimal parameter setting
for Θ, we can learn the model much faster as discussed by [22].

Thus, prior to learning the edge potential models we train parameters ΘΦ,
ΘΩ for the unary potentials. The parameter set Θκ for the Kalman filter is set
to reasonable values by hand.

Finally, the edge potentials’ parameter sets ΘΨ and ΘΛ are learned jointly
in a maximum likelihood setting with stochastic meta descent [23]. As proposed
by Vishwanathan et al. we assume a Gaussian prior with meta parameter σ on
the linear weights to avoid overfitting.

4 Experiments

To evaluate our model’s performance we conducted several experiments on two
datasets. First, we describe our features which are used for texture and location
based classification of scene labels on the scene label CRF layer. Then we in-
troduce features employed for object detection on the object label CRF layer.
Next, we briefly discuss the results obtained on the Sowerby database and fi-
nally we present results on image sequences on a new dynamic scenes dataset,
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which consist of car traffic image sequences recorded from a driving vehicle under
challenging real-world conditions.

4.1 Features for scene labeling

Texture and location features For the unary potential Φ at the lower
level as well as for the edge potentials Ψ and inter-layer potentials Λ we employ
texture and location features. The texture features are computed from the 16 first
coefficients of the Walsh-Hadamard transform. This transformation is a discrete
approximation of the cosine transform and can be computed efficiently [24, 25] –
even in real-time (e.g. on modern graphics hardware). The features are extracted
at multiple scales from all channels of the input image in CIE Lab color space.
As a preprocessing step, a and b channels are normalized by means of a gray
world assumption to cope with varying color appearance. The L channel is mean-
variance normalized to fit a Gaussian distribution with a fixed mean to cope with
global lighting variations. We also found that normalizing the transformation’s
coefficients according to Varma&Zisserman [26] is beneficial. They propose to
L1-normalize each filter response first and then locally normalize the responses
at each image pixel. Finally, we take the mean and variance of the normalized
responses as feature for each node in the regular CRF lattice. Additionally, we
use the grid point’s coordinates within the image as a location cue. Therefore,
we concatenate the pixel coordinates to the feature vector.
HOG In the experiments described below we employ a HOG (Histogram
of Oriented Gradients) detector [11] to generate object hypotheses. HOG is a
sliding window approach where features are computed on a dense grid. First,
histograms of gradient orientation are computed in cells performing interpola-
tion with respect to the gradient’s location and with respect to the magnitude.
Next, sets of neighboring cells are grouped into overlapping blocks, which are
normalized to achieve invariance to different illumination conditions. Our front
and rear view car detector has a window size of 20× 20 pixels. It is trained on a
separate dataset of front and rear car views containing 1492 positive instances
from the LabelMe database [27] and 178 negative images.

4.2 Results

Sowerby dataset The Sowerby dataset is a widely used benchmark for CRFs,
which contains 7 outdoor rural landscape classes. The dataset comprises 104
images at a resolution of 96×64 pixels. Following the protocol of [5] we randomly
selected 60 images for training and 44 images for testing. Some example images
with inferred labels are shown in figure 2. However, this dataset does neither
contain image sequences nor cars that can be detected with an object detector
and thus we can only compare our plain CRF model (equation 1) with previous
work on this set.

The experiments show that our features and CRF parameter estimation is
competitive to other state-of-the-art methods. Table 1 gives an overview of pre-
viously published results and how those compare to our model (see figure 3).
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Pixel-wise accuracy

Unary classification plain CRF model

He et al. [4] 82.4% 89.5%
Kumar&Hebert [5] 85.4% 89.3%
Shotton et al. [6] 85.6% 88.6%

This paper 84.5% 91.1%
Table 1. Comparison to previously reported results on the Sowerby dataset

While the more sophisticated Textons features [6] do better for unary classifica-
tion, our CRF model can outperform those since our edge potentials are learned
from training data. For this dataset we use a grid with one node for each input
pixel, while the Gaussian prior σ was set to 1.25. The Walsh-Hadamard trans-
form was run on the input images at the aperture size of 2, 4, 8 and 16 pixels.
Moreover, we used a global set of weights for the isotropic linear classifiers of
the edge potentials, but distinguish between north-south neighborhood relations
and east-west neighborhood relations.

