
Lecture Notes

Algorithmic Quantifier Elimination

Thomas Sturm

CNRS, Inria, and the University of Lorraine, France

Max Planck Institute for Informatics and Saarland University, Germany

July 14, 2023

Contents

1 Introduction 4
1.1 Quantifier Elimination . 4
1.2 History . 4

1.2.1 Classical Algebra . 4
1.2.2 Mathematical Logic . 5
1.2.3 Symbolic Computation . 5

1.3 Scope and Plan of the Course . 6

2 Examples for Elimination of Variables 8
2.1 Graphs and Sets . 8
2.2 Single Equations . 9
2.3 Systems of Linear Equations . 10
2.4 Systems of Linear Inequalities . 12
2.5 Universal Statements . 13

3 Interpreted First-order Logic 15
3.1 Languages and L-Structures . 15
3.2 Terms and Term Functions . 17
3.3 First-order Formulas and Their Characteristic Functions 18
3.4 Models and Axioms . 21
3.5 Substitution . 22
3.6 Entailment and Semantic Equivalence . 24
3.7 Normal Forms . 26

4 Quantifier Elimination, Completeness, and Decidability 28
4.1 Quantifier Elimination . 28
4.2 Definable Sets and Projection . 33
4.3 Completeness and Decidability . 37

5 Quantifier Elimination for Sets and Linear Orders 42
5.1 Sets . 42
5.2 Use Case: Graph Coloring . 44
5.3 Dense Linear Orders Without Endpoints . 46
5.4 Discrete Linear Orders with Left Endpoint . 48

6 Substructures 53
6.1 Substructures . 53
6.2 Elementary Equivalence and Substructure Completeness 56

2

Contents 3

6.3 Elementary Substructures and Model Completeness 57

7 Quantifier Elimination for Divisible Abelian Groups 60
7.1 Non-trivial Abelian Groups . 60
7.2 Divisible Torsion-free Abelian Groups . 61
7.3 Infinite Divisible Abelian Groups with Prime Torsion 64
7.4 Dense Ordered Abelian Groups . 66
7.5 Use Case: Linear Programming . 70

8 Quantifier Elimination for Z-Groups 73
8.1 Presburger Arithmetic . 73
8.2 Use Case: Integer Programming . 78
8.3 Definable Sets in Presburger Arithmetic . 82
8.4 The Ring and the Ordered Ring of the Integers 87
8.5 Presburger Arithmetic with Divisibility . 89
8.6 Z-Groups . 92

9 Quantifier Elimination for Fields 96
9.1 The Field of the Rational Numbers . 97
9.2 Algebraically Closed Fields . 98

1 Introduction

1.1 Quantifier Elimination

Consider the real numbers R with the common arithmetic operations and order. The following
formal statement ϕ asks whether or not one can find for all x1 ∈ R some x2 ∈ R such that a
certain polynomial is greater than zero while another polynomial is less than or equal to zero:

ϕ = ∀x1∃x2(x2
1 + x1x2 + y2 > 0 ∧ x1 + y1x

2
2 + y2 ≤ 0). (1.1)

We have to expect that the answer is not “yes” or “no” but depends on the real values of the
parameters y1 and y2. A quantifier elimination procedure computes ϕ′ = y1 < 0 ∧ y2 > 0 as an
answer, which formally satisfies the equivalence ϕ ←→ ϕ′. The quantifier-free formula ϕ′ has
several advantages over the original formula ϕ. The set of all “true” choices for (y1, y2) for ϕ
or, equivalently, ϕ′ defines a binary relation on the real numbers. The quantifier-free definition
ϕ′ is much simpler and and allows easy efficient evaluation for given values of (y1, y2).

Consider more abstractly a formula ψ with parameters y1, . . . , y4. The “true” choices for
(y1, . . . , y4) geometrically describe a set of objects in real 4-space. The formula ∃y3∃y4(ψ)
with parameters y1, y2 describes the projection of those objects onto the (y1, y2)-plane. Again,
quantifier elimination provides intuitively and algorithmically simpler descriptions of both the
original objects and the projected ones.

Quantifier elimination is possible in many interesting domains but not generally. Another
positive example is the field of complex numbers, a negative example is the field of rational
numbers. In some domains, quantifier elimination is possible only for a restricted class of for-
mulas, e.g. for linear formulas over the ring of integers.

Direct applications of quantifier elimination in the literature include circuit design and error
diagnosis, verification, hybrid control theory, geometric proving, computational geometry, mo-
tion planning, chemical reaction network theory, and systems biology. In applications in science
and engineering, parameters typically correspond to quantities that are observable or measur-
able. In Automated Reasoning, quantifier elimination is used under the hood when algebraically
theories are involved. Examples are superposition modulo theories and SMT solving. From a
formal point of view, quantifier elimination provides a framework for a formally clean manage-
ment of parametric settings.

1.2 History

1.2.1 Classical Algebra

In the field of algebra, elimination algorithms were historically concerned with the elimination
of “variables” from “problems”, which typically means elimination of existential quantifiers in

4

1 Introduction · 1.2 History 5

front of conjunctions of equations, sometimes admitting also inequalities or congruences. They
date back to the 17th century with Descartes. Their heyday was in the 19th century and is
associated with the names of Gauss, Budan, Fourier, Sturm, Bezout, Sylvester, Hermite, and
Kronecker. At that time, algebra was surprisingly algorithmic, and generally mathematicians
computed probably more than nowadays. It is handed down that Leibniz chaired so-called cal-
culating committees and entered the room with the words “Lasset uns rechnen!” or using the
Latin phrase “Calculemus!” At the end of the 19th century, algorithmic algebra had reached
a level where proposed algorithmic techniques could hardly be applied to interesting problems
sizes anymore, given that computer technology was not available yet. As a consequence, a
new trend gradually prevailed in algebra that favored presumably more elegant non-constructive
structural approaches over elaborate algorithmic methods. The title of van der Waerden’s excel-
lent textbook from 1931 coined the term Modern Algebra.

1.2.2 Mathematical Logic

Coinciding with the waning interest in algebra at the turn of the 20th century, elimination algo-
rithms gained interest in the field of mathematical logic as a tool for solving decision problems.
With the mathematically exact formulation of first-order logic, research aimed at decision pro-
cedures that algorithmically decided elementary statements in certain classes of mathematical
structures, now featuring full quantification and a complete set of Boolean operations. From
about 1915 on, a long series of positive results began, which contrasted strongly with the unde-
cidability results for the ring of integers by Gödel in 1931.

Quantifier elimination procedures turned out to be the most important approach to decision
procedures. They form a systematic methodological approach for elimination algorithms in
the framework of elementary logic. Quantifier elimination procedures for specific classes of
algebraic structures were found in the first half of the 20th century among others by Löwenheim,
Langford, Szmielew, Presburger, Skolem, and Tarski. In the 2nd half of the 20th century many
more such methods were found for increasingly complicated classes.

With the rapid progress in computer development, the question arose whether decision pro-
cedures could actually be applied practically. The probably earliest reference to a software im-
plementation of a quantifier elimination procedure is a report by Davis to the US Army, which
is dated August 1954. Davis had implemented Presburger’s decision procedure for the linear
theory of the integers from 1929, which we are going to discuss here as Theorem 8.6. Davis
reported that he could automatically prove that x+x is always an even number. His conclusions
about the general potential of such implementations were quite pessimistic.

1.2.3 Symbolic Computation

With the development of complexity theory starting in the mid 1960s, research on the asymptotic
complexity of quantifier elimination problems and methods gained interest. It turned out that
most of the classical methods are in the worst case of such a high complexity that implementa-
tions would be of little use from a theoretical point of view. More precisely, existing procedures
were typically not elementary recursive, meaning that their asymptotic worst-case complexity in
terms of the input length n could not be bounded by functions in O(2n) ∪ O(22n) ∪ · · · .

1 Introduction · 1.3 Scope and Plan of the Course 6

These complexity results stimulated the development of more efficient quantifier elimination
methods. Cooper proposed an “only” triple exponential algorithm for linear integer arithmetic
in 1972. Implementations of efficient quantifier elimination methods for the real numbers by
Collins and his students started in around 1972 and continue to this day. Their method of Cylin-
drical Algebraic Decomposition is “only” double exponential in the input word length, which
later turned out to be optimal for the problem. Their implementations played an important role
in the comeback of algorithmic algebra as Computer Algebra, also called Symbolic Computa-
tion. Remarkably, after 50 years the software of Collins’s school is still considered a reference
implementation. It is freely available as Qepcad B.

During the 1980s research in algorithmic quantifier elimination diverged. One research line
is concerned with the development of asymptotically fast algorithms, also taking into consider-
ation more specific complexity parameters than the input word length, like coefficient sizes or
degrees of polynomials. On the one hand, these works are very impressive with regard to their
high mathematical level, which establishes a significant contribution to mathematics. On the
other hand, most of the results have never been implemented because implementations would be
correspondingly complex. In addition, there are arguments that the constants hidden in the big
O notation of those complexity results are so large that implementation would not be interesting
from a practical point of view.

Another research line more pragmatically focused on the implementation and application of
quantifier elimination. This has led to specialized quantifier elimination procedures for certain
classes of input. A prominent example are quantifier elimination procedures based on Virtual
Substitution, developed by Weispfenning and his students for various domains, including the
real numbers, p-adic numbers, and the linear theory of the integers. Virtual substitution methods
are typically limited to formulas where the degree of the occurring terms does not exceed a
certain bound. One principal advantage is that parameters, in contrast to quantified variables, do
not significantly contribute to complexity. The work of Weispfenning’s school resulted in the
software package Redlog, which is freely distributed with the computer algebra system Reduce.

The commercial computer algebra system Mathematica features real quantifier elimination,
and real quantifier elimination in Maple has been announced.

1.3 Scope and Plan of the Course

The course focuses on classical quantifier elimination results developed throughout the 20th
century. It leaves out efficient procedures that have been developed after 1970, especially for
Presburger Arithmetic and Real Closed Fields. Nevertheless, both these model classes are cov-
ered here. Since the mathematical arguments and techniques developed with the classical results
and discussed here play a crucial role also in more modern approaches, the course material lays
a solid foundation for further study.

Chapter 2 sketches various familiar mathematical situations where variables are eliminated.
One goal is to approach QE by emphasizing finding conditions for solvability, as opposed to
actually solving in the positive case. Formal representations with a separation of syntax and
semantics are deliberately avoided in the hope that this lack of rigor will give the reader a sense
of the usefulness of the principles developed in the following chapter.

1 Introduction · 1.3 Scope and Plan of the Course 7

Subsequently Chapter 3 then provides a systematic formal introduction to interpreted first-
order logic with equality, with an emphasis on the strict separation of syntax and semantics.

Chapter 4 introduces the key concepts of quantifier elimination, completeness, and decidabil-
ity and discusses the interrelationships.

After these preparations, we are ready in Chapter 5 to treat systematically a first set of QE
procedures, namely for sets and ordered sets.

Chapter 6 adds further important notions such as elementary equivalence, substructures, sub-
structure completeness as a semantic characterization of quantifier eliminability, and model com-
pleteness as a characterization of quantifier elimination down to to existential quantifiers.

Chapter 7 deals with quantifier elimination for different types of Abelian groups and ordered
Abelian groups. For the unordered case we discuss torsion-free divisible Abelian groups and
infinite divisible Abelian groups with p-torsion. Examples are the additive groups of the reals
and of polynomials over the integers modulo a prime p, respectively. The ordered case includes,
on the one hand, divisible ordered Abelian groups, for which the ordered additive group of the
reals is a natural example. Here we present Fourier–Motzkin elimination as a quantifier elimi-
nation procedure and discuss its application to linear programming. On the other hand, we have
discretely ordered Abelian groups in suitable extension languages. Here we present Presburger’s
original result as a quantifier elimination procedure and discuss linear integer programming as a
use case. We also study quantifier eliminability and decidability of various extensions of Pres-
burger Arithmetic.

Chapter 9 turns to quantifier elimination in fields. We focus on Tarski’s procedure for alge-
braically closed fields, and conclude with negative results for the rational numbers.

2 Examples for Elimination of Variables

In this introductory section, we address some familiar mathematical situations from the point of
view of elimination theory. Each of our examples chooses a particular mathematical structure
and makes a statement about that structure depending on parameters, which may take arbitrary
values in the structure. We are looking for a “simple” condition on these parameters “in closed
form” that is necessary and sufficient for the correctness of the statement made. In that course,
all variables of the statement that are not parameters are “eliminated”.

The obtained conditions are “simple” in the following sense. For any concrete choice of
values of the parameters in the given structure, the validity or invalidity of the original statement
shall be easy to decide automatically via evaluation of the obtained condition. By “closed form”
we mean that the obtained condition is a finite object, which covers, in general, infinitely many
possible values of the parameters.

2.1 Graphs and Sets

Example 2.1 (Constraints on a certain undirected graph). Let G be the following undirected
graph:

1 2

4 3 (2.1)

Let a, b ∈ {1, 2, 3, 4}. Consider the statement that the following is solvable for a node x in G:

x — a and x — b and not a — b. (2.2)

This holds if and only if
a = b or {a, b} = {1, 3}. (2.3)

Proof. Assume that (2.3) does not hold, i.e., a ̸= b and {a, b} ≠ {1, 3}. Then it is easy to see by
inspection of G that a — b. It follows that (2.2) cannot hold for any choice of x.

Conversely, assume that (2.3) holds. If a = b, then there is x in G such that (a = b) — x,
because G has no isolated vertices. Furthermore, we have not a — b, because G has no loops.
If {a, b} = {1, 3}, then it is easy to see by inspection of G that not 1 — 3, and we can choose,
e.g., x = 2. In both cases, (2.2) holds. ⌟

Example 2.2 (Set theory). Let s be a non-empty set, and consider its power set P = P (s) =
{ t | t ⊆ s }. Let a, b ∈ P . Consider the statement that the following is solvable for x ∈ P :

x ⊈ a and x ∩ b = ∅. (2.4)

8

2 Examples for Elimination of Variables · 2.2 Single Equations 9

This holds if and only if
a ∪ b ̸= s. (2.5)

Proof. Assume that x ∈ P such that (2.4) holds. From x ⊈ a it follows that there is y ∈ s with
y ∈ x but y /∈ a. Using x ∩ b = ∅ it follows that also y /∈ b. Hence y /∈ a ∪ b.

Conversely Assume that (2.5) holds. Then a ∪ b ⊊ s. Thus there is y ∈ s with y /∈ a ∪ b,
i.e. y /∈ a and y /∈ b. Choose x = {y}. ⌟

Generally, it is important to understand that our goal is not the computation of a suitable x but
the computation of conditions for the existence of such an x in exclusively the parameters a and
b using common set operations on P , including the constants ∅ and s.

2.2 Single Equations

Example 2.3 (One linear equation over R). Let a, b ∈ R. Consider the following statement
about x:

ax + b = 0. (2.6)

It is easy to see that this is solvable for x ∈ R if and only if

a ̸= 0 or b = 0. (2.7)

The same holds in Q and C instead of R.

Proof. Assume that (2.7) does not hold, i.e., a = 0 and b ̸= 0. Then ax + b = 0 is equivalent to
b = 0, which has no solution for x. Hence (2.6) does not hold either.

Conversely, assume that (2.7) holds. If a ̸= 0 set x = −b/a. If b = 0 set x = 0. In either case
x satisfies (2.6). ⌟

Example 2.4 (One quadratic equation over R). Let a, b, c ∈ R. Consider the following statement
about x:

ax2 + bx + c = 0. (2.8)

Carefully taking into account the possible vanishing of a, which reduces our problem to Exam-
ple 2.3, and using the well-known solution formula for quadratic equations otherwise, this is
solvable for x ∈ R if and only if

(

a = 0 and (b ̸= 0 or c = 0)
)

or
(

a ̸= 0 and b2 − 4ac ≥ 0
)

. (2.9)

Condition (2.9) does not work over C, where the order inequality makes no sense. It also does
not work over Q, where the square root does not always exist. As an exercise, find a concrete
counterexample over Q. ⌟

Recall that Tschirnhaus transformations can be used to get rid of quadratic summands in cubic
equations. From that perspective the following example is more general than it might seem at
first glance.

2 Examples for Elimination of Variables · 2.3 Systems of Linear Equations 10

Example 2.5 (One cubic equation over R). Let a, b, c ∈ R. Consider the following statement
about x:

ax3 + bx + c = 0. (2.10)

This is solvable for x ∈ R if and only if

a ̸= 0 or b ̸= 0 or c = 0. (2.11)

The same holds over C instead of R, but not over Z or Q.
The proof for C is a direct application of the fundamental theorem of algebra, which states

that every non-zero univariate polynomial of degree n has, counted with multiplicity, exactly n
roots. We leave the presentation of a counterexample for Q and the proof for R as an exercise.
Due to the negative result for Q, it is inevitable that the proof for R relies on certain properties
of R that do not hold in Q. ⌟

2.3 Systems of Linear Equations

Example 2.6 (Systems of univariate linear equations over R). Fix numbers a1, . . . , am ∈ R with
a1 ̸= 0. Let b1, . . . , bm ∈ R. Consider the statement about x:

a1x + b1 = 0 and . . . and amx + bm = 0. (2.12)

This is solvable for x ∈ R if and only if

a2b1 = a1b2 and . . . and amb1 = a1bm. (2.13)

The same holds in any field K instead of R.

Proof. Assume that (2.13) does not hold. Let i ∈ {2, . . . , m} such that aib1 ̸= a1bi. If ai = 0,
then bi ̸= 0, and it follows that aix+ bi = 0 in (2.12) has no solution. If ai ̸= 0, then x = −bi/ai
is the only solution of aix + bi = 0 in (2.12). Similarly x = −b1/a1 is the only solution of
a1x + b1 = 0 in (2.12). But our assumption aib1 ̸= a1bi is equivalent to −b1/a1 ̸= −bi/ai.
Hence (2.12) is not solvable x ∈ R.

Conversely, assume that (2.13) holds. Set x = −b1/a1, which obviously solves the first
equation a1x + b1 = 0 in (2.12). Consider now any other equation in (2.12), i.e., aix + bi = 0
for i ∈ {2, . . . , m}. We know that aib1 = a1bi. If ai = 0 then also bi = 0, and our considered
equation aix + bi = 0 becomes trivial. Otherwise, we equivalently transform aib1 = a1bi into
−bi/ai = −b1/a1 = x, and we see that x solves our considered equation. Hence our x solves
(2.12) ⌟

When interested in solvability with respect to several variables, like x1, x2, one can start with
considering x2 as a parameter, obtain an equivalent condition that still contains x2 but not x1
anymore, and from this subsequently derive another equivalent condition for the solvability with
respect to x2.

2 Examples for Elimination of Variables · 2.3 Systems of Linear Equations 11

Example 2.7 (Systems of bivariate linear equations over R). Fix numbers a11, . . . , am1, a12,
. . . , am2 ∈ R with a11 ̸= 0 and a21a12 − a11a22 ̸= 0. Let b1, . . . , bm ∈ R. Consider the following
statement about x1 and x2:

a11x1 + a12x2 + b1 = 0 and . . . and am1x1 + am2x2 + bm = 0. (2.14)

This is solvable for x1, x2 ∈ R if and only if

(a31a12 − a11a32)(a21b1 − a11b2) = (a21a12 − a11a22)(a31b1 − a11b3) and
...

and (am1a11 − a11am2)(a21b1 − a11b2) = (a21a12 − a11a22)(am1b1 − a11bm). (2.15)

The same holds in any field K instead of R.

Proof. Considering x2 ∈ R as another parameter, system (2.14) can be rewritten as

a11x1 + (a12x2 + b1) = 0 and . . . and am1x1 + (am2x2 + bm) = 0. (2.16)

This matches (2.12), and Example 2.6 states that this is solvable for x1 ∈ R if and only if

a21(a12x2 + b1) = a11(a22x2 + b2) and
...

and am1(a12x2 + b1) = a11(am2x2 + bm). (2.17)

This can be equivalently rewritten as

(a21a12 − a11a22)x2 + (a21b1 − a11b2) = 0 and
...

and (am1a12 − a11am2)x2 + (am1b1 − a11bm) = 0, (2.18)

which once more matches (2.12), and Example 2.6 states that this is solvable for x2 ∈ R if and
only if (2.15) holds. ⌟

Example 2.7 can be generalized to systems with an arbitrary number n of variables:

a11x1 + · · · + a1nxn + b1 = 0 and . . . and am1x1 + · · · + amnxn + bn = 0. (2.19)

The coefficients aij form a real m × n-Matrix A, and the xi and bi form column vectors x and b,
respectively. In these terms, (2.19) can be more concisely rewritten as

A · x = −b. (2.20)

In fact, one arrives at essentially Gaussian elimination generalized to parametric right hand sides
−b of the equations.

2 Examples for Elimination of Variables · 2.4 Systems of Linear Inequalities 12

2.4 Systems of Linear Inequalities

Example 2.8 (One linear inequality over R). Let a, b ∈ R. Consider the following statement
about x:

ax + b ≤ 0. (2.21)

It is easy to see that this is solvable for x ∈ R if and only if

a ̸= 0 or b ≤ 0. (2.22)

The same holds in Q instead of R. ⌟

Example 2.9 (Systems of univariate linear inequalities over R). Fix numbers a1, . . . , am ∈ R
with a1, . . . , ak < 0 < ak+1, . . . , am. Let b1, . . . , bm ∈ R. Consider the following statement
about x:

a1x + b1 ≤ 0 and . . . and amx + bm ≤ 0. (2.23)

This is solvable for x ∈ R if and only if

ajbi − aibj ≤ 0 (1 ≤ i ≤ k, k + 1 ≤ j ≤ m). (2.24)

The same holds in any ordered field K instead of R.

Proof. Condition (2.23) can be equivalently rewritten as

−
b1

a1
≤ x and . . . and −

bk
ak
≤ x and x ≤ −

bk+1

ak+1
and . . . and x ≤ −

bm
am
. (2.25)

It is not hard to see that this is equivalent to

−
bi
ai
≤ −

bj

aj

(

i ∈ {1, . . . , k}, j ∈ {k + 1, . . . , m}
)

. (2.26)

Multiplication of the inequality in (2.26) by aiaj < 0 followed by addition of ajbi yields 0 ≥
ajbi − aibj. Hence (2.26) can be equivalently rewritten as (2.24). ⌟

Condition (2.24) should be read as a an informal logical conjunction, similarly to (2.23).
There are two border cases in Example 2.9:

1. all a1, . . . , am are positive, i.e., k = m;

2. all a1, . . . , am are negative, i.e., k = 0.

In both these cases the list of conditions in (2.24) becomes empty. It is a common convention
that such an empty condition is defined as “true”, which is the neutral element of the logical
conjunction.1

Inspection of the proof shows that the result can be generalized as follows. In (2.23) one
can mix the weak inequalities “≤” with strict inequalities “<”. Accordingly, one puts the strict
inequality in (2.24) whenever at least one of the involved i, j has the strict inequality in (2.23).

1Similarly, empty disjunctions are typically considered “false”, empty sums are 0, empty products are 1, etc.

2 Examples for Elimination of Variables · 2.5 Universal Statements 13

Similarly to our result for equations in Example 2.6 via Example 2.7, the result of Example 2.9
can be iterated for several variables x1, . . . , xn instead of x. This leads to a simple feasibility
criterion for systems

A · x ≤ −b. (2.27)

With fixed values in A and parametric right hand sides −b. The corresponding algorithm is
known as Fourier–Motzkin Elimination.

We conclude our discussion of linear systems of equations and inequalities with an example
over the integers Z, which form an integral domain but not a field. For x, y ∈ Z we write x | y
if x divides y, i.e., if there is z ∈ Z such that xz = y.

Example 2.10 (Constraints in Presburger Arithmetic). Let a, b, c ∈ Z. Consider the following
statement about x:

2x = a and b < x and x < c. (2.28)

This is solvable for x ∈ Z if and only if

2 | a and 2b < a and a < 2c. (2.29)

Proof. Assume that x ∈ Z such that (2.28) holds. This implies 2x = a and 2b < 2x < 2c, which
in turn implies

2x = a and 2b < a < 2c. (2.30)

The constraint 2x = a admits only the formal solution x = a/2, which exists in Z if and only if
2 | a. This yields (2.29).

Conversely, assume that (2.29) holds. We must show that there exists x ∈ Z such that (2.28)
holds. Since 2 | a, we can set x = a/2 ∈ Z. Plugging into (2.28) yields

2(a/2) = a and b < a/2 < c, (2.31)

where 2(a/2) = a obviously holds and b < a/2 < c follows immediately from (2.29). ⌟

2.5 Universal Statements

All our examples so far were concerned with the existence of one or several elements x or xi
subject to parametric constraints. We conclude with an example where a given condition is
required to hold for all x.

Example 2.11 (A universal condition on real inequalities). Let a, b ∈ R. Consider the statement
that the following holds for all x ∈ R:

2x − a ≥ 0 or 3x + 2b + 1 < 0. (2.32)

This holds if and only if
3a + 4b + 2 ≤ 0. (2.33)

2 Examples for Elimination of Variables · 2.5 Universal Statements 14

Proof. We prove the, logically equivalent, contrapositive of our equivalence, which can be
phrased as follows: The condition

−3x − 2b − 1 ≤ 0 and 2x − a < 0 (2.34)

is solvable for x ∈ R if and only if

3a + 4b + 2 < 0. (2.35)

According to Example 2.9, a solution x ∈ R for (2.34) exists if and only if 0 > 2 · (−2b − 1) −
(−3) · (−a) = 3a + 4b + 2. ⌟

3 Interpreted First-order Logic

3.1 Languages and L-Structures

An elementary language is a triplet L = (F ,R, σ), where F ∩ R = ∅ and σ : F ∪ R → N. It
fixes function symbols f ∈ F and relation symbols R ∈ R along with their arities σf and σR,
respectively. One can shortly write f (σf) and R(σR) to annotate function and relation symbols
with their arities. A function symbol f (0) ∈ F is called a constant symbol. A language is
algebraic ifR = ∅, and it is relational if F = ∅.

A language is finite if F ∪ R is finite. There is a convenient notation for finite languages
L = ({f1, . . . , fn}, {R1, . . . , Rm}, σ) as follows:

L =
(

f
(σf1)
1 , . . . , f

(σfn)
n ; R(σR1)

1 , . . . , R
(σRm)
m

)

. (3.1)

Similarly, a language is countable if F ∪R is countable. For families (fi)i∈N and (Rj)j∈N we can
write L = (f (σf0)

0 , f
(σf1)
1 , . . . ; R(σR0)

0 , R
(σR1)
1 , . . .). The annotations of the arities can be omitted

when they are obvious from the choice of the function and relation symbols.

Example 3.1 (Finite language). The language of ordered rings is given by

LRings< = ({0, 1,+,−, · }, {<}, σ) (3.2)

with σ(0) = 0, σ(1) = 0, σ(+) = 2, σ(−) = 1, σ(·) = 2, σ(<) = 2. There are constant symbols
0 and 1. The language is neither algebraic nor relational. Since the language is finite, it can be
written as

LRings< = (0(0), 1(0),+(2),−(1), · (2); <(2)) (3.3)

or even shorter as LRings< = (0, 1,+,−, · ; <). ⌟

Consider languages L = (F ,R, σ) and L′ = (F ′,R′, σ′). We write L ⊆ L′ if F ⊆ F ′,
R ⊆ R′, and σ = σ′|F∪R. We then call L is a sublanguage of L′, and we call L′ an extension
language of L.

Example 3.2 (Sublanguage and extension language). The language of rings is a sublanguage of
the language of ordered rings, and thus the language of ordered rings is an extension language
of the language of rings:

LRings = (0, 1,+,−, ·) ⊆ (0, 1,+,−, · ; <) = LRings< . (3.4)

The language of rings is algebraic. ⌟

15

3 Interpreted First-order Logic · 3.1 Languages and L-Structures 16

We are now going to define semantics, which gives a meaning to the function and relation
symbols of our languages. Consider a language L = (F ,R, σ). An L-structure is a triplet
A = (A, ιF , ιR), where A ̸= ∅ is called the universe of A. The interpretation ιF assigns to each
f (n) ∈ F a function fA : An → A. The functions fA are called the functions of A. For constant
symbols f (0) ∈ F we identify the constant function fA with its value and call fA ∈ A a constant
of A. The interpretation ιR assigns to each R(n) ∈ R a function RA : An → {⊤,⊥}. The
symbols ⊤ and ⊥ stand for “true” and “false”, respectively. We agree that there is an ordering
⊤ > ⊥. The functions RA are called the relations of A.

If L is algebraic, then A is called an L-algebra. If L is relational, then A is called a relational
L-structure. An L-structure A is called finite if its universe A is finite.

Example 3.3 (R as an ordered ring). There is a natural LRings<-structure R = (R, ιF , ιR) with
the real numbers as its universe. We define

ιF (0) = 0R ∈ R, ιF (1) = 1R ∈ R, (3.5)

where 0R and 1R are the real numbers 0 and 1, respectively,

ιF (+) = +R : R2 → R, ιF (−) = −R : R→ R, ιF (·) = · R : R2 → R, (3.6)

where +R, −R, and · R are the usual real addition, additive inverse, and multiplication, respec-
tively, and

ιR(<) = <R : R2 → {⊤,⊥} with <R(x, y) =

{

⊤ if x < y in R
⊥ else.

(3.7)

LRings< is a finite language but R is an infinite LRings<-structure. ⌟
For finite languages L as in (3.1), L-structures can be more conveniently written in the form

A = (A; ω1, . . . , ωn; ϱ1, . . . , ϱm), (3.8)

where (ωi : Aσfi → A) = ιF (fi) and (ϱj : AσRj → {⊥,⊤}) = ιR(Rj). The definition of the
functions ωi and ϱj can typically be derived from their names in combination with the specified
universe A.

Example 3.4. (i) The following is the LRings<-structure defined in Example 3.3:

(R; 0, 1,+,−, · ; <). (3.9)

(ii) The language of monoids is defined as LMonoids = (∗(2), e(0)). The following are examples
for LMonoids-structures:

(Z; +, 0), (Q; · , 1), ({’a’, . . . ,’z’}∗; ◦, ε), (P (C); ∩,C). (3.10)

The following is anLMonoids-structure as well, where the function / : (Q\{0})2 → Q\{0}
denotes division:

(Q \ {0}; / , 1). (3.11)

The LMonoids-structures in (3.10) are indeed monoids. The one in (3.11), in contrast, is not
a monoid, because division is not associative. All LMonoids-structures are algebras. ⌟

3 Interpreted First-order Logic · 3.2 Terms and Term Functions 17

The examples in 3.4(ii) illustrate that the short notation (3.8) for L-structures is not suitable
and should not be used for implicitly specifying the language L along with an L-structure.

Consider languages L′ = (F ′,R′, σ′) ⊆ (F ,R, σ) = L, and let A = (A, ιF , ιR) be an L-
structure. Restricting the interpretations ιF and ιR of A to F ′ and R′, respectively, yields an
L′-structure

A|L′ = (A, ιF |F ′ , ιR|R′). (3.12)

We call A|L′ the L′-restriction of A, and we call A an L-expansion of A|L′ . Note that A and A|L′
have the same universe A.

Example 3.5. Recall from (3.4) that LRings ⊆ LRings< , and recall from Example 3.3 and (3.9)
that the ordered ring of real numbers R = (R; 0, 1,+,−, · ; <) is an LRings<-structure. The
LRings-restriction of R yields the ring of real numbers R|LR = (R; 0, 1,+,−, ·). The LRings<-
structure (R; 0, 1,+,−, · ; >) is another LRings<-expansion of (R; 0, 1,+,−, ·). Notice that
(R; 0, 1,+,−, · ; >) is an LRings<-structure but not an ordered ring, such as (3.11) was not a
monoid. ⌟

3.2 Terms and Term Functions

We fix a set X =
{

(,) , ,
}

of special symbols, and we fix an infinite set V of variables.
Let L = (F ,R, σ) be a language. The alphabet of L is given by Z = X ∪ V ∪ F ∪R. As usual,
Z∗ is the set of all finite words over Z, and ε ∈ Z∗ is the empty word, and |w| is the word length
of w. We assume that X , V , F ,R, are pairwise disjoint. Furthermore, no composite word in Z∗
equals any alphabet character.1

The set T ⊆ Z∗ of L-terms is recursively defined as follows:

(i) If x ∈ V , then x ∈ T .

(ii) If f (0) ∈ F , then f ∈ T .

(iii) If f (n) ∈ F with n > 0 and t1, . . . , tn ∈ T , then f (t1 , . . . , tn) ∈ T .

The definition of terms uses exclusively prefix notation. We admit infix notation as a short-
hand with common function symbols such as +, · in LRings. One may also save parentheses
following common rules like the precedence of multiplication over addition in situations where
this is adequate.

Recall that L-structures A interpret function symbols of L as functions in their universe A.
We want to use terms to define further such functions.

Example 3.6 (Motivation of extended terms). Consider the following definition of a polynomial
function:

f (x, y, z) = x2 + 2xy − 5y. (3.13)

On the right hand side of the defining equation we have x2 + 2xy − 5y, which is a convenient
notation for an LRings-term. On the left hand side of that equation, the extension (x, y, z) defines
a mapping between argument positions and variables of the defining term. The variable z does
not occur in the defining term, but it is relevant for obtaining a function with arity 3. ⌟

1One way to state this formally is that z /∈ (Z \ {z})∗ for all z ∈ Z.

3 Interpreted First-order Logic · 3.3 First-order Formulas and Their Characteristic . . . 18

Let t ∈ T . We denote by V (t) the finite set of variables occurring in t. Let x1, . . . , xn ∈ V
be such that V (t) ⊆ {x1, . . . , xn}. Then (t, (x1, . . . , xn)) ∈ T × Vn is an extended term, which
we shortly write as t(x1, . . . , xn). Let A be an L-structure. Then t(x1, . . . , xn) specifies a term
function tA : An → A, which is recursively defined at (a1, . . . , an) ∈ An as follows:

(i) If t = xi, then tA(a1, . . . , an) = ai.

(ii) If t = f (0) ∈ F , then tA(a1, . . . , an) = fA.

(iii) If t = f (t1, . . . , tm) with f (m) ∈ F and t1, . . . , tm ∈ T , then

tA(a1, . . . , an) = fA(tA1 (a1, . . . , an), . . . , tAm(a1, . . . , an)
)

(3.14)

using extended terms t1(x1, . . . , xn), . . . , tm(x1, . . . , xn).

Lemma 3.7 (Term functions under restriction and expansion). Let L′ ⊆ L, let A be an L-
structure, and let t(x1, . . . , xn) be an extended L′-term. Then tA|L′ = tA.

Proof. Let a = (a1, . . . , an) ∈ An. We show by induction on |t| that tA|L′ (a) = tA(a). Let
|t| = 1. Then t = xi ∈ V or t is a constant symbol. If t ∈ V , then t ∈ {x1, . . . , xn}, say t = xi,
and it follows that tA|L′ (a) = ai = tA(a). If t is a constant symbol from L′, then tA|L′ (a) =
tA = tA(a). Let now |t| > 1. Then there are f (m) ∈ F ′ and extended L′-terms t1(x1, . . . , xn),
. . . , tm(x1, . . . , xn) such that t = f (t1, . . . , tm). We know that tA|L′j = tAj by induction hypothesis.

It follows that tA|L′ (a) = fA|L′ (tA|L′1 (a), . . . , tA|L′m (a)) = fA(tA1 (a), . . . , tAm(a)) = tA(a).

3.3 First-order Formulas and Their Characteristic Functions

Let L = (F ,R, σ) be a language. We fix another set of special symbols

Y =
{

= , true , false , ¬ , ∧ , ∨ , → , ↔ , ∃ , ∀
}

, (3.15)

which are spelled out as “equals”, “true”, “false”, “not”, “and”, “or”, “implies”, “implies in both
directions”, “exists”, and “for all”, respectively. We use the alphabet Z̄ = Y ∪ Z from now
on. We again assume that Y ∩ Z = ∅ and that no composite word in Z̄∗ equals any alphabet
character.

The setA ⊆ Z̄∗ of atomic L-formulas is defined as follows:

(i) Equations: If t1, t2 ∈ T , then t1 = t2 ∈ A.

(ii) Predicates: If R(m) ∈ R and t1, . . . , tm ∈ T , then R (t1 , . . . , tm) ∈ A.

Let α ∈ A, let V (α) be the finite set of variables occurring in α, let V (α) ⊆ {x1, . . . , xn}, and
set x = (x1, . . . , xn). Let A be an L-structure. Then the extended atomic formula α(x) specifies
a characteristic function αA : An → {⊤,⊥}, which is defined at a ∈ An as follows:

(i) If ϕ is an equation t1 = t2, then ϕA(a) = ⊤ if and only if tA1 (a) = tA2 (a) using extended
terms t1(x), t2(x).

3 Interpreted First-order Logic · 3.3 First-order Formulas and Their Characteristic . . . 19

(ii) If ϕ is a predicate R(t1, . . . , tm), then ϕA(a) = RA(tA1 (a), . . . , tAm(a)) using extended terms
t1(x), . . . , tm(x).

Note that the equality sign = never appears as a relation symbol in R, while equations are
always available as atomic formulas.

The set FOF ⊆ Z̄∗ of first-order L-formulas, or simply L-formulas for short, is recursively
defined as follows:

(i) Atomic formulas: If ϕ1 ∈ A, then ϕ1 ∈ FOF .

(ii) Truth values: false , true ∈ FOF .

(iii) Negations: If ϕ1 ∈ FOF , then ¬ (ϕ1) ∈ FOF .

(iv) Conjunctions: If ϕ1, . . . , ϕn ∈ FOF , then (ϕ1) ∧ . . . ∧ (ϕn) ∈ FOF .

(v) Disjunctions: If ϕ1, . . . , ϕn ∈ FOF , then (ϕ1) ∨ . . . ∨ (ϕn) ∈ FOF .

(vi) Implications: If ϕ1, ϕ2 ∈ FOF , then (ϕ1) → (ϕ2) ∈ FOF .

(vii) Biconditionals: If ϕ1, ϕ2 ∈ FOF , then (ϕ1) ↔ (ϕ2) ∈ FOF .

(viii) Existentially quantified formulas: If ϕ1 ∈ FOF , x ∈ V , then ∃ x (ϕ1) ∈ FOF .

(ix) Universally quantified formulas: If ϕ1 ∈ FOF , x ∈ V , then ∀ x (ϕ1) ∈ FOF .

The set of literals is defined using only rules (i) and (iii). A positive literal is an atomic
formula and a negative literal is a negated atomic formula. The set of quantifier-free formulas is
recursively defined using only rules (i)–(vii).

The following words occurring in the definition of FOF are called logical operators:

= , true , false , ¬ , ∧ , ∨ , → , ↔ , ∃ x, ∀ x. (3.16)

The logical operators ∃ x and ∀ x are called quantifiers. The quantifier symbols ∃ and ∀
are not logical operators or quantifiers by themselves. For saving parentheses we agree that the
logical infix operators take precedence from strongest to weakest as follows:

= ≻ ∧ ≻ ∨ ≻ → ≻ ↔ . (3.17)

Furthermore, implication is right associative, which means that ϕ1 −→ ϕ2 −→ ϕ3 stands for
ϕ1 −→ (ϕ2 −→ ϕ3). We allow infix notation of common relation symbols R(2) ∈ R as a
shorthand, which then have the same precedence as equality.

An occurrence of a variable x ∈ V in a first-order formula ϕ is defined as an occurrence inside
a term within ϕ, in contrast to an occurrence after a quantifier symbol. An occurrence of xwithin
a subformula ∃x(ψ) or ∀x(ψ) of ϕ is called a bound occurrence of x; all other occurrences of
x in ϕ are called free occurrences . We define Vfree(ϕ) and Vbound(ϕ) as the sets of variables
with free and bound occurrences in ϕ, respectively. The set of all variables occurring in ϕ is
V (ϕ) = Vfree(ϕ) ∪ Vbound(ϕ).

3 Interpreted First-order Logic · 3.3 First-order Formulas and Their Characteristic . . . 20

Example 3.8 (Free and bound occurrences of variables).

1. Let L1 = (0, 1,+,−(1), · , | |(1), f (1); <) and consider the first-order formula

ϕ1 = ∀ε(0 < ε −→ ∃δ(0 < δ ∧ ∀x(|x − x0| < δ −→ |f (x) − f (x0)| < ε))). (3.18)

We have Vfree(ϕ1) = {x0}, Vbound(ϕ1) = {δ, ε, x}, and V (ϕ1) = {δ, ε, x, x0}.

2. Let L2 = (f (1), g(2)) and consider the first-order formula:

ϕ2 = ¬ w = y −→ ∀x∃y∀z(f (x) = g(w, y)). (3.19)

We have Vfree(ϕ2) = {w, y}, Vbound(ϕ2) = {x, y}, and V (ϕ2) = {w, x, y}. Notice that
Vfree(ϕ2) ∩ Vbound(ϕ2) ̸= ∅, since there is both a free and a bound occurrence of y in ϕ2.
Furthermore, the variable z does not occur in ϕ2 at all. ⌟

Let Vfree(ϕ) ⊆ {x1, . . . , xn} and set x = (x1, . . . , xn). Let A be an L-structure. Then the
extended first-order formula ϕ(x) specifies a characteristic function ϕA : An → {⊤,⊥}, which
is recursively defined at a ∈ An as follows:

(i) The case of an atomic formula ϕ has been discussed above.

(ii) TRUEA(a) = ⊤ and FALSEA(a) = ⊥ using extended formulas TRUE(x) and FALSE(x).

(iii) If ϕ = ¬(ϕ1), then ϕA(a) = ⊤ if and only if ϕA
1 (a) = ⊥ using the extended formula ϕ1(x).

(iv) If ϕ = (ϕ1) ∧ · · · ∧ (ϕm), then ϕA(a) = min{ϕA
1 (a), . . . , ϕA

m(a)} using extended formulas
ϕ1(x), . . . , ϕm(x).

(v) If ϕ = (ϕ1) ∨ · · · ∨ (ϕm), then ϕA(a) = max{ϕA
1 (a), . . . , ϕA

m(a)} using extended formulas
ϕ1(x), . . . , ϕm(x).

(vi) If ϕ = (ϕ1) −→ (ϕ2), then ϕA(a) = ⊤ if and only if ϕA
1 (a) ≤ ϕA

2 (a) using extended
formulas ϕ1(x) and ϕ2(x).

(vii) If ϕ = (ϕ1) ←→ (ϕ2), then ϕA(a) = ⊤ if and only if ϕA
1 (a) = ϕA

2 (a) using extended
formulas ϕ1(x) and ϕ2(x).

(viii) If ϕ = ∃x(ϕ1), then ϕA
1 (a) = max{ϕA

1 (a, a) ∈ {⊤,⊥} | a ∈ A } using the extended for-
mula ϕ1(x, x).

(ix) If ϕ = ∀x(ϕ1), then ϕA
1 (a) = min{ϕA

1 (a, a) ∈ {⊤,⊥} | a ∈ A } using the extended for-
mula ϕ1(x, x).

Lemma 3.9 (Formulas under restriction and expansion). Let L′ ⊆ L, let A be an L-structure,
and let ϕ(x1, . . . , xn) be an extended L′-formula. Then ϕA|L′ = ϕA.

Proof. Induction on the length of ϕ. Compare Lemma 3.7.

If Vfree(ϕ) = ∅, then we call ϕ a sentence. Assume that Vfree(ϕ) = {x1, . . . , xn}. The exis-
tential closure ∃ϕ of ϕ is defined as the sentence ∃x1 . . .∃xnϕ. Similarly, the universal closure
∀ϕ of ϕ is defined as ∀x1 . . .∀xnϕ. Existential and universal closure are uniquely determined
up to the order of the quantifiers added, and modifying that order would not change the constant
characteristic functions (∃ϕ)A and (∀ϕ)A.

3 Interpreted First-order Logic · 3.4 Models and Axioms 21

3.4 Models and Axioms

Let A be an L-structure, let ϕ(x) be an extended L-formula with x ∈ Vn, and let a ∈ An. If
ϕA(a) = ⊤, then we write A ⊨ ϕ(a), and we say that ϕ holds in A at a. If A ⊨ ϕ(a) for all
a ∈ An, then we write A ⊨ ϕ, and we say that ϕ holds in A.

The definition of A ⊨ ϕ does not depend on the chosen extension x. Therefore, it can be
generalized to sets Φ of formulas and classes A of L-structures: A ⊨ Φ if A ⊨ ϕ for all ϕ ∈ Φ.
Similarly, A ⊨ ϕ if A ⊨ ϕ for all A ∈ A, and A ⊨ Φ if A ⊨ ϕ for all A ∈ A and all ϕ ∈ Φ.
Finally, we shortly write ⊭ when the corresponding model relation does not hold.

Example 3.10 (Model relations). Consider the language LRings of rings, and consider R =
(R; 0, 1,+,−, ·) and Z = (Z; 0, 1,+,−, ·).

1. Let ϕ1 be the LRings-formula ¬ x = 0 −→ ∃y(x · y = 1). Then R ⊨ ϕ1 but Z ⊭ ϕ1.
Nevertheless, using the extended formula ϕ1(x), we have, e.g., Z ⊨ ϕ1(−1).

2. Let ϕ2 be the the universal closure ∀xϕ1. By definition, we have for every LRings-structure
A that A ⊨ ϕ2 if and only if A ⊨ ϕ1. In particular, R ⊨ ϕ2 and Z ⊭ ϕ2. We have
Vfree(ϕ2) = ∅, and ϕ2(x) is an extended formula. However, Z ⊭ ϕ2(−1).

3. We have R ⊨ ϕ1(
√

2). The corresponding statement with Z in place of R is meaningless
because

√
2 /∈ Z.

4. {R, Z} ⊨ {x + (y + z) = (x + y) + z, x + y = y + x, x + 0 = x, x + −x = 0} ⌟

Let Φ be a set of L-formulas. If there exists an L-structure A such that A ⊨ Φ, then we say
that Φ is satisfiable. If A ⊨ Φ for all L-structures A, then we write ⊨ Φ, and we say that Φ is
valid. The same definitions apply to a single formula ϕ instead of Φ. For a single formula ϕ it
is easy to see that ϕ is valid if and only if ¬ϕ is unsatisfiable, and ϕ is satisfiable if and only if
¬ϕ is not valid.

Example 3.11 (Satisfiability and Validity). Consider ϕ1, ϕ2 as in Example 3.10. Both ϕ1 and
ϕ2 are satisfiable but not valid. The same holds for {ϕ1, ϕ2}. We will discuss a large number of
valid formulas in Section 3.6. ⌟

If A is an L-structure such that A ⊨ Φ, then we say that A is a model of Φ. The class
Mod(Φ) = {A | A ⊨ Φ } is the model class of Φ.

A class A of L-structures is elementary if there exists a set Ξ of L-formulas such that A =
Mod(Ξ). We then call Ξ an axiomatization of A, and we call the elements of Ξ axioms.

Example 3.12 (Axiomatizations of rings and fields). Consider the language LRings and define
the axioms of rings and the axioms of fields:

ΞRings = {x + (y + z) = (x + y) + z, x + y = y + x, x + 0 = x, x + −x = 0,

x · (y · z) = (x · y) · z, x · y = y · x, x · 1 = x,

x · (y + z) = (x · y) + (x · z)},

ΞFields = ΞRings ∪ {¬ 1 = 0, ¬ x = 0 −→ ∃y(x · y = 1)}.

(3.20)

3 Interpreted First-order Logic · 3.5 Substitution 22

These axioms axiomatize the class Rings = Mod(ΞRings) of all rings and the class Fields =
Mod(ΞFields) of all fields as LRings-structures, respectively. ⌟

In the language LRings we can use arbitrary non-zero integers within terms as shorthands for
1 + · · · + 1 and −(1 + · · · + 1). Furthermore, we allow ourselves to use big operators for the
convenient notation of conjunctions and disjunctions. Our formal framework developed so far
allows a concise reformulation of Example 2.7:

Example 3.13 (Systems of bivariate linear equations revisited). Choose the language LRings and
consider the following formulas:

ϕ = a11 ̸= 0 ∧ a21a12 − a11a22 ̸= 0 ∧

∃x1∃x2

m
∧

i=1

ai1x1 + ai2x2 + bi = 0,

ϕ′ = a11 ̸= 0 ∧ a21a12 − a11a22 ̸= 0 ∧
m
∧

i=3

(ai1a11 − a11ai2)(a21b1 − a11b2) = (a21a12 − a11a22)(ai1b1 − a11bi).

(3.21)

Then Fields ⊨ ϕ←→ ϕ′. In particular (R; 0, 1,+,−, ·) ⊨ ϕ←→ ϕ′. ⌟

3.5 Substitution

Fix a language L. A substitution is a map θ : V → T with θ(x) = x for almost all x ∈ V . We
shortly write θ = [t1/x1, . . . , tn/xn] with xi ∈ V pairwise distinct and ti ∈ T , and use postfix
notation. A substitution θ induces a map θ : T → T . We recursively define tθ for t ∈ T :

(i) If t ∈ V \ {x1, . . . , xn}, then tθ = t.

(ii) If t = xi, then tθ = ti.

(iii) If t = f (0) ∈ F , then tθ = t.

(iv) If t = f (u1, . . . , um) with f (m) ∈ F and u1, . . . , um ∈ T , then tθ = f (u1θ, . . . , umθ).

Example 3.14 (Substitution into terms). Consider L = (f (3), g(1)). Then

1. f
(

x, g(y), g(g(z))
)[

f (x, y, z)/x, z/y, x/z
]

= f
(

f (x, y, z), g(z), g(g(x))
)

2. f
(

x, g(y), g(g(z))
)[

f (x, y, z)/x
][

z/y, x/z
]

= f
(

f (x, z, x
)

, g(z), g(g(x))). ⌟

Lemma 3.15 (Semantics of term substitution). Consider an L-structure A and a substitution
θ = [t1/x1, . . . , tn/xn]. Choose y ∈ Vm such that t1(y), . . . , tn(y) are extended L-terms and let
a ∈ Am. Let t be another L-term with V (t) ⊆ {x1, . . . , xn}. Then t(x1, . . . , xn) and tθ(y) are
extended L-terms and tθA(a) = tA

(

tA1 (a), . . . , tAn (a)
)

.

3 Interpreted First-order Logic · 3.5 Substitution 23

Going further, a substitution θ[t1/x1, . . . , tn/xn] induces a map θ : FOF → FOF , where
some care must be taken in order to obtain a result on the semantics similar to Lemma 3.15.
We define Vx(θ) = {x1, . . . , xn}, Vt(θ) = V (t1) ∪ · · · ∪ V (tn), and V (θ) = Vx(θ) ∪ Vt(θ). For
ϕ ∈ FOF we define Vq(ϕ) as the set of variables appearing in quantifiers within ϕ, and we
recursively define ϕθ as follows:

(i) (u1 = u2)θ = (u1θ = u2θ) and R(u1, . . . , um)θ = R(u1θ, . . . , umθ),

(ii) TRUE θ = TRUE and FALSE θ = FALSE,

(iii) (¬ϕ1)θ = ¬(ϕ1θ),

(iv)
(

ϕ1 ∧ · · · ∧ ϕm
)

θ = (ϕ1θ ∧ · · · ∧ ϕmθ),

(v)
(

ϕ1 ∨ · · · ∨ ϕm
)

θ = (ϕ1θ ∨ · · · ∨ ϕmθ),

(vi)
(

ϕ1 −→ ϕ2
)

θ = (ϕ1θ −→ ϕ2θ),

(vii)
(

ϕ1 ←→ ϕ2
)

θ = (ϕ1θ ←→ ϕ2θ).

(viii) Consider (∃xϕ1)θ. Choose x′ ∈ V such that x′ /∈ V (θ) ∪ V (ϕ1) ∪ Vq(ϕ1) and define a
modified substitution θ′ : V → T with θ′(x) = x′ and θ′(v) = θ(v) for v ∈ V \ {x}. Then
(∃xϕ1)θ = ∃x′(ϕ1θ

′).

(ix) (∀xϕ1)θ = ∀x′(ϕ1θ
′) with x′ and θ′ as in (viii).

Due to the non-deterministic choice of x′, the substitution result is not uniquely determined.
However, all possible results have the same semantics. In practice, one avoids the renaming of
bound variables in (viii) and (ix) whenever possible.

Example 3.16 (Substitution into first-order formulas). Consider LRings.

1.
(

x = a ∧ ∃x(ax + b = 0)
)[

b + 1/a
]

=
(

x = b + 1 ∧ ∃x′((b + 1)x′ + b = 0)
)

,

2.
(

x = a ∧ ∃x(ax + b = 0)
)[

b + 1/x
]

=
(

b + 1 = a ∧ ∃x′(ax′ + b = 0)
)

,

3.
(

x = a ∧ ∃x(ax + b = 0)
)[

x + 1/a
]

=
(

x = x + 1 ∧ ∃x′((x + 1)x′ + b = 0)
)

. ⌟

Lemma 3.17 (Semantics of first-order substitution). Consider an L-structure A and a substitu-
tion θ = [t1/x1, . . . , tn/xn]. Choose y ∈ Vm such that t1(y), . . . , tn(y) are extended L-terms and
let a ∈ Am. Let ϕ be an L-formula with Vfree(ϕ) ⊆ {x1, . . . , xn}. Then ϕ(x1, . . . , xn) and ϕθ(y)
are extended L-formulas and A ⊨ ϕθ(a) if and only if A ⊨ ϕ

(

tA1 (a), . . . , tAn (a)
)

.

Corollary 3.18. Consider an L-structure A. Let ϕ1, ϕ2 be L-formulas, and let θ be a substitu-
tion. If A ⊨ ϕ1 ←→ ϕ2 then A ⊨ ϕ1θ ←→ ϕ2θ.

3 Interpreted First-order Logic · 3.6 Entailment and Semantic Equivalence 24

3.6 Entailment and Semantic Equivalence

Let ϕ1, ϕ2 be L-formulas. If A is an L-structure and A ⊨ ϕ1 −→ ϕ2, then we say that ϕ1 entails
ϕ2 in A, and we call ϕ2 a logical consequence of ϕ1 in A. The same definition applies to classes
A of L-structures instead of A. If ϕ1 entails ϕ2 in all L-structures, i.e. ⊨ ϕ1 −→ ϕ2, then we
simply say that ϕ1 entails ϕ2.

If A is an L-structure and A ⊨ ϕ1 ←→ ϕ2, then we say that ϕ1 and ϕ2 are equivalent in A.
The same definition applies to classes A of L-structures instead of A. If ϕ1 and ϕ2 are equivalent
in all L-structures, i.e. ⊨ ϕ1 ←→ ϕ2, then we say that ϕ1 and ϕ2 are semantically equivalent.

Lemma 3.19 (Characterization of semantic equivalence). Consider a language L. Let A be an
L-structure, and let ϕ1, ϕ2 be L-formulas. Then the following are equivalent:

(i) ϕ1 and ϕ2 are equivalent in A, i.e. A ⊨ ϕ1 ←→ ϕ2;

(ii) ϕ1 and ϕ2 entail each other in A, i.e. A ⊨ ϕ1 −→ ϕ2 and A ⊨ ϕ2 −→ ϕ1;

(iii) ϕ1 and ϕ2 have the same semantics in A, i.e. ϕA
1 = ϕA

2 .

In particular, ϕ1 and ϕ2 are semantically equivalent if and only if ϕ1 has the same semantic as
ϕ2 in all L-structures.

Lemma 3.20 (Propositional semantic equivalences). Let L be a language, and let ϕ1, ϕ2, ϕ3 be
L-formulas. Then the following semantic equivalences hold:

involution: ⊨ ¬¬ϕ1 ←→ ϕ1

neutral elements: ⊨ ϕ1 ∧ TRUE ←→ ϕ1
⊨ ϕ1 ∨ FALSE ←→ ϕ1

definiteness: ⊨ ϕ1 ∨ TRUE ←→ TRUE

⊨ ϕ1 ∧ FALSE ←→ FALSE

tertium non datur: ⊨ ϕ1 ∧ ¬ϕ1 ←→ FALSE

⊨ ϕ1 ∨ ¬ϕ1 ←→ TRUE

commutativity: ⊨ ϕ1 ∧ ϕ2 ←→ ϕ2 ∧ ϕ1
⊨ ϕ1 ∨ ϕ2 ←→ ϕ2 ∨ ϕ1

associativity: ⊨ ϕ1 ∧ (ϕ2 ∧ ϕ3) ←→ (ϕ1 ∧ ϕ2) ∧ ϕ3
⊨ ϕ1 ∨ (ϕ2 ∨ ϕ3) ←→ (ϕ1 ∨ ϕ2) ∨ ϕ3

distributivity: ⊨ ϕ1 ∧ (ϕ2 ∨ ϕ3) ←→ (ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ϕ3)
⊨ ϕ1 ∨ (ϕ2 ∧ ϕ3) ←→ (ϕ1 ∨ ϕ2) ∧ (ϕ1 ∨ ϕ3)

idempotence: ⊨ ϕ1 ∧ ϕ1 ←→ ϕ1
⊨ ϕ1 ∨ ϕ1 ←→ ϕ1

absorption: ⊨ ϕ1 ∧ (ϕ2 ∨ ϕ1) ←→ ϕ1
⊨ ϕ1 ∨ (ϕ2 ∧ ϕ1) ←→ ϕ1

3 Interpreted First-order Logic · 3.6 Entailment and Semantic Equivalence 25

de Morgan’s laws: ⊨ ¬(ϕ1 ∧ ϕ2) ←→ ¬ϕ1 ∨ ¬ϕ2
⊨ ¬(ϕ1 ∨ ϕ2) ←→ ¬ϕ1 ∧ ¬ϕ2

contrapositive: ⊨ (ϕ1 −→ ϕ2) ←→ (¬ϕ2 −→ ¬ϕ1)
⊨ (ϕ1 ←→ ϕ2) ←→ (¬ϕ2 ←→ ¬ϕ1)

reduction to ¬, ∨, ∧: ⊨ (ϕ1 ←→ ϕ2) ←→ (ϕ1 −→ ϕ2) ∧ (ϕ2 −→ ϕ1)
⊨ (ϕ1 −→ ϕ2) ←→ (¬ϕ1 ∨ ϕ2)

Lemma 3.21 (Semantic equivalences with quantifiers). Let L be a language, and let ϕ1, ϕ2 be
L-formulas. Then the following semantic equivalences hold:

trivial elimination: ⊨ ∃x(ϕ1) ←→ ϕ1 if x /∈ Vfree(ϕ1)
⊨ ∀x(ϕ1) ←→ ϕ1 if x /∈ Vfree(ϕ1)

commutation of quantifiers: ⊨ ∃x∃y(ϕ) ←→ ∃y∃x(ϕ)
⊨ ∀x∀y(ϕ) ←→ ∀y∀x(ϕ)

negation of quantifiers: ⊨ ¬∃x(ϕ1) ←→ ∀x(¬ϕ1)
⊨ ¬∀x(ϕ1) ←→ ∃x(¬ϕ1)

compatibility with ∨, ∧: ⊨ ∃x(ϕ1 ∨ ϕ2) ←→ ∃x(ϕ1) ∨ ∃x(ϕ2)
⊨ ∀x(ϕ1 ∧ ϕ2) ←→ ∀x(ϕ1) ∧ ∀x(ϕ2)

miniscoping: ⊨ ∃x(ϕ1 ∧ ϕ2) ←→ ∃x(ϕ1) ∧ ϕ2 if x /∈ Vfree(ϕ2)
⊨ ∀x(ϕ1 ∨ ϕ2) ←→ ∀x(ϕ1) ∨ ϕ2 if x /∈ Vfree(ϕ2)

renaming: ⊨ ∃x(ϕ1) ←→ ∃y(ϕ1[y/x]) if y /∈ Vfree(ϕ1)
⊨ ∀x(ϕ1) ←→ ∀y(ϕ1[y/x]) if y /∈ Vfree(ϕ1)

It is noteworthy that quantifiers do not commute in general. Furthermore, disjunctions are
compatible with existential quantifiers and conjunctions are compatible with universal quanti-
fiers but not vice versa.

Lemma 3.22 (Entailments with quantifiers). Let L be a language, and let ϕ1, ϕ2 be L-formulas.
Then the following entailments hold:

commutation of ∃x and ∀y: ⊨ ∃x∀y(ϕ1) −→ ∀y∃x(ϕ1)

compatibility with ∨, ∧: ⊨ ∃x(ϕ1 ∧ ϕ2) −→ ∃x(ϕ1) ∧ ∃x(ϕ2)
⊨ ∀x(ϕ1) ∨ ∀x(ϕ2) −→ ∀x(ϕ1 ∨ ϕ2)

The converse entailments in Lemma 3.22 do not hold:

Example 3.23 (Some counterexamples). Consider the (0(0))-structure R = (R; 0):

1. R ⊭ ∀y∃x(x = y) −→ ∃x∀y(x = y)

2. R ⊭ ∃x(x = 0) ∧ ∃x(¬ x = 0) −→ ∃x(x = 0 ∧ ¬ x = 0)

3. R ⊭ ∀x(x = 0 ∨ ¬ x = 0) −→ ∀x(x = 0) ∨ ∀x(¬ x = 0) ⌟

3 Interpreted First-order Logic · 3.7 Normal Forms 26

3.7 Normal Forms

Consider a class A of L-structures and a set Γ of L-formulas. A system of normal forms for Γ
in A is a subset Γ′ ⊆ Γ such that for all ϕ ∈ Γ there is some ϕ′ ∈ Γ′ with A ⊨ ϕ←→ ϕ′. Normal
forms are not necessarily uniquely determined.

We use Q, Q1, Q2, . . . and S, S1, S2, . . . to denote quantifier symbols ∃ and ∀. We define
∃ = ∀ and ∀ = ∃. We call Q the dual quantifier symbol of Q. A first-order formula ϕ is in
prenex normal form (PNF) if it is of the form Q1x1 . . . Qnxn(ψ) with ψ quantifier-free.

Theorem 3.24 (Prenex normal form). There is an algorithm computing for each first-order
formula a semantically equivalent formula in PNF.

Proof. Let ϕ be a formula. If ϕ is quantifier-free, then ϕ is in PNF. Assume now that there is at
least one quantifier in ϕ. Reduce ϕ to ¬, ∨, ∧, and distinguish three cases:

(a) ϕ = Qxϕ1: Recursively compute a PNF ϕ′1 of ϕ1. Then ϕ is semantically equivalent to
Qxϕ′1, which is in PNF.

(b) ϕ = ¬ϕ1: Recursively compute a PNFQ1x1 . . . Qnxnψ ofϕ1. Thenϕ is semantically equiv-
alent to ¬Q1x1 . . . Qnxnψ . This is, in turn, semantically equivalent to Q1x1 . . . Qnxn¬ψ ,
which is in PNF.

(c) ϕ = ϕ1 ⊔ ϕ2 with ⊔ ∈ {∧,∨}: Recursively compute a PNF Q1x1 . . . Qnxn(ψ1) of ϕ1 and
a PNF S1y1 . . . Smym(ψ2) of ϕ2. Then ϕ is semantically equivalent to Q1x1 . . . Qnxn(ψ1) ⊔
S1y1 . . . Smym(ψ2). This is, in turn semantically equivalent to

Q1x
′
1 . . . Qnx

′
n(ψ1) ⊔ S1y

′
1 . . . Smy

′
m(ψ2) (3.22)

with x′i /∈ V (ψ2), and y′j /∈ V (ψ1), and {x′1, . . . , x
′
n} ∩ {y

′
1, . . . , y

′
m} = ∅. On these grounds,

(3.22) is semantically equivalent to Q1x
′
1 . . . Qnx

′
nS1y

′
1 . . . Smy

′
m(ψ1 ⊔ ψ2), which is in

PNF.

The recursion terminates because the word length of the input formula strictly decreases with
each recursion level.

After conversion to prenex normal form Q1x1 . . . Qnxn(ψ), the quantifiers Qixi are nicely
separated from the quantifier-free formula ψ . We now concentrate on normal forms for such
quantifier-free formulas. A quantifier-free formula is in negation normal form (NNF) if it is built
from TRUE, FALSE, and literals using only ∨ and ∧.

Theorem 3.25 (Negation normal form). There is an algorithm computing for each quantifier-
free formula a semantically equivalent formula in NNF.

Proof. Let ψ be a quantifier-free formula. Reduce ϕ to ¬, ∨, ∧. Iteratively apply de Morgan’s
laws to move all ¬ inside the scopes of ∨ and ∧. Use involution to reduce sequences of ¬ to at
most one ¬.

3 Interpreted First-order Logic · 3.7 Normal Forms 27

A disjunctive normal form (DNF) is a disjunction of conjunctions of FALSE, TRUE, and lit-
erals. Similarly, a conjunctive normal form (CNF) is a conjunction of disjunctions of TRUE,
FALSE, and literals.

Theorem 3.26 (Disjunctive and conjunctive normal form).

(i) There is an algorithm computing for each quantifier-free formula a semantically equivalent
formula in DNF.

(ii) There is an algorithm computing for each quantifier-free formula a semantically equivalent
formula in CNF.

Proof. Compute an NNF according to Theorem 3.25, and then apply the laws of distributivity
according to Lemma 3.20.

Our normal forms for quantifier-free formulas discussed so far all involve reduction to ¬, ∨,
∧. A quantifier-free formula is positive if it is even reduced to ∨, ∧.

Lemma 3.27. Let A be a class of L-structures. Assume that for every literal λ one can compute
an equivalent positive formula in A. Then there is an algorithm computing for every quantifier-
free formula an equivalent positive formula in A.

Proof. Compute an NNF according to Theorem 3.25 and equivalently replace all negative liter-
als with their positive equivalents.

Accordingly, we have positive normal form and, more importantly positive negation normal
form, positive conjunctive normal form, and positive disjunctive normal form.

Example 3.28. Consider the relational language LLosets = (<) of linear ordered sets. The
axioms of linear ordered sets are given by

ΞLosets = {¬ x < x, x < y ∨ x = y ∨ y < x, x < y ∧ y < z −→ x < z}, (3.23)

which yields the class Losets = Mod(ΞLosets) of linear ordered sets. All literals in LLosets are of
one of the forms t1 = t2 or t1 < t2 with terms t1, t2. We have

Losets ⊨ ¬ t1 = t2 ←→ t1 < t2 ∨ t2 < t1, Losets ⊨ ¬ t1 < t2 ←→ t2 < t1 ∨ t2 = t1. (3.24)

By Lemma 3.27, every quantifier-free formula has a positive normal form in Losets. The same
holds for all subclasses of Losets. ⌟

4 Quantifier Elimination, Completeness,
and Decidability

4.1 Quantifier Elimination

Let L be a language, let A be a class of L-structures, and let Γ a set of first-order L-formulas. We
say that A admits quantifier elimination (QE) for Γ if for all ϕ ∈ Γ there exists a quantifier-free
L-formula ϕ′ such that A ⊨ ϕ ←→ ϕ′. We say that A admits effective quantifier elimination if
there is an algorithm computing ϕ′ from ϕ. Such an algorithm is called a quantifier elimination
procedure. If Γ is not mentioned explicitly, then Γ is the set of all first-order L-formulas. If
A = {A} contains only a single L-structure, we allow ourselves to refer to A instead of A and
say that A admits QE for Γ, etc.

Lemma 4.1. Assume that A admits QE for Γ, and let A′ ⊆ A. Then also A′ admits QE for Γ,
and every QE procedure for A and Γ is also a QE procedure for A′ and Γ. This holds in particular
for A′ = {A} with A ∈ A.

Let ψ be a quantifier-free formula. An existential formula is of the form ∃x1 . . .∃xk(ψ)
and a 1-existential formula is of the form ∃x(ψ). Existential and 1-existential formulas are
called positive if ψ is positive. Let λ1, . . . , λm be literals. A primitive formula is of the form
∃x1 . . .∃xn(λ1 ∧ · · · ∧ λm), and a 1-primitive formula is of the form ∃x(λ1 ∧ · · · ∧ λm).
Primitive and 1-primitive formulas are called positive if λ1, . . . , λm are positive literals.

Theorem 4.2 (Reduction to 1-primitive Formulas). Let L be a language, and let A be a class of
L-structures that admits QE for 1-primitive formulas. Then A admits QE. Every QE procedure
for A and 1-primitive formulas induces a QE procedure for A.

Proof. Let ϕ be a formula. We apply Theorem 3.24 to equivalently transform ϕ into a PNF
Q1x1 . . . Qnxnψ . We proceed by induction on the number n of quantifiers. If n = 0, then
there is nothing to do. Let n > 0. We are going to eliminate Qnxn from Qnxnψ . Since ∀xnψ
is semantically equivalent to ¬∃xn¬ψ , we may assume that Qn = ∃, possibly preceded by a
negation symbol, which we write here as [¬]∃. Apply Theorem 3.26 to transform ψ or ¬ψ ,
respectively, into DNF, yielding

[¬]∃xn
∨

i

∧

j

λij, (4.1)

which is semantically equivalent to

[¬]
∨

i

∃xn
∧

j

λij. (4.2)

28

4 Quantifier Elimination, Completeness, and Decidability · 4.1 Quantifier Elimination 29

By the hypothesis of the theorem we can eliminate the existential quantifiers from the 1-primitive
formulas ∃xn

∧

j λij in (4.2), yielding quantifier-free formulas ψ ′i . Together we obtain

A ⊨ Q1x1 . . . Qnxnψ ←→ Q1x1 . . . Qn−1xn−1 [¬]
∨

i

ψ ′i , (4.3)

and the remaining quantifiers can be eliminated by the induction hypothesis.

Corollary 4.3 (Reduction to normal forms of 1-primitive formulas).

(i) It is sufficient in Theorem 4.2 to consider only 1-primitive formulas where the quantified
variable occurs in all literals.

(ii) If A has positive normal forms, then it is sufficient in Theorem 4.2 to consider only positive
1-primitive formulas.

Proof. In part (i), all other literals can be semantically equivalently removed from the scope of
the existential quantifier before applying the proof of Theorem 4.2. Part (ii) is obvious.

Obviously, Theorem 4.2 holds also on the stronger assumption that QE is available for 1-
existential formulas instead of 1-primitive formulas. It is easy to see that the DNF computation
in the proof can then be avoided, which is interesting from a complexity point of view. The proof
of the following lemma is an example for such a reduction.

Lemma 4.4 (Effective QE via substitution in a finite setting). Let L be a language, and let A
be a finite L-structure. Assume that all elements of the finite universe A can be represented as
variable-free terms. Then A admits effective QE.

Proof. Let A = { tA ∈ A | t ∈ T } for a finite set T of variable-free terms. Consider a 1-
existential formula ϕ = ∃x(ψ). Then A ⊨ ϕ←→

∨

t∈T ψ[t/x].

Example 4.5. Let 1 < m ∈ N. Consider the LRings-structure Zm = (Z/m; 0, 1,+,−, ·). Let
Tm = {0, 1, 1 + 1, . . . , (m − 1) ⊙ 1}, where (m − 1) ⊙ 1 denotes the (m − 1)-fold addition
1+ · · ·+ 1. Then Z/m = { tZm ∈ Z/m | t ∈ Tm }. According to Lemma 4.4, Zm admits effective
QE.

As an example consider the formula ϕ = ∃x(a·x = 1), which states that a has a multiplicative
inverse in Z/m. The QE procedure suggested in the proof of Lemma 4.4 yields a necessary and
sufficient condition on a as a quantifier-free formula:

Zm ⊨ ϕ←→
∨

t∈Tm

a · t = 1. (4.4)

⌟

It is noteworthy that one can, more generally, reduce to existential, in contrast to 1-existential,
formulas. In some domains, including the real numbers, there are asymptotically fast methods
available that eliminate entire existential quantifier blocks at once. However, for our purposes
here, we will mostly use reduction to 1-primitive formulas. The proof of the following lemma
gives a first impression.

4 Quantifier Elimination, Completeness, and Decidability · 4.1 Quantifier Elimination 30

Lemma 4.6 (Effective QE for some classes of sets). Let L = (). That is, all terms are variables
and all atoms are equations between those variables. Then the following hold:

(i) A = {A | A is infinite } admits effective QE.

(ii) B1 = ({1}) admits effective QE.

(iii) B2 = ({1, 2}) admits effective QE.

Proof. Consider a 1-primitive formula

∃x

[

n
∧

i=1

x = yi ∧
m
∧

j=1

¬ x = zj

]

, (4.5)

where yi, zi ∈ V . Equations x = x can be deleted from the conjunctions in (4.5) via semantic
equivalence to TRUE. Similarly, if there is a literal ¬ x = x, then that literal and thus the
entire 1-primitive formula (4.5) is semantically equivalent to FALSE. We may now assume that
x /∈ {y1, . . . , yn, z1, . . . , zm}. If n > 0, then (4.5) is semantically equivalent to

∃x(x = y1) ∧
n
∧

i=2

y1 = yi ∧
m
∧

j=1

¬ y1 = zj, (4.6)

which is in turn semantically equivalent to the quantifier-free formula

n
∧

i=2

y1 = yi ∧
m
∧

j=1

¬ y1 = zj. (4.7)

Assume now that n = 0. If also m = 0, then (4.5) is semantically equivalent to TRUE. Otherwise
we obtain

∃x

[

m
∧

j=1

¬ x = zj

]

with m > 0. (4.8)

We have reduced our QE problem from an arbitrary 1-primitive formula in (4.5) to a formula of
the form (4.8).

(i) In A, (4.8) is equivalent to TRUE.

(ii) In B1, (4.8) is equivalent to FALSE.

(iii) In B2, (4.8) is equivalent to
∧m
j=2 z1 = zj.

Quantifier elimination is quite sensitive to the underlying language L. In general, adding or
removing function or relation symbols can both enable and prevent quantifier eliminability. The
next lemma shows that quantifier eliminability is preserved when adding only constant symbols
to the language. The idea is based on abstraction: In the input replace all new constants with
fresh free variables, perform QE, and in the result substitute the constants back into variables
introduced before.

4 Quantifier Elimination, Completeness, and Decidability · 4.1 Quantifier Elimination 31

Lemma 4.7 (QE and language extension by constants). Let A be a class of L-structures that
admits QE. Let L′ be an extension language obtained from L by adding constant symbols. Let
A′ be a class of L′-structures such that A′|L ∈ A for all A′ ∈ A′. Then also A′ admits QE, and
every QE procedure for A induces a QE procedure for A′.

Proof. Let ϕ be an L′-formula. Then there exist constant symbols c1, . . . , cn in L′, variables y1,
. . . , yn ∈ V \ V (ϕ), and an L-formula ψ such that ϕ = ψ[c1/y1, . . . , cn/yn]. Let ψ ′ ∈ A such
that A ⊨ ψ ←→ ψ ′. It follows that A′ ⊨ ψ ←→ ψ ′ and thus A′ ⊨ ψ[c1/y1, . . . , cn/yn] ←→
ψ ′[c1/y1, . . . , cn/yn], i.e., A′ ⊨ ϕ←→ ϕ′.

Consider the elimination of a quantifier ∃x from a 1-existential formula ϕ = ∃x(ψ), yield-
ing an equivalent quantifier-free equivalent ϕ′. It might seem quite natural that the variable x
vanishes along with the quantifier in the course of the elimination and that finally the variables
occurring in ϕ′ would be a subset of the variables occurring free in ϕ. However, this is not
always the case! The following example illustrates a situation where the introduction of a new
variable in the course of the elimination of a quantifier is inevitable.

Example 4.8 (QE-introduced variables). Consider the relational language L = (P (1)) and the
L-structures A1 = ({1}; P1) with P1(1) = ⊤ and A2 = ({2}; P2) with P2(2) = ⊥. Consider the
sentence ϕ = ∃x(P (x)), and note that A1 ⊨ ϕ and A2 ⊭ ϕ.

Let ϕ′ = P (y) with y ∈ V , and consider the extended formula (ϕ ←→ ϕ′)(y). Then A1 ⊨
(ϕ←→ ϕ′)(1) and A2 ⊨ (ϕ←→ ϕ′)(2), and therefore {A1,A2} ⊨ ϕ←→ ϕ′.

Assume for a contradiction that there exists a quantifier-free formula ϕ′′ such that {A1,A2} ⊨
ϕ←→ ϕ′′ and V (ϕ′′) ⊆ Vfree(ϕ) = ∅. Since there are no constant symbols in L and no variables
in ϕ′′, there are no terms in ϕ′′. As a consequence, there are no equations and no predicates in
ϕ′′. Instead, ϕ′′ is a Boolean combination of TRUE and FALSE. It follows that ϕ′′ is semantically
equivalent to either TRUE or FALSE. Since ϕ′′ is equivalent to ϕ in {A1,A2}, it follows further
that also ϕ is equivalent to either TRUE or FALSE in {A1,A2}. This contradicts our observation
that A1 ⊨ ϕ and A2 ⊭ ϕ above. ⌟

We are now going to show that, even with the elimination of several quantifiers, generally at
most one new variable need be introduced. We will furthermore give sufficient conditions that
allow to avoid the introduction of new variables altogether in most practical situations. We start
with a technical lemma and subsequently state our result as a theorem.

Lemma 4.9. Let L be a language, let A be a class of L-structures, let ϕ be a formula, and let ϕ′

be a quantifier-free formula such that A ⊨ ϕ ←→ ϕ′. Let {z1, . . . , zn} = V (ϕ′) \ Vfree(ϕ), and
let t1, . . . , tn be terms. Then A ⊨ ϕ←→ ϕ′[t1/z1, . . . , tn/zn].

Proof. Define pairwise disjoint tuples of variables z = (z1, . . . , zn) with {z1, . . . , zn} as above,
y = (y1, . . . , ym) with {y1, . . . , ym} = Vfree(ϕ), and w = (w1, . . . , wk) with {w1, . . . , wk} =
⋃

i V (ti) \ {y1, . . . , ym, z1, . . . , zn}. Consider extended formulas ϕ(y, z,w) and ϕ′(y, z,w). Let
A ∈ A. Then we have A ⊨ ϕ←→ ϕ′, which is defined as

ϕA(a,b, c) = ϕ′A(a,b, c) (4.9)

4 Quantifier Elimination, Completeness, and Decidability · 4.1 Quantifier Elimination 32

for all a ∈ Am, b ∈ An, c ∈ Ak. Since the variables z and w do not occur free in ϕ, we can
switch to the extended formula ϕ(y) and obtain

ϕ′A(a,b, c) = ϕA(a) (4.10)

for all a ∈ Am, b ∈ An, c ∈ Ak. For t = (t1, . . . , tn) we consider the extended formula
ϕ′[t/z](y, z,w) and obtain

ϕ′[t/z]A(a,b, c) = ϕ′A(a, tA1 (a,b, c), . . . , tAm(a,b, c), c) = ϕA(a) (4.11)

for all a ∈ Am, b ∈ An, c ∈ Ak. We finally switch back to the extended formula ϕ(y, z,w) and
obtain

ϕA(a,b, c) = ϕ′[t/z]A(a,b, c) (4.12)

for all a ∈ Am, b ∈ An, c ∈ Ak, which is by definition equivalent to A ⊨ ϕ←→ ϕ′[t/z].

Theorem 4.10 (Conservative QE). Let L be a language, let A be a class of L-structures that
admits QE for a set Γ of formulas, and let ϕ ∈ Γ. Then the following hold:

(i) There exists a quantifier-free formula ϕ′ such that A ⊨ ϕ←→ ϕ′ and |V (ϕ′)\Vfree(ϕ)| ≤ 1.
Furthermore, if ϕ(y1, . . . , yn) is an extended formula with n ≥ 1, then ϕ′(y1, . . . , yn) is an
extended quantifier-free formula.

(ii) If L contains at least one constant symbol, then there exists a quantifier-free formula ϕ′

such that A ⊨ ϕ←→ ϕ′ and V (ϕ′) ⊆ Vfree(ϕ).

(iii) If Vfree(ϕ) ̸= ∅, then there exists a quantifier-free formula ϕ′ such that A ⊨ ϕ ←→ ϕ′ and
V (ϕ′) ⊆ Vfree(ϕ).

If A admits effective QE for Γ, then ϕ′ in (i)–(iii) can be effectively computed.

Proof. Since A admits QE, there is a quantifier-free formula ϕ̄ such that A ⊨ ϕ ←→ ϕ̄. Let
{z1, . . . , zn} = V (ϕ̄) \ Vfree(ϕ). It follows that V (ϕ̄) ⊆ Vfree(ϕ) ∪ {z1, . . . , zn}.

(i) Let ϕ(y1, . . . , yn) be an extended formula with n ≥ 1. Such an extended formula always
exists. Set ϕ′ = ϕ̄[y1/z1, . . . , y1/zn]. Then A ⊨ ϕ ←→ ϕ′ by Lemma 4.9. Furthermore,
V (ϕ′) ⊆ Vfree(ϕ) ∪ {y1}. It follows that |V (ϕ′) \ Vfree(ϕ)| ≤ 1 and that ϕ′(y1, . . . , yn) is an
extended quantifier-free formula.

(ii) Let c be a constant symbol in L and set ϕ′ = ϕ̄[c/z1, . . . , c/zn]. Then A ⊨ ϕ ←→ ϕ′ by
Lemma 4.9. Furthermore, Vfree(ϕ′) ⊆ Vfree(ϕ).

(iii) Let y ∈ Vfree(ϕ) and set ϕ′ = ϕ̄[y/z1, . . . , y/zn]. Then A ⊨ ϕ ←→ ϕ′ by Lemma 4.9.
Furthermore, Vfree(ϕ′) ⊆ Vfree(ϕ) ∪ {y} = Vfree(ϕ).

Wrapping up, Theorem 4.10 states that in the course of quantifier elimination with input ϕ
and quantifier-free output ϕ′ it is never necessary to introduce more than one new variable.
Furthermore, the introduction of a new variable can become necessary only when there is no
constant in the language and the input ϕ is a sentence. Even in this critical case it is well
possible that there exist QE without introduction of a new variable, e.g., our QE procedures for
sets over L = () in Lemma 4.6.

4 Quantifier Elimination, Completeness, and Decidability · 4.2 Definable Sets and . . . 33

If a new variable is introduced for an input sentence ϕ, then ϕ() is an extended formula
but ϕ′() is not. Otherwise we may generally assume that admissible extensions (y1, . . . , yn) of
ϕ are also admissible extensions of ϕ′. Notice that in (ii) and (iii) of the theorem it follows
from V (ϕ′) ⊆ Vfree(ϕ) that ϕ′(y1, . . . , yn) is an extended quantifier-free formula for all extended
formulas ϕ(y1, . . . , yn). This includes ϕ(), where n = 0.

Lemma 4.11 (A negative result on QE for another class of sets). Let L = (), let B1 = ({1}),
and let B2 = ({1, 2}). Recall from Lemma 4.6 that both B1 and B2 admit effective QE. However,
B = {B1,B2} does not admit QE.

Proof. Consider ϕ = ∃x(¬ x = z1). Then ¬ϕ is semantically equivalent to ∀x(x = z1). Since
B1 ⊨ ¬ϕ and B2 ⊨ ϕ, it follows that ϕ is not equivalent to one of TRUE, FALSE in B. Assume
for a contradiction that ϕ has a quantifier-free equivalent ϕ′ in B. According to Theorem 4.10
we may assume without loss of generality that V (ϕ′) ⊆ Vfree(ϕ) = {z1}. Then the only possible
atom occurring in ϕ′ is z1 = z1, which is semantically equivalent to TRUE. It follows that ϕ′ is
semantically equivalent to either TRUE or FALSE, a contradiction.

4.2 Definable Sets and Projection

Let A be an L-structure, and let ϕ(x) be an extended formula with x ∈ Vn, n ≥ 1. Then the set

[ϕ]A = { a ∈ An | A ⊨ ϕ(a) } (4.13)

is defined by ϕ(x) in A. We say that a set B ⊆ An is definable in A if there exists an extended
formula ϕ(x) such that B = [ϕ]A. We call B quantifier-free definable if ϕ(x) can be chosen
quantifier-free.

Theorem 4.12 (Characterization of QE). Let A be an L-structure. Then A admits QE if and
only if every definable set is quantifier-free definable.

Proof. Assume that A admits QE, and let B ⊆ An be a definable set, i.e., B = [ϕ]A for an
extended formula ϕ(x) with x ∈ Vn. Let ϕ′ be a quantifier-free formula such that A ⊨ ϕ←→ ϕ′.
Then ϕ′(x) is an extended formula as well, and [ϕ′]A = [ϕ]A = B. Assume vice versa that
every definable set is quantifier-free definable. Consider a formula ϕ. There is a quantifier-free
formula ϕ′ such that [ϕ′]A = [ϕ]A for extended formulas ϕ(x) and ϕ′(x) with x ∈ Vn. It follows
that A ⊨ ϕ←→ ϕ′.

A typical application of Theorem 4.12 is in proving negative results about QE. One finds
formulas whose definable sets cannot be represented by quantifier-free formulas. The proof of
the following theorem is an example. The language of rings is used also for fields, because the
multiplicative inverse in fields is a partial function, defined only for non-zero elements.

Theorem 4.13. Consider LRings. The field R = (R; 0, 1,+,−, ·) does not admit QE.

Proof. The extended formula ϕ = ∃x(x2 = y)(y) defines the set [ϕ]R = [0,∞). Assume for a
contradiction that R admits QE. Let ϕ′(y) be an extended quantifier-free formula, without loss of

4 Quantifier Elimination, Completeness, and Decidability · 4.2 Definable Sets and . . . 34

generality in NNF, such that R ⊨ ϕ←→ ϕ′. Each atom α in ϕ′ describes a univariate polynomial
equation in y, which has at most finitely many solutions. Thus [α]R is finite. Accordingly, every
negative literal λ defines a cofinite set [λ]R. It is easy to see that [ϕ1 ∨ ϕ2]R = [ϕ1]R ∪ [ϕ2]R

and [ϕ1 ∧ ϕ2]R = [ϕ1]R ∩ [ϕ2]R, and it is not hard to see that unions and intersections among
finite and cofinite sets yield again finite or cofinite sets. Hence [ϕ′]R is either finite or cofinite.
However, [ϕ]R = [0,∞) is neither, a contradiction.

Conversely, if an L-structure A admits QE, then all definable sets can be described with
quantifier-free formulas. This aids in understanding structural properties of definable sets in the
given structure A.

Let A be anL-structure, and letm, n ∈ N withm, n ≥ 1. The graph of a function f : An → Am

is defined as
graph(f) = { (a,b) ∈ An+m | f (a) = b }. (4.14)

We call f a (quantifier-free) definable function in A if graph(f) is a (quantifier-free) definable
set. For D ⊆ An, the image of D under f is defined as

f (D) = {b ∈ Am | exists a ∈ D such that f (a) = b }. (4.15)

Lemma 4.14. Consider f : An → Am and D ⊆ An.

(i) If both f and D are definable, then f (D) is definable.

(ii) If f (a) =
(

tA1 (a), . . . , tAm(a)
)

for a ∈ An and using extended terms ti(x) with x ∈ Vn, then
f is quantifier-free definable.

Proof. (i) Let graph(f) = [γ]A using the extended formula γ(x, y) with x ∈ Vn, y ∈ Vm, and
let D = [δ]A using the extended formula δ(x). Define ι = ∃x(δ ∧ γ). Then ι(y) is an extended
formula and f (D) = [ι]A.

(ii) Consider γ = y1 = t1 ∧ . . . ∧ ym = tm and the extended quantifier-free formula γ(x, y)
with y = (y1, . . . , ym). Then graph(f) = [γ]A.

The projection function along the (n + 1)-st coordinate is quantifier-free definable:

πn+1 : An+1 → An, πn+1(a1, . . . , an+1) = (a1, . . . , an). (4.16)

Let x = (x1, . . . , xn+1), y = (y1, . . . , yn), and γ = (y1 = x1 ∧ · · · ∧ yn = xn). Then
graph(πn+1) = [γ]A using the extended quantifier-free formula γ(x, y). For D ⊆ An+1 the
projection of D along the (n + 1)-st coordinate is defined as the image

πn+1(D) = {b ∈ An | exists a ∈ D such that πn+1(a) = b }. (4.17)

Assume that D is definable, say, D = [δ]A using an extended formula δ(x). Then the projection
of D is definable by Lemma 4.14 as follows. Let ι = ∃x(δ ∧ γ). Then πn+1(D) = [ι]A using the
extended formula ι(y). More explicitly, we have

ι = ∃x1 . . .∃xn+1(δ ∧ x1 = y1 ∧ · · · ∧ xn = yn), (4.18)

4 Quantifier Elimination, Completeness, and Decidability · 4.2 Definable Sets and . . . 35

and we can eliminate the quantifiers ∃x1 . . .∃xn, because ι is semantically equivalent to

ι′ = ∃xn+1(δ[y1/x1, . . . , yn/xn]). (4.19)

Any defined set [ϕ]A using an extended formula ϕ(y) is invariant under renaming of variables
of ϕ in the following sense. Recall that y = (y1, . . . , yn), let x̄ = (x1, . . . , xn), and let ϕ̄ =
ϕ[x̄/y], then [ϕ]A = [ϕ̄]A using extended formulas ϕ(y) and ϕ̄(x̄), respectively. In particular,

πn+1(D) = [ι]A = [ι′]A = [∃xn+1(δ)]A, (4.20)

using extended formulas ι(y), ι′(y), and ∃xn+1(δ)(x̄), respectively.

Theorem 4.15 (Characterization of QE). Let A be anL-structure. The following are equivalent:

(i) A admits QE.

(ii) For every quantifier-free definable set D ⊆ An and every definable function f : An → Am,
the image f (D) ⊆ Am is quantifier-free definable.

(iii) For every quantifier-free definable setD ⊆ An+1, the projection πn+1(D) ⊆ An is quantifier-
free definable.

Proof. Assume (i). Let δ(x) be a quantifier-free extended formula such that [δ]A = D ⊆ An,
and let γ(x, y) be an extended formula such that [γ]A = graph(f). Define ι = ∃x(δ ∧ γ) and
consider the extended formula ι(y). Then [ι]A = f (D). Since A admits QE, there is a quantifier-
free extended formula ι′(y) with A ⊨ ι←→ ι′, and it follows that [ι′]A = [ι]A = f (D).

Assume (ii). Let D be a quantifier-free definable set. Recall that πn+1 : An+1 → An is a
definable function. Now (ii) states that πn+1(D) is quantifier-free definable.

Assume (iii). Consider a 1-existential formula ϕ = ∃x(ψ). Let ϕ(x̄) and ψ (x̄, x) be extended
formulas, where x̄ = (x1, . . . , xn). Set D = [ψ]A ⊆ An+1. Recall from (4.20) that πn+1(D) =
[ϕ]A ⊆ An. By (iii) there exists an extended quantifier-free formula ϕ′(x̄) with πn+1(D) = [ϕ′]A.
It follows that [ϕ]A = [ϕ′]A and hence A ⊨ ϕ←→ ϕ′.

Example 4.16 (Real Algebraic Geometry). An algebraic set in Rn is a set { a ∈ Rn | f1(a) =
· · · = fm(a) = 0 } of all real solutions of a finite system of multivariate polynomial equations
with fi ∈ Z[x]. Figure 4.1 shows an algebraic set in R3, which is called the Whitney Umbrella.
It is defined by one single equation x2 − y2z = 0. By Theorem 4.13, the LRings-structure
(R; 0, 1,+,−, ·) does not admit QE. By Theorem 4.15, it follows that projections of algebraic
sets are not algebraic sets in general. In fact, our proof of Theorem 4.13 introduced an algebraic
set defined by x2 = y, which is a parabola, and then argued that its projection [0,∞) along the
x-axis is not an algebraic set. It is noteworthy that the projection of the parabola along the y-axis
yields R, which is an algebraic set, defined by 0 = 0. Another popular example is the hyperbola
xy = 1, whose projection along either axis is R \ {0}, which is not algebraic. The parabola and
the hyperbola are plotted in Figure 4.2.

A basic semialgebraic set in Rn is a set of all real solutions of a finite system of multivariate
polynomial equations and inequalities. A semialgebraic set in Rn is a finite union of basic

4 Quantifier Elimination, Completeness, and Decidability · 4.2 Definable Sets and . . . 36

x
y

z

Figure 4.1: The Whitney Umbrella defined by x2 − y2z = 0 in R3

x

y

x2 = y

x

y

xy = 1

Figure 4.2: Two algebraic sets, a parabola and a hyperbola, in R2

Figure 4.3: A semialgebraic set in R2 defined by the formula in (4.21)

4 Quantifier Elimination, Completeness, and Decidability · 4.3 Completeness and . . . 37

semialgebraic sets. Figure 4.3 pictures a semialgebraic set defined by

(7
4 + x

)2
+
(

−9
4 + y

)2
< 1

9 ∨
(

−9
4 + x

)2
+
(

−9
4 + y

)2
< 1

9 ∨
(

x2 + y2 < 25 ∧ (−2 + x)2 + (−2 + y)2 ≥ 1 ∧ (2 + x)2 + (−2 + y)2 ≥ 1 ∧
(x2 + (1 + y)2 ≥ 5 ∨ x2 + (−1 + y)2 < 9)

)

,

(4.21)

which is essentially an LRings<-formula.1 The Tarski–Seidenberg Theorem states that projections
of semialgebraic sets are again semialgebraic sets. By Theorem 4.15, it follows that the LRings<-
structure R = (R; 0, 1,+,−, · ; <) admits QE. Historically, both Tarski in 1948 and Seidenberg
in 1954 proposed QE procedures for R and, conversely, concluded the Tarski–Seidenberg The-
orem from quantifier eliminability. ⌟

4.3 Completeness and Decidability

Let L be a language, A a class of L-structures, and Θ a set of L-sentences. We say that A is
complete for Θ if for all ϑ ∈ Θ either A ⊨ ϑ or A ⊨ ¬ϑ. Otherwise A is incomplete for Θ.2 A
decision procedure for A and Θ is an algorithm that takes a sentence ϑ ∈ Θ as input. If A ⊨ ϑ,
then the output is YES, else the output is NO. We say that A is decidable for Θ if there exists
a decision procedure for A and Θ. Otherwise A is undecidable for Θ. If A = {A} contains
only one L-structure, we allow ourselves to refer to A instead of A. If Θ is not mentioned
explicitly, then Θ is the set of all L-sentences. Note that a single L-structure A can be decidable
or undecidable, but {A} is always complete.

Let T be set set of all Turing machines. A Gödel numbering is an injective function g : T → N
such that g is computable, the image g(T) is recursive, and the inverse g−1 : g(T) → T is
computable. Given a Turing machine m ∈ T , the value g(m) ∈ N is the Gödel number of m.
There exist infinitely many Gödel numberings, of which we fix one.

Example 4.17 (An undecidable structure). Consider the language L = (0, 1, . . . ; H (1)). Let
A = (N; 0, 1, . . . ; H) with HA(n) = ⊤ if and only if n is the Gödel number of a Turing
machine that halts. Then A is undecidable for Θ = {H (0),H (1), . . . }. However, {A} is trivially
complete, which reflects the fact that every Turing machine either holds or not. As an exercise,
show that A admits effective QE. ⌟

Example 4.18 (An incomplete decidable class). Consider LRings, the class A = {Z2,Z3} with
Zm = (Z/m; 0, 1,+,−, ·) and the set Θ of all variable-free equations. Then A is not complete
for Θ because neither A ⊨ 1 + 1 = 0 nor A ⊨ ¬ 1 + 1 = 0. However, A is decidable for Θ,
because all variable-free equations can be effectively evaluated to either ⊥ or ⊤ in both Z2 and
Z3. For our 1 + 1 = 0 we obtain (1 + 1 = 0)Z2 = ⊤ and (1 + 1 = 0)Z3 = ⊥. The output of a
decision procedure on input of 1 + 1 = 0 would be NO. ⌟

1Denominators can be equivalently removed by applying the laws of distributivity and then multiplying with the
positive least common multiple of the denominators in each atomic formula.

2This notion of completeness of a model class should not be confused with the notion of completeness of a logical
calculus. It is noteworthy that Gödel’s Incompleteness Theorems refer to the former, while his Completeness
Theorem refers to the latter.

4 Quantifier Elimination, Completeness, and Decidability · 4.3 Completeness and . . . 38

Lemma 4.19 (Decidable restrictions). Let L be a language, and let A be an L-structure. If A is
decidable, then A|L′ is decidable for all L′ ⊆ L.

Proof. Assume that A is decidable. Let L′ ⊆ L, and let ϑ be an L′-sentence. Then ϑ is also an
L-sentence, and ϑA|L′ = ϑA ∈ {⊤,⊥} by Lemma 3.9. In other words, A|L′ ⊨ ϑ if and only if
A ⊨ ϑ. Hence we can use the existing decision procedure for A also for A|L′ .

Corollary 4.20 (Undecidable expansions). Let L be a language, and let A be an L-structure. If
A is undecidable, then A′ is undecidable for all L′ ⊇ L and all L′-expansions A′ of A.

Proof. Assume that A is undecidable. Let L′ ⊇ L, and let A′ be an L′-expansion of A, i.e.,
A′|L = A. Assume for a contradiction that A′ is decidable. Then A is decidable by Lemma 4.19.

The following two results are concerned with the somewhat subtle connections between com-
pleteness and decidability of classes vs. completeness and decidability of their members.

Lemma 4.21. Let A be a finite set of L-structures, and let Θ be a set of sentences. If each A ∈ A
is decidable for Θ, then A is decidable for Θ.

Proof. Let ϑ ∈ Θ. We must produce the output YES if A ⊨ ϑ, and the output NO else. For each
of the finitely many A ∈ A, we apply the existing decision procedure for A and Θ to ϑ with
output rA ∈ {YES, NO}. If rA = YES for all A ∈ A, then our output is YES, else our output is
NO.

Example 4.22 (An infinite undecidable class of decidable structures). Consider the language
L = (0, 1, . . . ; H̄ (1)). Let A = {A1,A2, . . . } with Ai = (N; 0, 1, . . . ; H̄Ai), where H̄Ai (n) = ⊤
if and only if n is the Gödel number of a Turing machine that does not halt within its first i
steps. Let Θ = {H̄ (0), H̄ (1), . . . }. Then each Ai ∈ A is decidable for Θ but A is undecidable
for Θ. ⌟

Theorem 4.23. Let A be a class of L-structures, and let Θ be a set of sentences. If A is complete
and decidable for Θ, then every A ∈ A is decidable for Θ.

Proof. Let A ∈ A, and let ϑ ∈ Θ. We must produce the output YES if A ⊨ ϑ, and the output
NO else. We apply the existing decision procedure for A to ϑ. If the output of that application is
YES, then we know that A ⊨ ϑ, in particular A ⊨ ϑ, and our output is YES. Else, we know by the
completeness of A that A ⊨ ¬ϑ, in particular A ⊨ ¬ϑ, and our output is NO.

Example 4.24 (An incomplete decidable class of undecidable structures). Consider the lan-
guage L = (0, 1, . . . ; R(1)). Let M ⊆ N be a non-recursive set. It follows that N \ M is
non-recursive as well. Let A = {A,B} with A = (N; 0, 1, . . . ; RA) and B = (N; 0, 1, . . . ; RB)
where RA(n) = ⊤ if and only if n ∈ M , and RB(n) = ⊤ if and only if n ∈ N \M . We define
sentences ϑn = R(n) and Θ = { ϑn | n ∈ N }. We distinguish two cases:

(a) If n ∈M , then B ⊭ ϑn, and it follows that A ⊭ ϑn.

(b) If n ∈ N \M , then A ⊭ ϑn, and it follows that A ⊭ ϑn.

4 Quantifier Elimination, Completeness, and Decidability · 4.3 Completeness and . . . 39

Hence A is decidable for Θ. On any input, the decision procedure will simply output NO. How-
ever, neither A nor B are decidable, because neither M nor N \M are recursive. ⌟

The next two theorems give sufficient conditions for completeness and decidability of classes
of L-structures, respectively. Their hypotheses originate from Theorem 4.10. Both these theo-
rems are going to play an important role for deriving completeness and decidability results based
on QE results for concrete model classes in the following chapters.

Theorem 4.25 (Sufficient conditions for completeness). Consider a class A of L-structures,
and assume that A admits QE. Then the following hold:

(i) If each atom that contains at most one variable is equivalent to either TRUE or FALSE in
A, then A is complete.

(ii) If L contains at least one constant symbol, and A is complete for the set of all atomic
sentences, then A is complete.

Proof. Let ϑ be a sentence. We must show that either A ⊨ ϑ or A ⊨ ¬ϑ.
(i) Assume that each atom that contains at most one variable is equivalent to either TRUE or

FALSE in A. Quantifier elimination yields a quantifier-free formula ϕ′ with A ⊨ ϑ ←→ ϕ′ and
V (ϕ′) ⊆ {x} by Theorem 4.10. For each atomic formula α in ϕ′, the function αA : A→ {⊤,⊥},
using the extended formula α(x), is constant and has the same value for all A ∈ A. It follows
that also ϕ′A : A → {⊤,⊥}, using the extended formula ϕ′(x), is constant and has the same
value for all A ∈ A. The same holds for ϑA = ϕ′A, using the extended atomic formula ϑ(x).

(ii) Assume that L contains at least one constant symbol, and A is complete for the set of all
atomic sentences. Quantifier elimination yields a quantifier-free sentence ϑ′ with A ⊨ ϑ ←→ ϑ′

and V (ϑ′) = ∅ by Theorem 4.10. Each atomic formula α in ϑ′ is an atomic sentence that has
the same value αA ∈ {⊤,⊥}, using the extended formula α() for all A ∈ A. The same holds for
ϑA = ϑ′A, using the extended formula ϑ().

Theorem 4.26 (Sufficient conditions for decidability). Consider a class A of L-structures, and
assume that A admits effective QE. Then the following hold:

(i) If there is an algorithm taking atomic formulas α with most one variable as input and
computing τ ∈ {TRUE, FALSE} such that A ⊨ α ←→ τ, then A is complete and decidable.

(ii) If L contains at least one constant symbol and A is complete and decidable for the set of
all atomic sentences, then A is complete and decidable.

Proof. In both (i) and (ii), the completeness of A follows by Theorem 4.25. It remains to be
shown that A is decidable. Let ϑ be a sentence. We must produce the output YES if A ⊨ ϑ, and
the output NO else.

(i) Assume that there is an algorithm taking atomic formulas α with most one variable as
input and computing τ ∈ {TRUE, FALSE} such that A ⊨ α ←→ τ. Use effective QE to compute
a quantifier-free formula ϕ′ with A ⊨ ϑ ←→ ϕ′ and V (ϕ′) ⊆ {x} by Theorem 4.10. For each
of the finitely many atoms α in ϕ′ apply the existing algorithm to compute τ ∈ {TRUE, FALSE}
with A ⊨ α ←→ τ and equivalently replace all occurrences of α in ϕ′ with τ. At the end, ϕ′ is

4 Quantifier Elimination, Completeness, and Decidability · 4.3 Completeness and . . . 40

a Boolean combination of TRUE and FALSE, which can be simplified to either TRUE or FALSE.
Output YES or NO, respectively.

(ii) Assume that L contains at least one constant symbol and that A is decidable for atomic
sentences. Use effective QE to compute a quantifier-free sentence ϑ′ with A ⊨ ϑ ←→ ϑ′ and
V (ϑ′) = ∅ by Theorem 4.10. For each of the finitely many atoms α in ϕ′ proceed as follows:
Due to completeness, we know that either A ⊨ α or A ⊨ ¬α. The assumed decision procedure
will output YES for either α or ¬α, respectively. Equivalently replace all occurrences of α in ϕ′

with TRUE or FALSE, respectively. At the end, ϕ′ is a Boolean combination of TRUE and FALSE,
which can be simplified to either TRUE or FALSE. Output YES or NO, respectively.

Example 4.27 (Infinite sets revisited). Consider L = () and recall from Lemma 4.6 that the
class A = {A | A is infinite } of L-structures admits effective QE. All atomic L-formulas with
at most one variable are of the form x = x with x ∈ V , which is semantically equivalent to
TRUE. Hence A is complete and decidable by Theorem 4.26. ⌟
Corollary 4.28. Let L be a finite language. Then every finite L-structure is decidable.

Proof. Let A be a finite L-structure with universe A = {a1, . . . , an}, where n ≥ 1. We switch
to an extension language L′ ⊇ L with constant symbols for a1, . . . , an. The corresponding L′-
expansion A′ of A admits effective QE by Lemma 4.4, L′ has at least one constant symbol, {A′}
is trivially complete, and atomic L′-sentences in A′ are decidable because all of the finitely many
functions and relations in A′ have suitable finite representations. It follows that A′ is decidable
by Theorem 4.26, and further that A is decidable by Lemma 4.19.

Example 4.29 (A finite undecidable structure in an infinite language). Consider the language
L = (0(0), 1(0); H (1)

0 ,H
(2)
1 , . . .). Let A = ({0, 1}; 0, 1; H0,H1, . . .) with HA

n (an, . . . , a0) = ⊤
if and only if

∑n
i=0(ai · 2i) is the Gödel number of a Turing machine that halts. In other words,

an . . . a0 ∈ {0, 1}∗ is a binary representation of such a number. Then A is undecidable for the
set Θ = {Hn(c) | n ∈ N \ {0}, c ∈ {0, 1}n } of all variable-free predicates. ⌟

The following result, which we state without a proof, is a well-known consequence of Gödel’s
Completeness Theorem. In contrast to Gödel’s original theorem it does not refer to any deduc-
tion calculus.3

Theorem 4.30 (Gödel, 1929). Let L be a countable language, let Ξ be a recursively enumerable
set of L-sentences, and let A = Mod(Ξ). Then the set { ϑ ∈ L-sentences | A ⊨ ϑ } is recursively
enumerable.

Corollary 4.31. Let L be a countable language, let Ξ be a recursively enumerable set of L-
sentences, and let A = Mod(Ξ). Let Θ be another set of L-sentences. If A is complete for Θ,
then A is decidable for Θ.

Proof. Let ϑ ∈ Θ. We must produce the output YES if A ⊨ ϑ, and the output NO else. Let
(νn)n∈N be an effective enumeration of the valid sentences of A, which exists by Theorem 4.30.
Since A is complete, there exists n ∈ N such that one of the following holds:

3We attribute the result to Gödel, as it is not too hard to prove from his Completeness Theorem. Significant
contributions around Gödel’s Completeness Theorem from a model theory perspective were made by Henkin
in his PhD thesis in 1947.

4 Quantifier Elimination, Completeness, and Decidability · 4.3 Completeness and . . . 41

(a) νn = ϑ and for all m ∈ N with m ̸= n we have ϑm ̸= ¬ϑ.

(b) νn = ¬ϑ and for all m ∈ N with m ̸= n we have ϑm ̸= ϑ.

We run the enumeration (νn)n∈N until, after finitely many steps, either ϑ or ¬ϑ occurs and output
YES or NO, respectively.

5 Quantifier Elimination for Sets and
Linear Orders

5.1 Sets

We are going to use t1 ̸= t2 as a shorthand for ¬ t1 = t2 throughout this section. In Lemma 4.6
we have considered the empty language L = () and showed that the class A of all L-structures
with infinite universe as well as single L-structures B1 with |B1| = 1 and B2 with |B2| = 2 admit
effective QE. We have then shown in Lemma 4.11 that the class B = {B1,B2} does not admit
QE. The proof argument was essentially that the formula ∃x(x ̸= z1) states that the universe has
at least cardinality 2, which cannot be expressed as a quantifier-free L-formula.

Our following definitions address this issue. We switch to a non-empty relational language
LSets, which has relation symbols C (0)

n for n ∈ {2, 3, . . . }. We introduce axioms ΞSets stating
that Cn holds if and only if there are at least n pairwise different elements in the universe:

LSets =
(

C
(0)
2 , C

(0)
3 , . . .

)

,

ΞSets =
{

Cn ←→ ∃x1 . . .∃xn
n
∧

i=1

n
∧

j=i+1
xi ̸= xj

∣

∣ n ∈ {2, 3, . . . }
}

,

Sets = Mod(ΞSets).

(5.1)

With these definitions we have formally fixed that Sets is the class of all non-empty sets as
LSets-structures, where for all S ∈ Sets and for all n ∈ {2, 3, . . . } we have S ⊨ Cn if and only if
|S| ≥ n.

Theorem 5.1. The class Sets admits effective QE.

Proof. Following the reduction in the proof of Lemma 4.4 it suffices to consider formulas of the
form (4.8) there, i.e.,

ϕ = ∃x

[

m
∧

j=1

x ̸= zj

]

(5.2)

where m > 0 and z1, . . . , zm ∈ V . For k ∈ {1, . . . , m} the following quantifier-free formula
states that the variables z1, . . . , zm take exactly k different values:

ηk =
m
∨

h1=1

· · ·
m
∨

hk=1

[

m
∧

j=1

k
∨

i=1

zj = zhi ∧
k
∧

i=1

k
∧

l=i+1

zhi ̸= zhl

]

. (5.3)

The quantifier-free formula ηk ∧ Ck+1 additionally states that the universe is large enough to
accommodate these k different values along with another value for the quantified variable x. We

42

5 Quantifier Elimination for Sets and Linear Orders · 5.1 Sets 43

finally obtain a quantifier-free equivalent

ϕ′ =
m
∨

k=1

(ηk ∧ Ck+1) (5.4)

of ϕ by expressing a finite case distinction on k.

Naturally, we are now interested in decidability and completeness. The following theorem
can be viewed as a strong version of decidability. We will subsequently conclude decidability
and a couple of related properties of the class Sets as corollaries.

Theorem 5.2. Consider LSets. For each sentence ϑ one can compute a finite union of disjoint
intervals Mϑ ⊆ N \ {0} such that the following holds:

(i) For all finite S ∈ Sets we have S ⊨ ϑ if and only if |S| ∈Mϑ.

(ii) For all infinite S ∈ Sets we have S ⊨ ϑ if and only if Mϑ is unbounded from above.

Proof. Let y ∈ V . Then ϑ(y) is an extended sentence. Since Sets admits effective QE, we can
compute an extended quantifier-free formula ϕ′(y) such that Sets ⊨ ϑ ←→ ϕ′, using Theorem
4.10(i). Next, we compute a DNF δ =

∨

i γi with γi =
∧

j λij such that ⊨ ϕ′ ←→ δ. Again δ(y),
γi(y), and λij(y) are extended formulas, because δ contains the same atomic formulas and thus
the same variables as ϕ′. For each λij we compute

Mλij =



















[1 . .∞) if λij ∈ {TRUE, y = y}
∅ if λij ∈ {FALSE, y ̸= y}
[n . .∞) if λij = Cn

[1 . . n − 1] if λij = ¬Cn.

(5.5)

For each γi we compute Mγi =
⋂

jMλij , and for δ we compute Mδ =
⋃

iMγi with properties
(i) and (ii). Since ϑ and δ are equivalent in Sets, we can set Mϑ =Mδ.

Corollary 5.3. The class Sets is decidable but not complete.

Proof. For decidability, let ϑ be a sentence. We must produce the output YES if Sets ⊨ ϑ, and
the output NO else. Compute Mϑ according to Theorem 5.2. If Mϑ = [1 . .∞), then output YES,
else output NO.

Sets is complete if and only if for all sentences ϑ either Mϑ = [1 . .∞) or Mϑ = ∅. However,
MC2 = [2 . .∞).

We leave the proof of the following consequences of Theorem 5.2 as an exercise. Notice that
Sets∞ is the class A from Lemma 4.6.

Corollary 5.4 (Complete and decidable subclasses of Sets).

(i) Setsn = {S ∈ Sets : |S| = n } is complete and decidable for all n ∈ N \ {0}.

(ii) Sets∞ = {S ∈ Sets : S is infinite } is complete and decidable.

5 Quantifier Elimination for Sets and Linear Orders · 5.2 Use Case: Graph Coloring 44

Let L be an arbitrary language. A class A of L-structures has a small model property if there
exists a computable function k : L-sentences → N \ {0} such that every sentence ϑ that is
satisfiable in A has a model A ∈ A with |A| = k(ϑ). The small model property entails the finite
model property: If ϑ is satisfiable in A, then ϑ has a finite model in A.

Corollary 5.5 (Small model property). Consider LSets and let ϑ be a sentence. Assume that
there is an infinite S ∈ Sets with S ⊨ ϑ. Then one can compute kϑ ∈ N \ {0} such that T ⊨ ϑ for
all T ∈ Sets with |T | ≥ kϑ.

Proof. Compute Mϑ according to Theorem 5.2. From S ⊨ ϑ it follows that Mϑ is unbounded
from above. Hence one and only one of the disjoint intervals in Mϑ is of the form [n . .∞) with
n ∈ N \ {0}. Choose kϑ ∈ [n . .∞).

Notice that even with the choice kϑ = n in the proof, |T | ≥ kϑ is only a sufficient condition
for T ⊨ ϑ.

5.2 Use Case: Graph Coloring

Figure 5.1 shows a map of Europe and lists the member countries of the European Union. We
identify the countries with their numbers V = {1, . . . , 27} ⊆ N. For each country i ∈ V we
introduce a variable ci and define constraints γi =

∧

j ci ̸= cj where j runs over all countries that
share a border with country i:

γ1 =
∧

j∈{11,6,24,13,25,15} c1 ̸= cj, γ2 =
∧

j∈{20,11,18,10} c2 ̸= cj,

γ3 =
∧

j∈{23,12} c3 ̸= cj, γ4 =
∧

j∈{25,13} c4 ̸= cj,

γ5 = TRUE, γ6 =
∧

j∈{11,21,24,1} c6 ̸= cj,

γ7 = (c7 ̸= c11), γ8 = (c8 ̸= c16),

γ9 = (c9 ̸= c27), γ10 =
∧

j∈{2,18,11,15,26} c10 ̸= cj,

γ11 =
∧

j∈{7,21,6,1,10,18,2,20} c11 ̸= cj, γ12 = (c12 ̸= c3),

γ13 =
∧

j∈{24,23,4,25,1} c13 ̸= cj, γ14 = TRUE,

γ15 =
∧

j∈{10,1,25} c15 ̸= cj, γ16 =
∧

j∈{8,17} c16 ̸= cj,

γ17 =
∧

j∈{16,21} c17 ̸= cj, γ18 =
∧

j∈{2,11,10} c18 ̸= cj,

γ19 = TRUE, γ20 =
∧

j∈{11,2} c20 ̸= cj,

γ21 =
∧

j∈{17,25,6,11} c21 ̸= cj, γ22 = (c22 ̸= c26),

γ23 =
∧

j∈{3,13} c23 ̸= cj, γ24 =
∧

j∈{21,13,1,6} c24 ̸= cj,

γ25 =
∧

j∈{1,13,4,15} c25 ̸= cj, γ26 =
∧

j∈{10,22} c26 ̸= cj,

γ27 = (c27 ̸= c9).

(5.6)

Let ψ =
∧

i∈V γi. Quantifier elimination on ϕ1 = (∃ci)i∈V ψ yields ϕ′1 = C4. Since Sets ⊨
ϕ ←→ ϕ′ it follows that A ⊨ ϕ if and only if |A| ≥ 4 for all A ∈ Sets. We can consider the
elements of the universe A of each A ∈ Sets as colors. In this view we have deduced that all

5 Quantifier Elimination for Sets and Linear Orders · 5.2 Use Case: Graph Coloring 45

1. Austria

2. Belgium

3. Bulgaria

4. Croatia

5. Cyprus

6. Czechia

7. Denmark

8. Estonia

9. Finland

10. France

11. Germany

12. Greece

13. Hungary

14. Ireland

15. Italy

16. Latvia

17. Lithuania

18. Luxembourg

19. Malta

20. Netherlands

21. Poland

22. Portugal

23. Romania

24. Slovakia

25. Slovenia

26. Spain

27. Sweden

Figure 5.1: The member countries of the European Union (as of 2023)

5 Quantifier Elimination for Sets and Linear Orders · 5.3 Dense Linear Orders With . . . 46

pairs of countries with a common border can be colored differently on our map if and only if
there are at least 4 different colors available altogether.

More abstractly, we have solved an instance of the vertex coloring problem for graphs, where
the vertices are the countries V and the undirected edges are the neighborhood relation on the
countries. Other applications of vertex coloring include scheduling problems, register allocation
in compiler optimization, and Sudoku puzzles. While there are certainly more efficient algo-
rithms for graph coloring, including heuristic ones, our quantifier elimination approach is more
general. First, there are not only existential quantifiers available but also universal quantifiers,
which admits quantifier alternation. Second, we can use free variables and consider parametric
problems.

As an example for the use of universal quantifiers and quantifier alternation consider the fol-
lowing problem: Find the smallest number of colors necessary such that any admissible coloring
of W = {6, 13, 24, 25} ⊆ V , i.e., of Czechia, Hungary, Slovakia, Slovenia, can be extended to
an admissible coloring of the complete map V . We formalize our problem as follows, where χ
specifies admissible colorings of W :

ϕ2 = (∀ci)i∈W
[

χ −→ (∃cj)j∈V \W ψ
]

, χ = (c6 ̸= c24 ∧ c24 ̸= c13 ∧ c13 ̸= c25). (5.7)

Quantifier elimination on ϕ2 yields ϕ′2 = ¬C2 ∨ C5. The condition ¬C2 covers the degenerate
case that χ is unsatisfiable, i.e., there is no admissible coloring of W . This case can be formally
excluded by considering (∃ci)i∈W χ ∧ ϕ2 instead of ϕ2. The condition C5 tells us that we need
at least five colors.

As an example of a parametric problem consider ϕ3 = (∃cj)j∈V \W ψ , which leaves the colors
of W as free variables. Quantifier elimination yields

ϕ′3 = (χ ∧ c6 = c25 ∧ C4) ∨ (χ ∧ c6 = c13 ∧ C4) ∨ (χ ∧ c24 = c25 ∧ C4) ∨ (χ ∧ C5). (5.8)

This again states that five colors are generally sufficient. Furthermore, it provides three equa-
tional constraints on the colors of W each of which independently admits a coloring with only
four colors.

5.3 Dense Linear Orders Without Endpoints

We consider the relational language LLosets = (<) of linear ordered sets and R = (R; <) with
the natural strict order on R. As a linear ordered set, R has positive normal forms according to
Example 3.28.

Lemma 5.6. R = (R; <) admits effective QE.

Proof. Consider a positive 1-primitive formula

ϕ = ∃x

[

m
∧

i=1

x = ui ∧
n
∧

j=1

vj < x ∧
p
∧

k=1

x < wk

]

, (5.9)

where ui, vj, wk ∈ V . Equations x = x can be deleted from the conjunctions in (5.9) via
semantic equivalence to TRUE. Similarly, if there is a literal x < x, then that literal and

5 Quantifier Elimination for Sets and Linear Orders · 5.3 Dense Linear Orders With . . . 47

thus the entire formula ϕ in (5.9) is equivalent to FALSE in R. We may now assume that
x /∈ {u1, . . . , um, v1, . . . , vn, w1, . . . , wp}. If m > 0, then (5.9) is semantically equivalent to
the quantifier-free formula

ϕ′ =
m
∧

i=2

u1 = ui ∧
n
∧

j=1

vj < u1 ∧
p
∧

k=1

u1 < wk. (5.10)

Assume now that m = 0. Then (5.9) is of the form

∃x

[

n
∧

j=1

vj < x ∧
p
∧

k=1

x < wk

]

. (5.11)

If n = 0, then (5.11) is equivalent to TRUE, because R has no minimum. Similarly, If p = 0,
then (5.11) is equivalent to TRUE, because R has no maximum. Assume now that both n > 0
and p > 0. Then (5.11) is equivalent to the quantifier-free formula

n
∧

j=1

p
∧

k=1

vj < wk. (5.12)

From (5.11) to (5.12) one uses the transitivity of the order. Conversely, from (5.12) to (5.11)
one uses the density of R: If maxj vj < mink wk, then there exists x ∈ R such that maxj vj <
x < mink wk, e.g., x = 1

2 (maxj vj + mink wk).

An analysis of the proof shows that we have used only the following elementary properties of
R, in the sense that those properties can be formulated as first-order formulas:

(i) R is a linear ordered set, which is irreflexive, connected, and transitive:

ΞLosets = {¬ x < x, x < y ∨ x = y ∨ y < x, x < y ∧ y < z −→ x < z}; (5.13)

(ii) R is dense:
ΞDense = {x < y −→ ∃z(x < z ∧ z < y)}; (5.14)

(iii) R has no minimum and maximum, which we call endpoints:

ΞNoEndpoints = {∃y(x < y), ∃y(y < x)}. (5.15)

This yields the axioms and the class of all dense linear orders without endpoints:

ΞDensLo = ΞLosets ∪ ΞDense ∪ ΞNoEndpoints, DensLo = Mod(ΞDensLo). (5.16)

Our axiomatization allows to apply the proof of Lemma 5.6 to the class DensLo instead of the
single structure R ∈ DensLo, which gives us the following theorem.

Theorem 5.7. The class DensLo admits effective QE.

Corollary 5.8. The class DensLo is complete and decidable.

5 Quantifier Elimination for Sets and Linear Orders · 5.4 Discrete Linear Orders . . . 48

Proof. In LLosets all atomic formulas with at most one variable are of one of the forms y = y

or y < y with y ∈ V . We have ⊨ y = y ←→ TRUE and DensLo ⊨ y < y ←→ FALSE. Hence
DensLo is complete and decidable by Theorem 4.26(i).

Example 5.9 (Dense linear orders without endpoints). Of course, (R; <) ∈ DensLo. Further
examples are

(Q; <), (R \Q; <), (Q ∪ (0, 1); <) ∈ DensLo, (5.17)

where (0, 1) denotes the open real interval. However,

(N; <), (Z; <), ([0, 1]; <) /∈ DensLo, (5.18)

where [0, 1] denotes the closed real interval. The linear ordered sets (N; <) and (Z; <) are not
dense; both (N; <) and ([0, 1]; <) have endpoints. Another positive example is

(N × R; <lex) ∈ DensLo, (5.19)

where the lexicographic order is defined as (x1, x2) <lex (y1, y2) if and only if x1 < y1 or
x1 = y1 and x2 < y2. However,

(R × N; <lex) /∈ DensLo, (5.20)

because (R × N; <lex) is not dense. ⌟

As an exercise, decide the sentence ∀x∃y(x < y ∧ ∀z(x < z −→ y = z ∨ y < z)) in DensLo.

5.4 Discrete Linear Orders with Left Endpoint

We stay with the relational language LLosets = (<) of linear ordered sets and consider now
N0 = (N; <) as a discrete counterpart of R = (R; <) in the previous section. As a linear
ordered set, N0 also has positive normal forms according to Example 3.28. In contrast to R, we
obtain a negative result regarding QE for N0.

Theorem 5.10. N0 = (N; <) does not admit QE.

Proof. According to Theorem 4.12 it is sufficient to find a definable set that is not quantifier-free
definable. Consider the extended formula

ϕ(y) = ∀x(x = y ∨ y < x)(y), (5.21)

which defines [ϕ]N0 = {0}. Let ϕ′(y) be an extended quantifier-free formula. Then V (ϕ) ⊆ {y},
and the only possible atomic formulas in ϕ′ are y = y and y < y. We have ⊨ y = y ←→ TRUE

and N0 ⊨ y < y ←→ FALSE. It follows that N0 ⊨ ϕ′ ←→ TRUE or N0 ⊨ ϕ′ ←→ FALSE and
thus [ϕ′]N0 = N or [ϕ′]N0 = ∅.

This proof suggests to add a constant symbol 0 and switch to the language L1 = (0; <)
and the L-structure N1 = (N; 0; <). This obviously allows a quantifier-free definition of {0}.
However, it also adds to the expressiveness on the side of the quantified formulas. We again
obtain a negative result.

5 Quantifier Elimination for Sets and Linear Orders · 5.4 Discrete Linear Orders . . . 49

Theorem 5.11. N1 = (N; 0; <) does not admit QE.

Proof. Again, we use Theorem 4.12 and find a definable set that is not quantifier-free definable.
Consider the extended formula ϕ(y) with

ϕ = 0 < y ∧ ∀x(0 < x −→ x = y ∨ y < x), (5.22)

which defines [ϕ]N1 = {1}. Let ϕ′(y) be an extended quantifier-free formula, without loss of
generality, in positive normal form. For all atomic formulas α in ϕ′ we have

α ∈ {0 = 0, 0 = y, y = 0, y = y, 0 < 0, 0 < y, y < 0, y < y}, (5.23)

and for corresponding extended atomic formulas α(y) we obtain

[α]N1 ∈ D, D =
{

∅, {0}, N \ {0}, N
}

. (5.24)

Since ϕ′ is reduced to ∨, ∧, the set [ϕ′]N1 is formed from the sets in D via unions and inter-
sections. However, D is closed under unions and intersections. It follows that also [ϕ′]N1 ∈ D.
Hence [ϕ]N1 = {1} is not quantifier-free definable.

If we now added another constant symbol 1 yielding L′1 = (0, 1; <) and considered the L′1-
structure (N; 0, 1; <), we would find that {2} is definable but not quantifier-free definable, and
so on. In fact, it easily follows by induction that {n} is definable for all n ∈ N already in N0.

The most economic way to have terms available for all elements of N is the introduction of
the successor function known from Peano arithmetic. We define L2 = (0, s(1); <) and consider
N2 = (N; 0, s; <) with sN2 (n) = n + 1. As a shorthand notation for terms we define sn as
the n-fold application of the function symbol s, formally s0(t) = t and sn+1(t) = s(sn(t)). This
yields sn(t)N2 = tN2 + n, in particular sn(0)N2 = n.

Lemma 5.12. N2 = (N; 0, s; <) admits effective QE.

Proof. Consider a positive 1-primitive formula

ϕ = ∃x

[

m
∧

i=1

sai (x) = ti ∧
n
∧

j=1

uj < s
bj (x) ∧

p
∧

k=1

sck (x) < vk ∧
r
∧

l=1

sdl (x) <
= s

el (x)

]

, (5.25)

where ai, bj, ck, dl, el ∈ N, and ti, uj, vk are terms of the form sh(0) or sh(y), where h ∈ N and
y is variable different from x. We have

N2 ⊨ sdl (x) <
= s

el (x) ←→



















TRUE
FALSE if dl < el

FALSE
TRUE if dl = el

FALSE
FALSE if dl > el.

(5.26)

Therefore, the last conjunction
∧

l s
dl (x) <

= sel (x) in (5.25) can be equivalently replaced with
either FALSE or TRUE. In the former case, ϕ′ = FALSE is a quantifier-free equivalent for ϕ and
we are finished. Otherwise, we have reduced our QE problem from (5.25) to

∃x

[

m
∧

i=1

sai (x) = ti ∧
n
∧

j=1

uj < s
bj (x) ∧

p
∧

k=1

sck (x) < vk

]

. (5.27)

5 Quantifier Elimination for Sets and Linear Orders · 5.4 Discrete Linear Orders . . . 50

Let µ = maxi,j,k{ai, bj, ck}, and let t′i = sµ−ai (ti), u′j = sµ−bj (uj), and v′k = sµ−ck (vk). Then
(5.27) is equivalent to

∃x

[

m
∧

i=1

sµ(x) = t′i ∧
n
∧

j=1

u′j < s
µ(x) ∧

p
∧

k=1

sµ(x) < v′k

]

. (5.28)

If m > 0, then (5.28) is equivalent to

∃x(sµ(x) = t′1) ∧
m
∧

i=2

t′1 = t′i ∧
n
∧

j=1

u′j < t
′
1 ∧

p
∧

k=1

t′1 < v
′
k, (5.29)

which is in turn equivalent to the quantifier-free formula

ϕ′ =
[

sµ(0) = t′1 ∨ s
µ(0) < t′1

]

∧
m
∧

i=2

t′1 = t′i ∧
n
∧

j=1

u′j < t
′
1 ∧

p
∧

k=1

t′1 < v
′
k, (5.30)

and we are finished. Otherwise, we have reduced our QE problem from (5.28) to

∃x

[

n
∧

j=1

u′j < s
µ(x) ∧

p
∧

k=1

sµ(x) < v′k

]

. (5.31)

If p = 0, then (5.31) is equivalent to the quantifier-free formula

ϕ′ = TRUE, (5.32)

because N has no maximum, and we are finished. Assume now that p > 0. If n = 0, then (5.31)
is equivalent to the quantifier-free formula

ϕ′ =
p
∧

k=1

sµ(0) < v′k, (5.33)

and we are finished. The difference between (5.32) and (5.33) is due to the fact that N has a
minimum. Therefore we cannot make the term function sµ(x)N2 : N → N arbitrarily small by
choosing x ∈ N. Its range of possible values is bounded from below by µ = sµ(x)N2 (0) =
sµ(0)N2 , and (5.33) guarantees that µ < v′k

N2 for all k. Finally, assume that also n > 0. Then
(5.31) is equivalent to the quantifier-free formula

ϕ′ =
n
∧

j=1

p
∧

k=1

s(u′j) < v
′
k ∧

p
∧

k=1

sµ(0) < v′k. (5.34)

The first part of (5.34) resembles (5.12) in the proof of Lemma 5.6 for (R; <). In the absence
of density of N, we put s(u′j) instead of u′j to ensure that there is a gap between maxj u′j

N2 and
mink v′k

N2 that can accommodate sµ(0)N2 .

Similarly to R in the previous section, an analysis of the proof shows that we have used only
certain elementary properties of N2, which are the following:

5 Quantifier Elimination for Sets and Linear Orders · 5.4 Discrete Linear Orders . . . 51

(i) N2 is a linear ordered set, for which the axioms ΞLosets have been introduced in (5.13);

(ii) N2 has a minimum, which we call left endpoint:

ΞLeftEndpoint = {0 = x ∨ 0 < x}; (5.35)

(iii) sN2 is the successor function:

ΞSucc = {x < s(x), x < y −→ s(x) = y ∨ s(x) < y, 0 < y −→ ∃x(s(x) = y)}. (5.36)

From x < s(x) it follows that there is no right endpoint. Furthermore, one can prove
x < y ←→ s(x) < s(y) and the injectivity s(x) = s(y) −→ x = y of the successor
function.

This yields the axioms and the class of all discrete linear orders with left endpoint:

ΞDiscrLo = ΞLosets ∪ ΞLeftEndpoint ∪ ΞSucc, DiscrLo = Mod(ΞDiscrLo). (5.37)

One can now generalize and apply the proof of Lemma 5.12 to the class DiscrLo instead of
the single L2-structure N2 ∈ DiscrLo. This yields the following theorem.

Theorem 5.13. The class DiscrLo admits effective QE.

Corollary 5.14. The class DiscrLo is complete and decidable.

Proof. The language L2 has a constant symbol 0. All atomic sentences in L2 are of the form
sm(0) <

= s
n(0) with m, n ∈ N. We have

DiscrLo ⊨ sm(0) <
= s

n(0) ←→



















TRUE
FALSE if m < n

FALSE
TRUE if m = n

FALSE
FALSE if m > n.

(5.38)

Hence DiscrLo is complete and decidable for the set of all atomic sentences, and general com-
pleteness and decidability follow by Theorem 4.26(ii).

Consider the language LLosets and linear ordered sets A = (A; <) and B = (B; <) with
A ∩ B = ∅. We define the sum of the linear orders A and B as A ⊕ B = (A ∪̇ B; <), where

<A⊕B(x, y) =



















<A(x, y) if x, y ∈ A
⊤ if x ∈ A, y ∈ B
<B(x, y) if x, y ∈ B
⊥ else.

(5.39)

It is easy to see that A ⊕ B is again a linear ordered set. Going further, we can generalize the
sum of linear orders to A, B ∈ DiscrLo, where we define

0A⊕B = 0A, sA⊕B(x) =

{

sA(x) if x ∈ A
sB(x) if x ∈ B.

(5.40)

5 Quantifier Elimination for Sets and Linear Orders · 5.4 Discrete Linear Orders . . . 52

With these definitions, A ⊕ B might or might not be a discrete linear order with left endpoint.
In other words, the class DiscrLo is not closed under our generalized sum of linear orders.
Nevertheless, A ⊕ B is always a well-defined L2-structure.

Example 5.15 (Some sums of linear orders with left endpoint). Consider the language L2. Let
N = (N; 0, s; <), Z = (Z; 0, s; <). Then

N ⊕ Z ∈ DiscrLo, N ⊕ Z ⊕ Z ∈ DiscrLo (5.41)

assuming without loss of generality that N ∩ Z = ∅. However,

Z, N ⊕ N /∈ DiscrLo, (5.42)

where N ⊕ N should be read as adding two isomorphic copies of N with disjoint universes. The
linear orders considered here can be visualized as follows:

−−−−→
N

←−−−→
Z

−−−−→−−−−→
N ⊕ N

−−−−→←−−−→
N ⊕ Z

−−−−→←−−−→←−−−→
N ⊕ Z ⊕ Z

(5.43)

The picture suggests that Z has no left endpoint and that the zero of the second summand of
N ⊕ N is not a successor. ⌟

6 Substructures

6.1 Substructures

Let L = (F ,R, σ) be a language, and let S and A be L-structures such that the following holds:

(i) S ⊆ A,

(ii) fS = fA|Sn for all f (n) ∈ F ,

(iii) RS = RA|Sn for all R(n) ∈ R.

Then we call S a substructure of A, we call A an extension structure of S, and we write S ⊆ A.
Given an L-structure A, universes of substructures of A can be characterized among the sub-

sets of A as follows.

Lemma 6.1 (Universes of substructures). Let A be an L-structure, and let ∅ ⊊ S ⊆ A. Then
S is the universe of a substructure S of A if and only if S is closed under the functions fA for
f ∈ F . In the positive case, S is uniquely determined by A and S.

Proof. Let S ⊆ A with universe S, let f (n) ∈ F , and let s ∈ Sn. Then fA|Sn = fS and
fS : Sn → S. It follows that fA(s) = fS(s) ∈ S.

Conversely, assume that S is closed under the functions fA. We define an L-structure S with
universe S as follows: For f (n) ∈ F and s ∈ Sn set fS(s) = fA(s), and for R(n) ∈ R and s ∈ Sn
set RS(s) = RA(s). Then S ⊆ A, and it is easy to see that this is the only possible definition of
S that yields S ⊆ A.

The following lemma states that the defining conditions (ii) and (iii) for substructures gen-
eralize to term functions and characteristic functions of quantifier-free formulas. We leave the
proof as an exercise.

Lemma 6.2. Let S ⊆ A be L-structures. Then the following hold:

(i) Let t(x) be an extended term with x ∈ Vn. Then tS = tA|Sn . For all s ∈ Sn it follows that
tS(s) = tA(s).

(ii) Let ϕ(x) be an extended quantifier-free formula with x ∈ Vn. Then ϕS = ϕA|Sn . For all
s ∈ Sn it follows that S ⊨ ϕ(s) if and only if A ⊨ ϕ(s).

The following example illustrates the relevance of the assumption that ϕ is quantifier-free in
part (ii) of the previous lemma:

53

6 Substructures · 6.1 Substructures 54

Example 6.3. Consider LRings, and let Q = (Q; 0, 1,+,−, ·), R = (R; 0, 1,+,−, ·). Then
Q ⊆ R. For ϕ = ∃x(x2 = y) we obtain Q ⊭ ϕ(2) and R ⊨ ϕ(2), using the extended formula
ϕ(y). For ϕ̄ = ∀x(x2 ̸= y), which is semantically equivalent to the logical negation of ϕ, we
obtain Q ⊨ ϕ̄(2) and R ⊭ ϕ̄(2), using the extended formula ϕ̄(y). ⌟

Recall that an existential formula is of the form ∃x1 . . .∃xk(ψ) with ψ quantifier-free. We
define universal formulas to be of the form ∀x1 . . .∀xk(ψ) with ψ quantifier-free.

Lemma 6.4 (Existential statements go up – universal statements go down). Let S ⊆ A be L-
structures. Then the following hold:

(i) Let ϕ(y) be an extended existential formula with y ∈ Vn, and let s ∈ Sn. Then it follows
from S ⊨ ϕ(s) that also A ⊨ ϕ(s).

(ii) Let ϕ(y) be an extended universal formula with y ∈ Vn, and let s ∈ Sn. Then it follows
from A ⊨ ϕ(s) that also S ⊨ ϕ(s).

Proof. (i) Let ϕ = ∃x1 . . .∃xk(ψ) with ψ quantifier-free, and consider the extended formula
ψ (y, x1, . . . , xk). Assume that S ⊨ ϕ(s). Using the semantics of the existential quantifier and
Lemma 6.2(ii) we obtain

⊤ = ϕS(s) = max
s′∈Sk

ψS(s, s′) = max
s′∈Sk

ψA(s, s′) ≤ max
s′∈Ak

ψA(s, s′) = ϕA(s), (6.1)

hence ϕA(s) = ⊤, in other words A ⊨ ϕ(s). The proof of part (ii) is analogous.

A substructure S of A is definable if the universe of S is a definable set in A, i.e., if there is an
extended formula χS (x) such that [χS]A = S. The following lemma is a technical result, which
we need for the proof of the subsequent theorem.

Lemma 6.5. Let A be an L-structure, and let S ⊆ A be a definable substructure, and let χS (z)
be an extended formula with S = [χS]A. Let ψ (y, x), ϕ(y, x) be extended formulas with y ∈ Vn,
x ∈ V such that S ⊨ ψ (s, r) if and only if A ⊨ ϕ(s, r), for all s ∈ Sn, r ∈ S. Then the following
hold:

(i) For all s ∈ Sn we have S ⊨ ∃x(ψ)(s) if and only if A ⊨ ∃x(χS[x/z] ∧ ϕ)(s), using
extended formulas ∃x(ψ)(y) and ∃x(χS[x/z] ∧ ϕ)(y).

(ii) For all s ∈ Sn we have S ⊨ ∀x(ψ)(s) if and only if A ⊨ ∀x(χS[x/z] −→ ϕ)(s), using
extended formulas ∀x(ψ)(y) and ∀x(χS[x/z] −→ ϕ)(y).

6 Substructures · 6.1 Substructures 55

Proof. (i) Let s ∈ Sn. Using the definition of the semantics of first-order formulas we obtain

∃x(χS[x/z] ∧ ϕ)A(s)

= max
a∈A

min{χS[x/z]A(a), ϕA(s, a)}

= max
{

max
a∈S

min{χS[x/z]A(a), ϕA(s, a)}, max
a∈A\S

min{χS[x/z]A(a), ϕA(s, a)}
}

= max
{

max
a∈S

min{⊤, ϕA(s, a)}, max
a∈A\S

min{⊥, ϕA(s, a)}
}

= max
a∈S

ϕA(s, a)

= max
a∈S

ψS(s, a)

= ∃x(ψ)S(s).

(6.2)

(ii) Let s ∈ Sn, r ∈ S. Using the assumptions of the lemma it follows that

S ⊨ ¬ψ (s, r) iff S ̸⊨ ψ (s, r) iff A ̸⊨ ϕ(s, r) iff A ⊨ ¬ϕ(s, r). (6.3)

This allows us to apply part (i) of the lemma to ¬ψ and ¬ϕ in place of ψ and ϕ, respectively. In
combination with some semantic equivalence transformations we obtain

S ⊨ ∀x(ψ)(s) iff S ⊨ ¬∃x(¬ψ)(s)

iff S ̸⊨ ∃x(¬ψ)(s)

iff A ̸⊨ ∃x(χS[x/z] ∧ ¬ϕ)(s) (6.4)

iff A ⊨ ¬∃x(χS[x/z] ∧ ¬ϕ)(s)

iff A ⊨ ∀x(χS[x/z] −→ ϕ)(s).

Theorem 6.6 (Decidability of definable substructures). Let A be an L-structure. If A is decid-
able, then every definable substructure of A is decidable.

Proof. Assume that A is decidable, let S ⊆ A be a definable substructure, and let χS (z) be an
extended formula with [χS]A = S. Let ϑ = Qnxn . . . Q1x1(ψ) be a sentence, without loss of
generality in prenex normal form with ψ quantifier-free. We must produce the output YES if
S ⊨ ϑ, and NO else. Define ϑi = Qixi . . . Q1x1(ψ) for i ∈ {0, . . . , n} and construct

ϑ̃0 = ψ, ϑ̃i+1 =

{

∃xi+1(χS[xi+1/z] ∧ ϑ̃i) if Qi+1 = ∃
∀xi+1(χS[xi+1/z] −→ ϑ̃i) if Qi+1 = ∀,

i ∈ {0, . . . , n − 1}. (6.5)

We consider extended formulas ϑi(x), ϑ̃i(x) with x = (x1, . . . , xn) and show by induction on
i that for all i ∈ {0, . . . , n} the following holds:

S ⊨ ϑi(s) iff A ⊨ ϑ̃i(s), for s ∈ Sn. (6.6)

If i = 0, then ϑi = ψ = ϑ̃i is quantifier-free, and (6.6) follows by Lemma 6.2(ii). Assume now
that (6.6) holds for i ∈ {0, . . . , n − 1} and consider ϑi+1 = ∃i+1xi+1(ϑi) and ϑ̃i+1 as in (6.5).
Then Lemma 6.5 yields S ⊨ ϑi+1(s) if and only if A ⊨ ϑ̃i+1(s), for all s ∈ Sn.

Since both ϑn and ϑ̃n are sentences and ϑn = ϑ, it follows that S ⊨ ϑ if and only if A ⊨ ϑ̃n. We
can finally apply an existing decision procedure for A to ϑ̃n in order to decide ϑ in S.

6 Substructures · 6.2 Elementary Equivalence and Substructure Completeness 56

The assumption that the input sentence is in prenex normal form keeps the proof of the previ-
ous theorem a bit simpler. It is not hard to see that in practice the encoding in (6.5) can be applied
to arbitrary first-order input sentences as a local transformation of each quantified subformula,
without any prenex normal form computation.

Example 6.7. Consider L = (0, 1,+; <), and let N = (N; 0, 1,+; <) and Z = (Z; 0, 1,+; <).
Then N ⊆ Z, and N is definable by χN(z) with χN = (0 < z + 1). Consider the following
sentence:

ϑ = ∀x1∀x2(x1 + 1 < x2 −→ ∃y(x1 < y ∧ y < x2)). (6.7)

For deciding ϑ in N, we can define

ϑ̃ = ∀x1(χN[x1/z] −→ ∀x2(χN[x2/z] −→
x1 + 1 < x2 −→ ∃y(χN[y/z] ∧ x1 < y ∧ y < x2)))

= ∀x1(0 < x1 + 1 −→ ∀x2(0 < x2 + 1 −→
x1 + 1 < x2 −→ ∃y(0 < y + 1 ∧ x1 < y ∧ y < x2)))

(6.8)

and apply a decision procedure for Z to ϑ̃.1 ⌟

Our proofs of Theorem 6.6 and Lemma 6.5 are quite technical, while the construction in
(6.5) is rather common and intuitive. However, the overall situation is more subtle than it might
appear. As an example for a possible fallacy note that in the positive case we have S ⊨ ϑ and
A ⊨ ϑ̃ but not necessarily S ⊨ ϑ̃. For instance, χN in Example 6.7 could be replaced with
0 < z + 1 ∧ ∃x(x < 0).

6.2 Elementary Equivalence and Substructure Completeness

Let L be a language, and let A, B be L-structures. Assume that for all sentences ϑ we have
A ⊨ ϑ if and only if B ⊨ ϑ. Then we call A and B elementary equivalent, and we write A ≡ B.

Theorem 6.8. Let A be a class of L-structures. Then A is complete if and only if A ≡ B for all
A, B ∈ A.

Proof. Assume that A is complete, and let A, B ∈ A. Let ϑ be a sentence. Then either A ⊨ ϑ or
A ⊨ ¬ϑ. If A ⊨ ϑ, then both A ⊨ ϑ and B ⊨ ϑ. If A ⊨ ¬ϑ, then both A ⊨ ¬ϑ and B ⊨ ¬ϑ, and it
follows that both A ⊭ ϑ and B ⊭ ϑ. Hence A ≡ B.

Conversely, assume that A is not complete. Then there is a sentence ϑ such that A ⊭ ϑ and
A ⊭ ¬ϑ. It follows that there are A, B ∈ A such that A ⊭ ϑ and B ⊭ ¬ϑ. It follows that B ⊨ ϑ,
hence A ̸≡ B.

Let L be a language, let A, B be L-structures, and let ∅ ⊊ C ⊆ A ∩ B. Assume that for all
n ≥ 1, all extended formulas ϕ(x) with x ∈ Vn, and all c ∈ Cn we have A ⊨ ϕ(c) if and only if
B ⊨ ϕ(c). Then we call A and B elementary equivalent over C, and we write A ≡C B.

1(Z; 0, 1,+,−; <) is decidable according to Example 8.34 in the next chapter. Decidability of its L-restriction Z
follows by Lemma 4.19.

6 Substructures · 6.3 Elementary Substructures and Model Completeness 57

Let A be a class of L-structures. We call A substructure complete if A ≡C B for all A, B ∈ A
and all L-structures C with C ⊆ A and C ⊆ B. Note that it is not required that C ∈ A.

A ∋ A B ∈ A

C

≡C

⊇ ⊆
(6.9)

Theorem 6.9. Let A be a class of L-structures. If A is substructure complete and there is an
L-structure C such that C ⊆ A for all A ∈ A, then A is complete.

Proof. Let A, B in A, and let C be an L-structure such that C ⊆ A and C ⊆ B. Let ϑ(x) be
an extended sentence. For c ∈ C it follows that A ⊨ ϑ if and only if A ⊨ ϑ(c) if and only if
B ⊨ ϑ(c) if and only if B ⊨ ϑ. We have shown that A and B are elementary equivalent. Hence A
is complete by Theorem 6.8.

The assumption of a common substructure of all A ∈ A in the previous theorem cannot
formally hold for elementary classes A ̸= ∅, because then for any A ∈ A there are arbitrarily
many A′ ∈ A that are isomorphic to A but have disjoint universes with A. However, it is not
hard to see that it is sufficient to assume in the theorem that C ⊆ A for all A ∈ A only up to
isomorphism.

The following theorem reveals that substructure completeness provides a semantic character-
ization of quantifier eliminability. We will prove only part (i) of the theorem. The proof of part
(ii) requires some results and techniques of algebraic model theory not covered here, namely the
Compactness Theorem for first-order logic and Robinson’s Diagram Method.

Theorem 6.10 (A. Robinson, ∼1965). Let A be a class of L-structures. Then the following
hold:

(i) If A admits QE, then A is substructure complete.

(ii) If A is elementary and substructure complete, then A admits QE.

Proof. (i) Assume that A admits QE. Let A, B ∈ A, and let C be an L-structure such that C ⊆ A
and C ⊆ B. Let n ≥ 1, let ϕ(x) be an extended formula with x ∈ Vn, and let c ∈ Cn. There is an
extended quantifier-free formula ϕ′(x) with A ⊨ ϕ←→ ϕ′ by Lemma 4.10(i). It follows that

A ⊨ ϕ(c) iff A ⊨ ϕ′(c) iff C ⊨ ϕ′(c) iff B ⊨ ϕ′(c) iff B ⊨ ϕ(c). (6.10)

Hence A ≡C B.

6.3 Elementary Substructures and Model Completeness

Let L be a language, and let A, B be L-structures. If both A ⊆ B and A ≡A B, then we call A an
elementary substructure of B, we call B an elementary extension structure of A, and we write
A ⪯ B.

6 Substructures · 6.3 Elementary Substructures and Model Completeness 58

Let A be a class of L-structures. We call A model complete if for all A, B ∈ A with A ⊆ B it
follows that A ≡A B, from which in turn follows that A ⪯ B. This is sometimes phrased as “all
extensions are elementary in A”.

A ∋ A B ∈ A
⊆

⪯

≡A

(6.11)

Theorem 6.11. Let L be a language, and let A be a class of L-structures. If A is substructure
complete, then A is model complete.

Proof. Assume that A is substructure complete. Let A, B ∈ A with A ⊆ B. Since obviously
also A ⊆ A, it follows that A ≡A B and thus A ⪯ B.

A ∋ A B ∈ A

A

≡A

⊇ ⊆
(6.12)

Similarly to substructure completeness, model completeness can be characterized in terms of
elimination of quantifiers. The following result is commonly known as Robinson’s Test. We
omit the proof step from (i) to (ii) as it requires results that are not covered here, namely the
First Persistence Theorem of model theory.

Theorem 6.12 (A. Robinson, ∼1965). Let A be an elementary class of L-structures. Then the
following are equivalent:

(i) A is model complete.

(ii) For every universal formula ϕ there is an existential formula ϕ′ such that A ⊨ ϕ←→ ϕ′.

(iii) For every formula ϕ there is an existential formula ϕ′ such that A ⊨ ϕ←→ ϕ′.

Proof. Assume (ii). For Q ∈ {∃,∀} and x = (x1, . . . , xk) ∈ Vk we write Qx1 . . . Qxk shortly
as Qx. Let ϕ be a formula, without loss of generality, in PNF, i.e.,

ϕ = Q1x1 . . . Qnxn(ψ), (6.13)

whereQi ̸= Qi+1 andψ is quantifier-free. We proceed by induction on the number n of quantifier
blocks. The case n = 0 is trivial. Assume now that n ≥ 1. We distinguish two cases:

(a) Q1 = ∃: By the induction hypothesis, Q2x2 . . . Qnxn(ψ) is equivalent to an existential
formula ∃x(ψ ′) in A, and it follows that also ϕ is equivalent to an existential formula in A.

6 Substructures · 6.3 Elementary Substructures and Model Completeness 59

(b) Q1 = ∀: The formula ¬Q2x2 . . . Qnxn(ψ) is semantically equivalent to the prenex formula
Q̄2x2 . . . Q̄nxn(¬ψ), which is by the induction hypothesis equivalent to an existential for-
mula ∃x(ψ ′) in A. It follows that Q2x2 . . . Qnxn(ψ) is equivalent to ∀x(¬ψ ′) and that ϕ is
equivalent to the universal formula ∀x1∀x(¬ψ ′) in A. Hence ϕ is equivalent to an existential
formula in A by (ii).

Assume (iii), and let A, B ∈ A with A ⊆ B. We must show A ≡A B. Let n ≥ 1, and let ϕ(x)
be an extended formula with x ∈ Vn. Then ϕ is equivalent to an existential formula ϕ∃ in A by
(iii). Furthermore, ¬ϕ is equivalent to an existential formula in A by (iii), and it follows that ϕ
is equivalent also to a universal formula ϕ∀ in A. Both ϕ∃(x) and ϕ∀(x) are extended formulas.
Let a ∈ An. If A ⊨ ϕ(a), then A ⊨ ϕ∃(a), thus B ⊨ ϕ∃(a) by Lemma 6.4(i), hence B ⊨ ϕ(a).
Conversely, we can conclude from B ⊨ ϕ(a) that A ⊨ ϕ(a) using ϕ∀ and Lemma 6.4(ii).

Condition (iii) of the theorem is sometimes phrased as “A admits quantifier elimination down
to existential formulas”.

7 Quantifier Elimination for Divisible
Abelian Groups

7.1 Non-trivial Abelian Groups

We consider the algebraic language LGroups = (0(0),+(2),−(1)) of additive groups. The axioms
and the model class of all groups are defined as follows:

ΞGroups = {(x + y) + z = x + (y + z), x + 0 = x, x + (−x) = 0},
Groups = Mod(ΞGroups).

(7.1)

Let A ∈ Groups. If |A| = 1, then A is a called a trivial group, else |A| > 1 and A is called a
non-trivial group. If A is a trivial group, say A = {a}, then the only possible definition of the
functions of A is given by 0T = a, a +T a = a, and −Ta = a. In other words, all trivial groups
are isomorphic.

The following lemma clarifies quantifier eliminability for subclasses of Groups that contain
at least one trivial group.

Lemma 7.1 (QE in classes with trivial groups). Let A ⊆ Groups.

(i) If |A| = 1 for all A ∈ A, then A admits effective QE.

(ii) If there are A, B ∈ A with |A| = 1 and |B| > 1, then A does not admit QE.

In particular Groups does not admit QE.

Proof. (i) Consider a 1-existential formula ϕ = ∃x(ψ). Then A ⊨ ϕ ←→ ψ[0/x]. This is a
special case of Lemma 4.4.

(ii) Consider ϑ = ∃x(x ̸= 0). Then A ⊨ ϑ ←→ FALSE and B ⊨ ϑ ←→ TRUE. Assume for
a contradiction that A admits QE. Since LGroups has a constant symbol, there is a quantifier-free
sentence ϑ′ such that A ⊨ ϑ ←→ ϑ′, using Theorem 4.10(iii). All atomic sentences in ϑ′ can be
equivalently rewritten as 0 = 0. Since ⊨ 0 = 0 ←→ TRUE, we obtain either A ⊨ ϑ′ ←→ TRUE,
which contradicts A ⊨ ϑ ←→ FALSE, or A ⊨ ϑ′ ←→ FALSE, which contradicts B ⊨ ϑ ←→
TRUE.

It remains to study quantifier eliminability for subclasses of Groups that contain exclusively
non-trivial groups. Non-triviality can be axiomatized by

ΞNonTrivial = {∃x(¬ x = 0)}. (7.2)

60

7 Quantifier Elimination for Divisible Abelian Groups · 7.2 Divisible Torsion-free . . . 61

We restrict our attention to non-trivial Abelian groups. An additive group is called Abelian if
the addition is commutative, which is axiomatized by

ΞAbelian = {x + y = y + x}. (7.3)

In summary, we have the following axioms and model class of non-trivial Abelian groups:

ΞNtAGroups = ΞNonTrivial ∪ ΞAbelian ∪ ΞGroups, NtAGroups = Mod(ΞNtAGroups). (7.4)

The class NtAGroups and its subclasses admit normal forms of terms and atomic formulas as
follows. For k ∈ Z \ {0} and t ∈ T we introduce a notation k ⊙ t = ±(t+ · · ·+ t), which can be
shorter written as kt. Then each term t can be equivalently rewritten as either 0 or

k1 ⊙ x1 + · · · + kn ⊙ xn, ki ∈ Z \ {0}, xi ∈ V (t). (7.5)

In particular, all variable-free terms can be rewritten as 0.
All atomic formulas α are equations, which can be rewritten in the following normal form

suitable for the general presentation of atoms: Either 0 = 0 or

k1 ⊙ x1 +
n
∑

j=2
kj ⊙ xj = 0, k1 ∈ N \ {0}, kj ∈ Z \ {0}, x1, xj ∈ V (α). (7.6)

For i ∈ {1, . . . , n} we can rewrite (7.6) in xi-elimination form, which isolates a particular vari-
able xi on the left hand side:

ki ⊙ xi =
i−1
∑

j=1
kj ⊙ xj +

n
∑

j=i+1
kj ⊙ xj, ki ∈ N \ {0}, kj ∈ Z \ {0}. (7.7)

From a mathematical perspective it is often sufficient for QE that the left hand sides of equations
have a form ki ⊙ xi as in (7.7) while the right hand side can be any term in which xi does not
occur. We call this weak xi-elimination form. All atomic sentences can be rewritten as 0 = 0.
For negated equations ¬ t1 = t2 we shortly write t1 ̸= t2.

Lemma 7.2. The class NtAGroups does not admit QE.

Proof. Consider Z = (Z; 0,+,−), R = (R; 0,+,−) ∈ NtAGroups and the sentence ϑ =
∀x∃y(2 ⊙ y = x). Then Z ⊨ ϑ ←→ FALSE and R ⊨ ϑ ←→ TRUE. Now use the same arguments
as in the proof of Lemma 7.1.

7.2 Divisible Torsion-free Abelian Groups

Similar to our explorations of linear orders in Chapter 5, we begin with the real numbers. Our
strategy is to consider R = (R; 0,+,−) and try to find a QE procedure that uses only elementary
properties of R. In the positive case, such a procedure can be generalized to a subclass of
NtAGroups along with a suitable axiomatization.

Lemma 7.3. R = (R; 0,+,−) admits effective QE.

7 Quantifier Elimination for Divisible Abelian Groups · 7.2 Divisible Torsion-free . . . 62

Proof. Consider a 1-primitive formula in weak x-elimination form:

ϕ = ∃x

[

m
∧

i=1

kix = ti ∧
n
∧

j=1

ljx ̸= uj

]

. (7.8)

Let λ = lcmi,j{ki, lj} > 0. We set k′i = λ/ki ∈ N \ {0}, and we set t′i = k′iti. In the same way
we obtain l′j and u′j. Then (7.8) is equivalent to

∃x

[

m
∧

i=1

λx = t′i ∧
n
∧

j=1

λx ̸= u′j

]

. (7.9)

Since β : R → R with β(x) = λx is left-total, as a function, and right-total, i.e. surjective, (7.9)
is equivalent to

∃y

[

m
∧

i=1

y = t′i ∧
n
∧

j=1

y ̸= u′j

]

. (7.10)

We can now continue exactly as in the proof of Lemma 4.6(i) on effective QE for infinite sets.
Our formula (7.10) matches the formula (4.5) there.

An analysis of the proof shows that we have used the following elementary properties of R:

(i) R is a non-trivial Abelian group. Corresponding formal axioms ΞNtAGroups have been given
in (7.4).

(ii) The proof step from (7.8) to (7.9) requires that kix = ti is equivalent to k′ikix = k′iti for
k′i ∈ N \ {0}. An analogous equivalence is required for ljx ̸= uj. Those equivalence hold
in R but, e.g., not in (Z/6; 0,+,−) ∈ NtAGroups, where we have 3 ̸= 0 but 2⊙ 3 = 2⊙ 0.
The proof uses the fact that R is torsion-free:

ΞTorsion0 = { nx = 0 −→ x = 0 | n ∈ N \ {0} }. (7.11)

(iii) The proof step from (7.9) to (7.10) requires that the function β(x) = λx is surjective,
which is not the case, e.g., in (Z; 0,+,−) ∈ NtAGroups. The proof uses the fact that R is
divisible:

ΞDivisible = { ∃y(ny = x) | n ∈ N \ {0} }. (7.12)

(iv) Finally, the reduction to Lemma 4.6(i) requires that the universe is infinite. This follows
from ΞTorsion0 .

We define the class NtDAGroups0 of all non-trivial torsion-free divisible Abelian groups:

ΞNtDAGroups0 = ΞNtAGroups ∪ ΞTorsion0 ∪ ΞDivisible, (7.13)

NtDAGroups0 = Mod(ΞNtDAGroups0). (7.14)

One can now generalize and apply the proof of Lemma 7.3 to the class NtDAGroups0 instead
of the single structure R ∈ NtDAGroups0. This yields the following theorem.

7 Quantifier Elimination for Divisible Abelian Groups · 7.2 Divisible Torsion-free . . . 63

Theorem 7.4. The class NtDAGroups0 admits effective QE.

Corollary 7.5. The class NtDAGroups0 is complete and decidable.

Proof. The language LGroups has a constant symbol 0. All atomic sentences have the normal
form 0 = 0 in NtAGroups ⊇ NtDAGroups0. Since ⊨ 0 = 0 ←→ TRUE, NtDAGroups0 is com-
plete and decidable for the set of all atomic sentences. General completeness and decidability
follows by Theorem 4.26(ii).

Let us remind ourselves of some results of the previous section. The following corollary holds
for every class that admits QE.

Corollary 7.6. The class NtDAGroups0 is substructure complete and model complete.

Proof. Substructure completeness follows from quantifier eliminability, using Theorem 6.10.
Model completeness follows from substructure completeness, using Theorem 6.11.

Substructure completeness provides us with an alternative approach to proving complete-
ness: The trivial group ({0}; 0,+,−) /∈ NtDAGroups0 is a common substructure of all A ∈
NtDAGroups0, up to isomorphism. Completeness follows essentially via Theorem 6.9. Recall
the remarks following that theorem.

Lemma 7.7. Let A ∈ NtDAGroups0. Let a ∈ A with a ̸= 0, and let m, n ∈ N with m ̸= n. Then
ma ̸= na. In particular, A is infinite.

Proof. Assume without loss of generality that m < n. Since A is torsion-free, it follows that
(n − m)a ̸= 0 and hence na ̸= ma.

Example 7.8 (Non-trivial torsion-free divisible Abelian groups). Of course, R = (R; 0,+,−) ∈
NtDAGroups0. Further examples are

(Rn; 0,+,−), (Qn; 0,+,−) ∈ NtDAGroups0 (7.15)

for n ∈ N \ {0}. More generally, we have the set of all functions from a non-empty set S to R
with the constant zero-function as 0 and point-wise addition:

(RS ; 0,+,−) ∈ NtDAGroups0. (7.16)

For S = R we obtain as a special case the additive group of all real functions and its subgroups
of k ∈ (N \ {0}) ∪ {∞} times continuously differentiable functions:

(RR; 0,+,−), (C k(R,R); 0,+,−) ∈ NtDAGroups0. (7.17)

This yields an infinite chain of extensions of (Q; 0,+,−) in NtDAGroups0, which are all ele-
mentary via model completeness:

(Q; 0,+,−) ⪯ (R; 0,+,−) ⪯ (C∞(R,R); 0,+,−) ⪯ . . .

⪯ (C 2(R,R); 0,+,−) ⪯ (C (R,R); 0,+,−) ⪯ (RR; 0,+,−). (7.18)

7 Quantifier Elimination for Divisible Abelian Groups · 7.3 Infinite Divisible Abelian . . . 64

Additive groups of polynomials with real or rational coefficients and indeterminatesX1, . . . ,Xn:

(R[X1, . . . , Xn]; 0,+,−), (Q[X1, . . . , Xn]; 0,+,−) ∈ NtDAGroups0. (7.19)

For C∗ = C \ {0} we have multiplicative group of the field of complex numbers:

(C∗; 1, · , −1) ∈ NtDAGroups0. (7.20)

Divisibility here corresponds to the existence of n-th roots for all n ∈ N \ {0} and all c ∈ C∗.
For R∗ = R \ {0} and Q∗ = Q \ {0} it follows that the corresponding multiplicative groups are
not divisible, thus

(R∗; 1, · , −1), (Q∗; 1, · , −1) /∈ NtDAGroups0. (7.21)

Consider now R+ = { r ∈ R | r > 0 }. Then the corresponding multiplicative group is isomor-
phic to R via the exponential function R → R+, thus

(R+; 1, · , −1) ∈ NtDAGroups0. (7.22)

The corresponding multiplicative group for Q+ = { q ∈ Q | q > 0 } is again not divisible, thus

(Q+; 1, · , −1) /∈ NtDAGroups0. (7.23)

Finally, we have seen in Lemma 7.7 that finite groups are generally not torsion-free, e.g.,

(Z/m; 0,+,−) /∈ NtDAGroups0 (7.24)

for m ∈ {2, 3, . . . }. ⌟

7.3 Infinite Divisible Abelian Groups with Prime Torsion

We keep the language LGroups and turn to infinite Abelian groups that are not torsion-free. For
a, b ∈ Z we define a mod b ∈ {0, . . . , |b| − 1} as the positive remainder upon division of a by
b. Let p ∈ N be a prime number, i.e., p /∈ {0, 1} and for all m, n ∈ N the following holds: If p
divides mn, then p divides m or p divides n.

(i) We still have ΞNtAGroups as in in (7.4).

(ii) We replace ΞTorsion0 with the following axiom:

ΞTorsionp = { px = 0 }. (7.25)

(iii) In contrast to ΞTorsion0 , our new ΞTorsionp does not model infinity of the universe. We
explicitly add suitable axioms as follows:

Ξ∞ =
{

∃x1 . . .∃xn
n
∧

i=1

n
∧

j=i+1
xi ̸= xj

∣

∣ n ∈ {2, 3, . . . }
}

, (7.26)

7 Quantifier Elimination for Divisible Abelian Groups · 7.3 Infinite Divisible Abelian . . . 65

(iv) Consider E = Mod(ΞNtAGroups ∪ ΞTorsionp ∪ ΞDivisible) and let A ∈ E. Then A \ {0A} ̸= ∅.
Let a ∈ A \ {0A}. By ΞTorsionp we have pb = 0A for all b ∈ A, while by ΞDivisible

there is b ∈ A with pb = a ̸= 0A, a contradiction. It follows that E = ∅, equivalently,
ΞNtAGroups ∪ ΞTorsionp ∪ ΞDivisible is inconsistent.

We replace ΞDivisible with the following axioms:

ΞDivisiblep = { ∃y(ry = x) | r ∈ {1, . . . , p − 1} }. (7.27)

We define the axioms and the class of non-trivial infinite divisible Abelian groups with p-torsion
as follows:

ΞNtDAGroupsp = ΞNtAGroups ∪ Ξ∞ ∪ ΞDivisiblep ∪ ΞTorsionp , (7.28)

NtDAGroupsp = Mod(ΞNtDAGroupsp). (7.29)

We immediately provide examples for structures in NtDAGroupsp. Verification of the axioms
ΞNtDAGroupsp for at least one example proves that NtDAGroupsp ̸= ∅, equivalently, ΞNtDAGroupsp

is consistent.

Example 7.9 (Infinite divisible Abelian groups with p-torsion). Let p be a prime number, con-
sider an infinite vector space V over the finite field Z/p. Then the additive group of V is divisible
with p-torsion:

(V ; 0,+,−) ∈ NtDAGroupsp. (7.30)

Recall that a vector space over a finite field is finite if and only it has finite dimension.
Concrete examples include infinite sequences of elements of Z/p:

(Z/pN; 0,+,−) ∈ NtDAGroupsp. (7.31)

Furthermore, polynomials with coefficients in Z/p and indeterminates X1, . . . , Xn:

(Z/p[X1, . . . , Xn]; 0,+,−). ∈ NtDAGroupsp. (7.32)

As a field, Z/p has an algebraic closure with universe Z/p ⊇ Z/p in which every non-constant
polynomial has a zero. Algebraic closures are generally infinite and unique up to isomorphism.
Furthermore, as an extension field, Z/p is a vector space over Z/p. For the additive group of the
algebraic closure we have

(

Z/p; 0,+,−
)

∈ NtDAGroupsp. (7.33)

⌟

The following lemma explains the choice of r ∈ {1, . . . , p − 1} in ΞDivisiblep .

Lemma 7.10. Let p be a prime number, let n ∈ N and set r = n mod p. Then r ∈ {0, . . . , p−1},
in particular, r = 0 if and only if p | n, and NtDAGroupsp ⊨ nx = rx.

Proof. Let A ∈ NtDAGroupsp, and let a ∈ A. There is q ∈ Z such that ra = (n − qp)a =
na − p(qa). Due to ΞTorsionp we have p(qa) = 0 and therefore ra = na.

7 Quantifier Elimination for Divisible Abelian Groups · 7.4 Dense Ordered Abelian . . . 66

The normal forms for terms and atoms introduced in Section 7.1 require only the axioms
ΞNtAGroups and therefore remain valid here. Our previous lemma admits even stronger normal
forms that restrict the range of all coefficients k1, ki, kj in (7.5)–(7.7) to {1, . . . , p − 1}.

Theorem 7.11. Let p be a prime number. Then the class NtDAGroupsp admits effective QE.

Proof. Consider a 1-primitive formula in weak x-elimination form

ϕ = ∃x

[

m
∧

i=1

kix = ti ∧
n
∧

j=1

ljx ̸= uj

]

. (7.34)

where ki, lj ∈ {1, . . . , p − 1}, using Lemma 7.10 and thus ΞTorsionp . The right hand sides ti and
uj are terms in which the variable x does not occur. Let

π =

[

m
∏

i=1

ki ·
n
∏

j=1

lj

]

mod p. (7.35)

Since the prime p is not a divisor of any of the ki, lj, it follows that p is not a divisor of
∏

i ki
∏

j lj either, and thus π ∈ {1, . . . , p − 1}. We set k′i = πk−1
i mod p, we note that

k′i ∈ {1, . . . , p − 1}, and we set t′i = k′iti. In the same way we obtain l′j and u′j. Then (7.34) is
equivalent to

∃x

[

m
∧

i=1

πx = t′i ∧
n
∧

j=1

πx ̸= u′j

]

. (7.36)

Let A ∈ NtDAGroupsp and consider β : A → A with β(x) = πx. For each b ∈ A, there is
a ∈ A with πa = b, using ΞDivisiblep . Thus β is surjective. It follows that (7.36) is equivalent in
NtDAGroupsp to

∃y

[

m
∧

i=1

y = t′i ∧
n
∧

j=1

y ̸= u′j

]

. (7.37)

Due to Ξ∞ we can now continue exactly as in the proof of Lemma 4.6(i) on effective QE for
infinite sets. Our formula (7.37) matches (4.5) there.

The proof of the following corollary is literally the same as the proofs of the corresponding
corollaries 7.5 and 7.6 for NtDAGroups0. It is noteworthy that groups in NtDAGroupsp also
share the trivial group as a common substructure up to isomorphism.

Corollary 7.12. Let p be a prime number. Then the class NtDAGroupsp is substructure com-
plete, model complete, complete, and decidable.

7.4 Dense Ordered Abelian Groups

We want to combine our results for dense linear orders without endpoints back in Section 5.3
with our results for torsion-free divisible Abelian groups in 7.2 above. We introduce the language
LGroups< = (0,+,−; <) of linear ordered additive groups and use t > t′ as a notational variant for

7 Quantifier Elimination for Divisible Abelian Groups · 7.4 Dense Ordered Abelian . . . 67

atomic formulas t′ < t. We start with the ordered additive group R = (R; 0,+,−; <) of the real
numbers, for which we have studied restrictions R|LLosets = (R; <) and R|LGroups = (R; 0,+,−)
in Lemma 5.6 and Lemma 7.3, respectively.

The normal forms (7.5)–(7.7) for terms and equations introduced in Section 7.1 require only
the axioms ΞNtAGroups and therefore remain valid in R. Furthermore, R admits the following
normal forms for inequalities α:

0 < 0, k1x1 +
n
∑

j=2
kjxj

>
< 0, k1 ∈ N \ {0}, kj ∈ Z \ {0}, x1, xj ∈ V (α). (7.38)

For i ∈ {1, . . . , n}, the second form in (7.38) can be rewritten in xi-elimination form :

kixi
>
<

i−1
∑

j=1
kjxj +

n
∑

j=i+1
kjxj, ki ∈ N \ {0}, kj ∈ Z \ {0}. (7.39)

Again, there is a weak xi-elimination form, which requires a left hand side as in (7.39) with an
arbitrary right hand side term t in which xi does not occur. Positive normal forms are available
from Example 3.28.

Lemma 7.13 (Fourier, 1826; Motzkin, 1936). R = (R; 0,+,−; <) admits effective QE.

Proof. Consider a positive 1-primitive formula in weak x-elimination form:

ϕ = ∃x

[

m
∧

i=1

aix = ti ∧
n
∧

j=1

uj < bjx ∧
p
∧

k=1

ckx < vk

]

. (7.40)

Let λ = lcmi,j,k{ai, bj, ck} and compute t′i, u
′
j, v

′
k as in the proof of Lemma 7.3. Then (7.40) is

equivalent to

∃x

[

m
∧

i=1

λx = t′i ∧
n
∧

j=1

u′j < λx ∧
p
∧

k=1

λx < v′k

]

. (7.41)

Using the same argument as in the proof of Lemma 7.3, it follows that (7.41) is equivalent to

∃y

[

m
∧

i=1

y = t′i ∧
n
∧

j=1

u′j < y ∧
p
∧

k=1

y < v′k

]

. (7.42)

We can now continue exactly as in the proof of Lemma 5.6 on effective QE for (R; <). Our
formula (7.42) matches the formula (5.9) there.

Corollary 7.14 (Definable sets). A set S ⊆ R is definable in R = (R; 0,+,−; <) if and only if

S ∈
{

∅, {0}, (−∞, 0), (0,∞), (−∞, 0], [0,∞), R \ {0}, R
}

. (7.43)

Proof. Since R admits QE, S ⊆ R is definable if and only if S is quantifier-free definable, using
Theorem 4.12. Let ϕ′(x) be an extended quantifier-free formula in positive normal form. Let α
be an atom in ϕ′. Using our normal forms for atoms we may assume that

α ∈
{

0 = 0, kx = 0, 0 < 0, kx < 0, 0 < kx
∣

∣ k ∈ N \ {0}
}

. (7.44)

7 Quantifier Elimination for Divisible Abelian Groups · 7.4 Dense Ordered Abelian . . . 68

For the corresponding extended atoms α(x) we obtain

[α]R ∈ D, D =
{

{0}, R, (−∞, 0), ∅, (0,∞)
}

. (7.45)

Since ϕ′ is reduced to ∨, ∧, the set [ϕ′]R is formed from sets in D via unions and intersections.
We newly obtain

D′ =
{

(−∞, 0) ∪ {0}, (0,∞) ∪ {0}, (−∞, 0) ∪ (0,∞)
}

=
{

(−∞, 0], [0,−∞), R \ {0}
}

;
(7.46)

then D ∪D′ is closed under unions and intersections. Hence [ϕ′]R = D ∪D′.

Our next goal is to identify axioms that allow us to define a model class to which the proof of
Lemma 7.13 can be generalized.

(i) The proof starts with a 1-primitive formula in (7.40), which contains inequalities in normal
form according to (7.38) and (7.39). In addition to ΞAbelian, those normal forms depend on
the monotonicity of the order:

ΞMonotone = {x < y −→ x + z < y + z}. (7.47)

(ii) The proof then follows the ideas of the proof of Lemma 7.3, which requires the axioms of
non-trivial torsion-free divisible Abelian groups as introduced in (7.13):

ΞNtDAGroups0 = ΞNtAGroups ∪ ΞTorsion0 ∪ ΞDivisible. (7.48)

In addition, the step from (7.40) to (7.41) once more requires monotonicity.

(iii) The proof finally delegates (7.42) to Lemma 5.6, the proof of which, in turn, depends on
the axioms of dense linear orders as introduced in (5.16):

ΞDensLo = ΞLosets ∪ ΞDense ∪ ΞNoEndpoints. (7.49)

Monotonicity plays quite an important role here. On the one hand, it forms the bridge between
the group structure and the order structure. On the other hand, in combination with other axioms,
it entails torsion-freeness on the group side and density and the absence of endpoints on the order
side.

Lemma 7.15 (Redundant axioms). Let A = (A; 0,+,−; <) be such that

A ⊨ ΞNtAGroups ∪ ΞDivisible ∪ ΞLosets ∪ ΞMonotone. (7.50)

Then the following hold:

(i) A ⊨ ΞTorsion0

(ii) A ⊨ ΞDense

7 Quantifier Elimination for Divisible Abelian Groups · 7.4 Dense Ordered Abelian . . . 69

(iii) A ⊨ ΞNoEndpoints.

Proof. (i) Let x ∈ A with x ̸= 0. We show by induction on n ∈ N \ {0} that nx ̸= 0. Assume
without loss of generality that 0 < x, using connectivity. For n = 1 we have 0 < x = 1 ⊙ x.
Assume now that 0 < nx holds for n ∈ N \ {0}. Then 0 < x < nx + x = (n + 1)x, using the
induction hypothesis, monotonicity, and transitivity.

(ii) Let x, y ∈ A with x < y. It follows that 0 < y − x, using monotonicity. Since A is
divisible, there is z ∈ A such that 2z = x + y, which can be rewritten as 2(z − x) − y + x = 0.
Monotonicity with the inequality 0 < y−x from above and the summand 2(z−x)−y+x yields

0 = 2(z − x) − y + x < 2(z − x) − y + x + y − x = 2(z − x). (7.51)

If z−x < 2(z−x), then 0 = (z−x)− (z−x) < 2(z−x)− (z−x) = z−x, using monotonicity;
else 0 < 2(z − x) ≤ z − x, using transitivity. Monotonicity finally yields x < z. Similarly, one
shows that z < y.

(iii) Let x ∈ A. Since A is not trivial, there is a ∈ A with a ̸= 0, without loss of generality
0 < a, using connectivity. Monotonicity yields −a < a−a = 0. Hence x < a+x and −a+x < x,
again using monotonicity.

Our analysis of the proof of Lemma 7.13 in (i)–(iii) above along with the redundancies iden-
tified in the previous lemma yield the following axioms and model class of all divisible ordered
Abelian groups:

ΞNtDAGroups< = ΞNtAGroups ∪ ΞDivisible ∪ ΞLosets ∪ ΞMonotone, (7.52)

NtDAGroups< = Mod(ΞNtDAGroups<). (7.53)

We can now apply the proof of Lemma 7.13 to the class NtDAGroups< instead of the single
structure R ∈ NtDAGroups<, which yields the following theorem.

Theorem 7.16. The class NtDAGroups< admits effective QE.

It immediately follows that NtDAGroups< is substructure complete and thus also model com-
plete. Groups in NtDAGroups< share the trivial ordered group ({0}; 0,+,−; <) as a common
substructure up to isomorphism. In combination with substructure completeness, completeness
follows via Theorem 6.9. An alternative completeness proof comes with the following corollary,
in the course of proving decidability.

Corollary 7.17. The class NtDAGroups< is complete and decidable.

Proof. The language LGroups< has a constant symbol 0. Recall that all atomic sentences have
the normal form 0 = 0 or 0 < 0. Since ⊨ 0 = 0 ←→ TRUE and NtDAGroups< ⊨ 0 < 0 ←→
FALSE, NtDAGroups< is complete and decidable for the set of all atomic sentences, and general
completeness and decidability follows by Theorem 4.26(i).

Example 7.18 (Divisible ordered Abelian groups). R = (R; 0,+,−; <) ∈ NtDAGroups<.
Further examples are

(Rn; 0,+,−; <lex), (Qn; 0,+,−; <lex) ∈ NtDAGroups< (7.54)

7 Quantifier Elimination for Divisible Abelian Groups · 7.5 Use Case: Linear Pro . . . 70

for n ∈ N \ {0} with component-wise operations and the lexicographic order. In contrast to the
lexicographic order <lex, the component-wise order < on Rn, Qn is not connected, thus

(Rn; 0,+,−; <), (Qn; 0,+,−; <) /∈ NtDAGroups<. (7.55)

Given indeterminates X1, . . . , Xn, every term order1 on {Xe1
1 · · ·X

en
n | (e1, . . . , en) ∈ Nn }

induces an order on polynomials with coefficients from a linear ordered set and indeterminates
X1, . . . , Xn. With such an order < we have, e.g.,

(R[X1, . . . , Xn]; 0,+,−; <), (Q[X1, . . . , Xn]; 0,+,−; <) ∈ NtDAGroups<. (7.56)

Recall that R+ = { r ∈ R | r > 0 }. The corresponding ordered multiplicative group is isomor-
phic to R via the exponential function R→ R+, thus

(R+; 1, · , −1; <) ∈ NtDAGroups<. (7.57)

⌟

7.5 Use Case: Linear Programming

Consider the following linear programming problem over the real numbers:

maximize: 3x1 + 4x2 subject to: 3x1 + 2x2 ≤ 500
−x1 ≤ 0
x1 ≤ 100

−x2 ≤ 0
x2 ≤ 200.

(7.58)

Using t1 ≤ t2 as a shorthand for t1 < t2 ∨ t1 = t2 this translates into an LGroups<-formula with
two free variables ζ and υ as follows:

ϕ = ∃x1∃x2(ζ ≤ 3x1 + 4x2 ∧
3x1 + 2x2 ≤ 500υ ∧ −x1 ≤ 0 ∧ x1 ≤ 100υ ∧ −x2 ≤ 0 ∧ x2 ≤ 200υ).

(7.59)

The variable ζ models an upper bound on the defining term of the objective function. This
encoding of the objective function as another constraint is a well-known technique in linear
programming. However, it requires algorithms that can take free variables, which is not always
the case, specifically not with the simplex method. The constraints in (7.58) have plain numbers
z ∈ Z on their right hand sides. We cannot express such numbers in our language LGroups< .
However, we can express zxi on the left hand sides as ±(xi + · · · + xi), as we have regularly
done with our normal forms throughout this section. Accordingly, we express the right hand
sides as zυ. Quantifier elimination results will be equivalent to ϕ for all choices of υ in Q,
including the choice 1 that we are actually interested in.

1also called monomial order or admissible order

7 Quantifier Elimination for Divisible Abelian Groups · 7.5 Use Case: Linear Pro . . . 71

Following Theorem 4.2, we reduce to 1-primitive formulas by eliminating prenex quantifiers
from the inside to the outside, starting with ∃x2 in our case, and removing constraints not con-
taining x2 from the scope of the quantifier.

∃x1(−x1 ≤ 0 ∧ x1 ≤ 100υ ∧
∃x2(ζ ≤ 3x1 + 4x2 ∧ 3x1 + 2x2 ≤ 500υ ∧ −x2 ≤ 0 ∧ x2 ≤ 200υ)).

(7.60)

The following positive 1-primitive formula corresponds to (7.40) in the proof of Lemma 7.13.
It is easy to see that this proof works also with weak inequalities:

∃x2









−3x1 + ζ ≤ 4x2
∧ 0 ≤ x2
∧ 2x2 ≤ −3x1 + 500υ
∧ x2 ≤ 200υ









. (7.61)

We multiply all the constraints with positive integers such that all occurrences of x2 get a com-
mon factor 4, which is the least common multiple of the original factors {1, 2, 4}. The result
matches (7.41):

∃x2









−3x1 + ζ ≤ 4x2
∧ 0 ≤ 4x2
∧ 4x2 ≤ −6x1 + 1000υ
∧ 4x2 ≤ 800υ









. (7.62)

Since our group of the reals is divisible, every rational number can be represented as an integer
multiple of 4. This allows us to take an abstract view of the term 4x as a variable y. The result
matches (7.42):

∃y









−3x1 + ζ ≤ y

∧ 0 ≤ y

∧ y ≤ −6x1 + 1000υ
∧ y ≤ 800υ









. (7.63)

The proof of Lemma 7.13 now redirects us to Lemma 5.6. Indeed, our (7.63) matches also
(5.11) in the proof of Lemma 5.6, where we have n = p = 2. Again, it is not hard to see that
the proof of Lemma 5.6 also works with weak inequalities. Following that proof, we combine
all upper bounds on y with all lower bounds on y and obtain the following formula. The result
matches (5.12):









−3x1 + ζ ