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Pre-processing

Skillicorn chapter 3.1
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Why pre-process?

- Consider matrix of weather data
* Monthly temperatures in degrees Celsius
- Typical range [-20, +25]
* Monthly precipitation in millimeters
» Typical range [0, 100]
* Precipitation seems much more important
* But what if the temperatures where in degrees Kelvin?

* The range is now [250, 300]
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Why pre-process

* If A Is nonnegative, the
first singular vector just
shows where the average

of A Is

* The remaining vectors

still have to be
orthogonal to the first
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Why pre-process

* If A is centered to the %
origin, the singular vectors
show the directions of

variance in A

* This Is the basis of KLT/
PCA...

DMM, summer 2017 Pauli Miettinen



The z-scores

 The z-scores are attributes whose values are
transformed by

- centering them to 0 by removing the
(column) mean from each value

- normalizing the magnitudes by dividing every
value with the (column) standard deviation

/) _ A—U
X_a
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When z-scores?

- Attribute values are approximately normally
distributed, c.f. X’ = 2=H

0)
- All attributes are equally important

- Data does not have any important structure
that is destroyed

* Non-negativity, sparsity, integer values, ...
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Other normalizations

- Large values can be reduced in importance by
 taking logarithms (from positive values)
- taking cubic roots

- Sparsity can be preserved by only considering
non-zero values

* The effects of normalization must always

be considered
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Selecting the rank

Skillicorn chapter 3.3
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How many factors?

- Assume we want to compute rank-k truncated
SVD to analyze some data

« But how to select the k?

 Too big, and we have to handle unimportant
factors

- Too small, and we loose important structure

* SO0 we need a way to select a good k
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Guttman-Kaiser criterion
and captured energy

* Method 1: selectks.t.foralli>k, 0 <1

- Motivation: components with singular values < 1
are uninteresting

 Method 2: select smallest k s.t.
¥ 02> 0.93mninmt g2

(=1 "1 —
- Motivation: this explains 90% of the Frobenius
norm (a.k.a. energy)

- Both methods are based on arbitrary thresholds
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Cattell’s Scree test

* The scree plot has the singular values plotted in
decreasing order

* |In scree test, the rank is selected s.t. in the plot
* there is a clear drop in the magnitudes; or

 the singular values start to even out
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Entropy-based method

* The relative contribution of ok is ry = 0,3/21052

N 0o =0

* The entropy E of singular values is

F—=_— 1 min{n,m}
—  log(min{n,m}) &j=1

+ Set the rank to the smallest k s.t. Zf.;l rizE

rilogr;

* Intuition: low entropy = the mass of the
singular values iIs packed to the begin
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Random flip of signs

» Consider a random matrix A’ created by
multiplying every element of A by 1 or-1 u.a.r.

- The Frobenius norm doesn’t change, but the
spectral norm does change

- How much the spectral norm changes depends
on the amount of “structure” in A

« |dea: use this to select k that isolates the structure
from the noise
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Using random flips

* The residual matrix A is
A =A—A=U_Z V',

U« (V_x) contains the last n - kK (m - k) left
(right) singular vectors

 Let A« be the residual of A and A’_x that of A’

- Select k s.t. | [JA|]> - ||A"«

12| / ||A«]||F is small
» On average, over multiple random matrices
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Issues with the methods

» Require computing the full SVD first or
otherwise computationally heavy

entropy-based

* Reqguire subjective evaluation

random flips

» Based on arbitrary thresholds

Guttman—-Kaiser
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Summary

* Pre-processing can make all the difference
» Often overlooked
» Selecting the rank is non-trivial

« Guttman-Kaiser and scree test are often
used in other fields
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Computing the SVD

Golub & Van Loan chapters 5.1, 5.4.8, and 8.6
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Very general idea

« SVD Is unique

- If U and V are orthogonal s.t. U'AV = £, then
UZV' is the SVD of A

- |dea: find orthogonal U and V s.t. U'AV is as desired

* lterative process: find orthogonal U,, U>, ... and
set U = U1U2U3---

- Still orthogonal
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Rotations and reflections

2D rotation 2D reflection
(cos(e) sin(e)) (cos(e) sin(6) )
—sin(@) cos(6) sin(8) —cos(6)

Rotates counterclockwise Reflects across the line spanned
through an angle 6 by (cos(6/2), sin(6/2))"
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o~

Example

cos(m/4) sin(m/4)
—sin(n/4) cos(mn/4)

)

x = (V2, Vv2)

/QX = (2,91
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This coordinate is now 0!
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Householder reflections

* A Householder reflection is n-by-n matrix
2

viv

P=I—Bvv' where B=

* If we set v = x - ||x||2e1, then Px = ||x||.e1
+e;=(1,0,0,..,0)
» Note: PA = A - (Bv)(Vv'A) where 8 = 2/(v'v)

* We never have to compute matrix P
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http://commons.wikimedia.org/wiki/File:Householdertransformation.svg

Almost there:
bidiagonalization
* Given n-by-m (n = m) A, we can

bidiagonalize it with Householder
transformations

* Fix A[l:n,1], A[]1,2:m], A[2:n,2], A[2,3:m],
Al3:n,3], A[3,4:m]...

* The results has non-zeros in main diagonal
and the one above it
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Givens rotations

* Householder is too crude to give identity

* Givens rotations are rank-2 corrections to

the identity of form

G(, k,0)=
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Applying Givens

« Set 6 s.t.
cos(0) = = sin(@) = ——==X
O)= g and sn@) =23
* Now

cos(8) sin(0)\' [xi\_(r
(—sin(e) COS(G)) (Xk) B (0)
* N.B. G(i, k, 6)'A only affects to the 2 rows
Alc(i, k),]

* Also, no inverse trig. operations are needed
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Givens In SVD

« We use Givens transformations to erase the
superdiagonal

» Consider principal 2-by-2 submatrices
Alk:k+1,k:k+1]

« Rotations can introduce unwanted non-
zeros to Alk+2,k] (or Alk,k+2])

* Fix them In the next sub-matrix
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Putting it all together

1. Compute the bidiagonal matrix B from A
using Householder transformations

2. Apply the Givens rotations to B until it is
fully diagonal

3. Collect the required results
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Time

complexity

Time

Anm? - 4mB3/3
Anm? + 8m?°
4n°m - 8nm?

14nm? - 2m?

4n°m + 8nm? + 9m?e

 14nmR + 8mP
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Summary of computing
SVD

- Rotations and reflections allow us to selectively

zero elements of a matrix with orthogonal
transformations

- Used Iin many, many decompositions

- Fast and accurate results require careful
implementations

- Other techniques are faster for truncated SVD In
large, sparse matrices
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Summary of SVD

 Truly the workhorse of numerical linear algebra
- Many useful theoretical properties

» Rank-revealing, pseudo-inverses, scalar

norm computation, ...

- Reasonably easy to compute

- But it also has some major shortcomings in

data analysis... stay tuned!
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