Problem 1 (Regularized ALS). In the lecture, we saw regularized ALS algorithms for NMF using both the Frobenius and L_1 regularizers. The general form of regularized NMF for $A \in \mathbb{R}_+^{I \times J}$, $W \in \mathbb{R}_+^{I \times K}$, and $H \in \mathbb{R}_+^{K \times J}$ is

$$\text{minimize} \; \|A - WH\|_F + \alpha R_W(W) + \beta R_H(H)$$
subject to $w_{ik} \geq 0, \; h_{kj} \geq 0, \; \forall i, k, j$. \hspace{1cm} (1.1)

The regularized ALS update rule for W in (1.1) is

$$W \leftarrow [(AH^T - \alpha \Phi_W(HH^T)^{-1}]_+, \hspace{1cm} (1.2)$$

where

$$\Phi_W = \left(\frac{\partial R_W(W)}{\partial w_{ik}}\right)_{ik} \in \mathbb{R}_+^{I \times K}$$

is the matrix of partial derivatives of R_W. Derive the update rules for W presented in the lecture for

a) $R_W(W) = \|W\|_F^2$ (Hint: The general update rule (1.2) is obtained from the stationary point $W = (AH^T - \alpha \Phi_W(HH^T)^{-1}$ (i.e. the point where the gradient is zero). Use this equation to derive the update rule.)

b) $R_W(W) = \sum_{i,k} w_{ik}$ (assuming the columns of W are normalized)

Problem 2 (Hoyer’s sparsity function). Recall that Hoyer (2004) defines the function sparsity : $\mathbb{R}^n \rightarrow \mathbb{R}$ as

$$\text{sparsity}(x) = \sqrt{n} - \frac{\|x\|_1}{\|x\|_2}$$

where $\|\cdot\|_1$ and $\|\cdot\|_2$ are the vector ℓ_1 and ℓ_2 norms, respectively. Show that

a) sparsity(x) = 1 if and only if x has exactly one non-zero element; and

b) sparsity(x) = 0 if and only if $|x_i| = |x_j|$ for all $i, j \in \{1, 2, \ldots, n\}$.

Problem 3 (Multiplicative rules as gradient descent). Lee and Seung’s multiplicative updates for NMF would update H as

$$H_{ij} \leftarrow H_{ij} \frac{(W^T A)_{ij}}{(W^T WH)_{ij}}. \hspace{1cm} (3.1)$$

Show that this can be considered as a gradient descent approach with gradient updates

$$H_{ij} \leftarrow H_{ij} + \varepsilon_{ij} \left((W^T A)_{ij} - (W^T WH)_{ij} \right), \hspace{1cm} (3.2)$$

where the step size ε_{ij} is set separately for every element.

Hint: Find ε_{ij} such that you can transform (3.2) to (3.1).
Problem 4 (ALS as Newton’s method). Recall that the Newton’s method for optimizing a function $$f : \mathbb{R}^n \rightarrow \mathbb{R}$$ involves the following iterative update rule:

$$x_{n+1} \leftarrow x - [H(f(x_n))]^{-1} \nabla f(x_n)$$ \hspace{1cm} (4.1)

The alternating least squares optimization for NMF, on the other hand, updates matrix $$H$$ in decomposition $$A \approx WH$$ as

$$H \leftarrow [W^+A]^+$$ \hspace{1cm} (4.2)

Let us assume that $$W^TW$$ is invertible. Compute first Newton’s update rule for matrix $$H$$ in NMF (truncating negative values to 0), and then show that this update rule is equivalent to the ALS update rule.

Problem 5 (NMF as k-means). The k-means algorithm tries to optimize the function

$$\sum_{k=1}^{K} \sum_{j \in C_j} \|a_i - \mu_j\|_2^2$$ \hspace{1cm} (5.1)

where $$a_i \in \mathbb{R}^d, i = 1, \ldots, n$$ are the input (row) vectors, $$C_j \subset \{1, 2, \ldots, n\}, j = 1, \ldots, k, C_i \cap C_j = \emptyset$$ if $$i \neq j,$$ and $$\bigcup_j C_j = \{1, 2, \ldots, n\}$$ define the $$k$$ clusters of $$a_i,$$ and $$\mu_j \in \mathbb{R}^d, j = 1, \ldots, k,$$ are the centroids for the clusters. Given a clustering, the centroid $$\mu_j$$ is computed as the element-wise average, $$\mu_j = \frac{1}{|C_j|} \sum_{i \in C_j} a_i$$ (summation and division are element-wise).

Show that if all $$a_i$$ are non-negative, we can write (5.1) as a special type of semi-orthogonal NMF

$$\|A - GM\|_F^2, \quad G^T G = I$$ \hspace{1cm} (5.2)

That is, show how to transform (5.1) into (5.2) and verify that all matrices stay non-negative and that $$G$$ is column-orthogonal.

Problem 6 (NMF and pLSA). In the lectures the pLSA was presented as NMF optimizing the generalized KL divergence. In this problem we aim at proving why GKL is used instead of the Frobenius norm.

Recall that in pLSA, the joint probability of a document $$d_i$$ and term $$t_j$$ using $$K$$ topics $$(z_k)_{k=1}^K$$ is defined as

$$\Pr[d_i, t_j] = \sum_{k=1}^{K} \Pr[z_k] \Pr[d_i | z_k] \Pr[t_j | z_k]$$ \hspace{1cm} (6.1)

Using the NMF formulation with document-term matrix $$A$$ that is normalized to sum to unity and NMF factor matrices $$W, \Sigma,$$ and $$H,$$ where columns of $$W,$$ diagonal of $$\Sigma,$$ and rows of $$H$$ sum to unity, we can write (6.1) as

$$\Pr[d_i, w_j] = \sum_{k=1}^{K} \sigma_{kk} w_{ik} h_{kj} = (W\Sigma H)_{ij}$$ \hspace{1cm} (6.2)

Now, the likelihood of observing $$A$$ when drawing the data from the distribution (6.2) is proportional to

$$L = L(A | W, \Sigma, H) = \prod_i \prod_j \Pr[d_i, w_j]^{A_{ij}}$$ \hspace{1cm} (6.3)

Show that NMF with GKL divergence as the error metric is maximizing the likelihood $$L$$ by showing that maximizing the log-likelihood $$\log L(A | W, \Sigma, H)$$ is equivalent to minimizing the (generalized) KL divergence

$$D_{GKL}(A || W\Sigma H) \leftarrow \sum_s \sum_j \left(A_{ij} \ln \frac{A_{ij}}{(W\Sigma H)_{ij}} - A_{ij} + (W\Sigma H)_{ij} \right).$$ \hspace{1cm} (6.4)