Input image
Unary

classification
plain CRF

result
Input image

Unary
classification

plain CRF
result

Sky Street object Road surface Building
Vegetation Car Road marking

Fig. 2. Sowerby dataset example results

Dynamic scenes dataset To evaluate our object and dynamic CRF we set up
a new dynamic scenes dataset with image sequences consisting of overall 1936
images. The images are taken from a camera inside a driving car and mainly
show rural roads with high dynamics of driving vehicles at an image resolution
of 752×480 pixels. Cars appear at all scales from as small as 15 pixels up to 200
pixels. The database consists of 176 sequences with 11 successive images each.
It is split into equal size training and test sets of 968 images.

To evaluate pixel level labeling accuracy the last frame of each sequence is
labeled pixel-wise, while the remainder only contains bounding box annotations
for the frontal and rear view car object class. Overall, the dataset contains the
eight labels void, sky, road, lane marking, building, trees & bushes, grass and
car. Figure 3 shows some sample scenes. For the following experiments we used

The dataset is available at http://www.mis.informatik.tu-darmstadt.de.
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8× 8 pixels for each CRF grid node and texture features were extracted at the
aperture sizes of 8, 16 and 32 pixels.

We start with an evaluation of the unary classifier performance on the scene
class layer. Table 2 lists the pixel-wise classification accuracy for different varia-
tions of the feature. As expected location is a valuable cue, since there is a huge
variation in appearance due to different lighting conditions. Those range from
bright and sunny illumination with cast shadows to overcast. Additionally, mo-
tion blur and weak contrast complicate the pure appearance-based classification.
Further, we observe that normalization [26] as well as multi-scale features are
helpful to improve the classification results.

Normalization
on off

multi-scale single-scale multi-scale single-scale

Location
on 82.2% 81.1% 79.7% 79.7%
off 69.1% 64.1% 62.3% 62.3%

Table 2. Evaluation of texture location features based on overall pixel-wise accuracy;
Multi-scale includes feature scales of 8, 16 and 32 pixels, Single-scale is a feature scale
of 8 pixels; note that these number do not include the CRF model – adding the plain
CRF to the best configuration yields an overall accuracy of 88.3%.

Next, we analyze the performance of the different proposed CRF models. On
the one hand we report the overall pixel-wise accuracy. On the other hand the
pixel-wise labeling performance on the car object class is of particular interest.
Overall, car pixels cover 1.3% of the overall observed pixels. Yet, those are an
important fraction for many applications and thus we also report those for our
evaluation.

For the experiments we used anisotropic linear edge potential classifiers with
16 parameter sets, arranged in four rows and four columns. Moreover, we dis-
tinguish between north-south and east-west neighborhoods. For the inter-layer
edge potentials we trained different weight sets depending on detection scale
(discretized in 6 bins) and depending on the neighborhood location with respect
to the object’s center.

Table 3 shows recall and precision for the proposed models. Firstly, the em-
ployed detector has an equal error rate of 78.8% when the car detections are
evaluated in terms of precision and recall. When evaluated on a pixel-wise basis
the performance corresponds to 60.2% recall. The missing 39.8% are mostly due
to the challenging dataset. It contains cars with weak contrast, cars at small
scales and partially visible cars leaving the field of view. Precision for the de-
tector evaluated on pixels is 37.7%. Wrongly classified pixels are mainly around
the objects and on structured background on which the detector obtains false
detections.

Let us now turn to the performance of the different CRF models. Without
higher level information from an object detector plain CRFs in combination
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No objects
With object

layer
Including object

dynamics

Recall Precision Acc. Recall Precision Acc. Recall Precision Acc.

CRF 50.1% 57.7% 88.3% 62.9% 52.3% 88.6% 70.4% 57.8% 88.7%
dyn. CRF 25.5% 44.8% 86.5% 75.7% 50.8% 87.1% 78.0% 51.0% 88.1%

Table 3. Pixel-wise recall and precision for the pixels labeled as Car and overall
accuracy on all classes

with texture-location features achieve a recall of 50.1% with a precision of 57.7%.
The recognition of cars in this setup is problematic since CRFs optimize a global
energy function, while the car class only constitutes a minor fraction of the data.
Thus, the result is mainly dominated by classes which occupy the largest regions
such as sky, road and trees.

With higher level object information (object CRF ) recall can be improved up
to 62.9% with slightly lower precision resulting from the detector’s false positive
detections. However, when objects are additionally tracked with a Kalman filter,
we achieve a recall of 70.4% with a precision of 57.8%. This proves that the
object labeling for the car object class leverages from the object detector and
additionally from the dynamic modeling by a Kalman filter.

Additionally, we observe an improvement of the overall labeling accuracy.
While plain CRFs obtain an accuracy of 88.3%, the object CRF achieves 88.6%
while also including object dynamics further improves the overall labeling accu-
racy to 88.7%. The relative number of 0.4% might appear low, but considering
that the database overall only has 1.3% of car pixels, this is worth noting. Thus,
we conclude that not only the labeling on the car class is improved but also the
overall scene labeling quality.

When the scene dynamics are modeled additionally and posteriors are prop-
agated over time (dynamic CRF ), we again observe an improvement of the
achieved recall from 25.5% to 75.7% with the additional object nodes. And also
the objects’ dynamic model can further improve the recall to 78.0% correctly
labeled pixels. Thus, again we can conclude that the CRF model exploits both
the information given by the object detector as well as the additional object
dynamic to improve the labeling quality.

Finally, when the overall accuracy is analyzed while the scene dynamic is
modeled we observe a minor drop compared to the static modeling. However, we
again consistently observe that the object information and their dynamics allow
to improve from 86.5% without object information to 87.1% with object CRFs
and to 88.1% with the full model.

The consistently slightly worse precision and overall accuracy for the dynamic
scene models need to be explained. Non-car pixels wrongly labeled as car are
mainly located at the object boundary, which are mainly due to artifacts of the
scene label forward propagation. Those are introduced by the inaccuracies of the
speedometer and due to the inaccuracies of the projection estimation.

A confusion matrix for all classes of the dynamic scenes database can be
found in table 4. Figure 3 shows sample detections and scene labelings for the
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Input image
Ground
truth

Unary
classification

plain CRF Object CRF
Dynamic

CRF

(a)

(b)

(c)

(d)

(e)

(f)

Void Sky Road Lane marking
Trees & bushes Grass Building Car

(a) (b) (c)

(d) (e) (f)

Fig. 3. Dynamic scenes dataset example result scene labels and corresponding detec-
tions in left-right order (best viewed in color); note that detections can be overruled
by the texture location potentials and vice versa

different CRF models to illustrate the impact of the different models and their
improvements. In example (d) for instance the car which is leaving the field of
view is mostly smoothed out by a plain CRF and object CRF, while the dynamic
CRF is able to classify almost the entire area correctly. Additionally, the smaller
cars which get smoothed out by a plain CRF are classified correctly by the object
and dynamic CRF. Also note that false object detections as in example (c) do
not result in a wrong labeling of the scene.

5 Conclusions

In this work we have presented a unifying model for joint scene and object class
labeling. While CRFs greatly improve unary pixel-wise classification of scenes
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Sky 10.4% 91.0 0.0 0.0 7.7 0.5 0.4 0.3 0.1
Road 42.1% 0.0 95.7 1.0 0.3 1.1 0.1 0.5 1.3
Lane marking 1.9% 0.0 36.3 56.4 0.8 2.9 0.2 1.8 1.6
Trees & bushes 29.2% 1.5 0.2 0.0 91.5 5.0 0.2 1.1 0.4
Grass 12.1% 0.4 5.7 0.5 13.4 75.3 0.3 3.5 0.9
Building 0.3% 1.6 0.2 0.1 37.8 4.4 48.4 6.3 1.2
Void 2.7% 6.4 15.9 4.1 27.7 29.1 1.4 10.6 4.8
Car 1.3% 0.3 3.9 0.2 8.2 4.9 2.1 2.4 78.0

Table 4. Confusion matrix in percent for the dynamic scenes dataset; entries are
row-normalized

they tend to smooth out smaller regions and objects such as cars in landscape
scenes. This is particularly true when objects only comprise a minor part of the
amount of overall pixels. We showed that adding higher level information from
a state-of-the-art HOG object detector ameliorates this shortcoming. Further
improvement – especially when objects are only partially visible – is achieved
when object dynamics are properly modeled and when scene labeling information
is propagated over time. The improvement obtained is bidirectional, on the one
hand the labeling of object classes is improved, but on the other hand also the
remaining scene classes benefit from the additional source of information.

For future work we would like to investigate how relations between different
objects such as partial occlusion can be modeled when multiple object classes
are detected. Additionally, we seek to improve the ego-motion estimation of the
camera to further improve the performance. This will also allow us to employ
motion features in the future. Finally, we assume that the integration of different
sensors such as radar allow for a further improvement of the results.
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