Problem 1 (CX and RRQR). Recall that an RRQR decomposition of a matrix $A \in \mathbb{R}^{n \times m}$ is of form

$$A \Pi = QR = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{pmatrix},$$

(1.1)

where $\Pi \in \{0,1\}^{m \times m}$ is a permutation matrix, $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, $R_{11} \in \mathbb{R}^{k \times k}$ is upper-triangular with positive values in diagonal, and $R_{12} \in \mathbb{R}^{k \times (m-k)}$ and $R_{22} \in \mathbb{R}^{(n-k) \times (m-k)}$ are arbitrary.

Let $\Pi_k \{0,1\}^{n \times k}$ be the first k columns of Π and set $C = A \Pi_k \in \mathbb{R}^{n \times k}$. Show that

$$\|A - CC^+ A\|_\xi = \|R_{22}\|_\xi,$$

(1.2)

where ξ is either F or 2 (i.e. we compute either the Frobenius or spectral norm).

Hint: Use the fact that R_{11} is guaranteed to be invertible and that both of the studied norms are orthogonally invariant.

Problem 2 (CX and RRQR again). Let $A \Pi = QR$ be the RRQR factorization of A as above. Assume the factorization admits the following inequalities for some polynomials p_1 and p_2 over k and m:

$$\frac{\sigma_k(A)}{p_1(k,m)} \leq \sigma_{\text{min}}(R_{11}) \leq \sigma_k(A),$$

(2.1)

$$\sigma_{k+1}(A) \leq \sigma_{\text{max}}(R_{22}) \leq p_2(k,m) \sigma_{k+1}(A).$$

(2.2)

Using $\mathbf{1.2}$ from Problem 1 and the above inequalities, show that

$$\|A - CC^+ A\|_2 \leq p_2(k,m) \|A - A_k\|_2,$$

(2.3)

where $A_k = U_k \Sigma_k V_k^T$ is the rank-k truncated SVD of A.

Problem 3 (CX and sparse decompositions). Bob is a big proponent of CX decomposition, and he claims that if matrix A is sparse and you do a normal CX decomposition to it, the column matrix C must also be sparse.

a) Prove Bob wrong. Construct matrix A such that A is sparse, but in an optimal rank-k CX decomposition matrix C is not sparse. Matrix $A \in \mathbb{R}^{n \times m}$ is sparse if $\text{nnz}(A)/(nm) \ll 0.5$ and it is not sparse if $\text{nnz}(A)/(nm) \gg 0.5$, where $\text{nnz}(A) = \{(i,j): a_{ij} \neq 0\}$ is the number of non-zero elements in A. Your matrix can be of any size, you can choose any rank $k > 0$ and the non-sparse optimal decomposition does not have to be unique (i.e. there can be other decompositions that yield equal reconstruction error, but have sparse C).

b) Bob insists that even if CX doesn’t yield sparse decompositions, NNCX will. Prove Bob wrong again by constructing sparse nonnegative A that has an NNCX decomposition where C is not sparse. The rules are as above, but you must construct a new example even if your previous example was already an NNCX decomposition.
Problem 4 (Generating CUR data). A standard practice when validating that a proposed matrix factorization algorithm works in practice is to generate random data that has the kind of structure the factorization aims at finding, add some random, structure-less noise, and use the resulting matrix as an input for the algorithm. For example, for NMF, we would first choose some \(n \), \(m \), and \(k \), then we would generate random matrices \(W \in \mathbb{R}^{n \times k} \) and \(H \in \mathbb{R}^{k \times m} \), multiply them to obtain \(A = WH \), and add some noise to \(A \).

Design a method that creates random synthetic matrices for CUR decomposition. That is, explain how to generate matrices \(C \in \mathbb{R}^{n \times k} \), \(U \in \mathbb{R}^{k \times k} \), and \(R \in \mathbb{R}^{k \times m} \) (\(k < n, m \)) such that matrix \(A = CUR \) has \(k \) columns that are exactly the columns of \(C \) and \(k \) rows that are exactly the rows of \(R \). The factor matrices cannot be completely random, but try to have as much randomness as possible.

Problem 5 (Correlation matrix). Let \(x = (x_i)_{i=1}^n \) be a (column) vector of \(n \) zero-centered random variables. The covariance \(\text{cov}(x_i, x_j) \) is defined as

\[
\text{cov}(x_i, x_j) = \mathbb{E}[x_i x_j],
\]

(5.1)

The correlation matrix \(\Sigma \) is defined as

\[
\Sigma = \mathbb{E}[xx^T] = (\text{cov}(x_i, x_j))_{i,j}.
\]

(5.2)

What are the requirements for random variables \(x_i \) that ensure that the covariance matrix is an identity matrix? Give the requirements, and prove that if all \(x_i \) satisfy them, \(\Sigma \) is an identity matrix.

Hint: consider what \(\Sigma_{i,i} = \text{cov}(x_i, x_i) \) tells about random variable \(x_i \).

Problem 6 (Whitening). Most textbooks (and Wikipedia) explain the whitening process as follows: Given data matrix \(A \) (where rows are observations and columns variables), compute the correlation matrix \(C = A^T A \). Then, compute the eigendecomposition of \(C \), \(C = Q \Delta Q^T \), where \(Q \) is an orthogonal matrix and \(\Delta \) is diagonal matrix with non-negative entries. To whiten \(A \), we multiply \(A \) from right with \(Q \Delta^{1/2} \), where \((\Delta^{1/2})_{ii} = 1/\sqrt{(\Delta)_{ii}} \) if \((\Delta)_{ii} \neq 0 \) and \((\Delta^{-1/2})_{ii} = 0 \) otherwise.

In the lectures it was claimed that if \(U \Sigma V^T \) is the SVD of \(A \), then the whitened \(A \) is \(U \). Prove that these two processes yield the same solution, that is

\[
U = AQ \Delta^{-1/2}.
\]

(6.1)

Hint: eigendecomposition is unique, that is, if \(C = Q \Delta Q^T \) for some orthogonal \(Q \) and diagonal \(\Delta \) with nonnegative entries, then \(Q \Delta Q^T \) is the eigendecomposition of \(C \). Use the SVD of \(A \) to express \(C \) and find a definition of \(Q \) and \(\Delta \) in terms of SVD of \(A \).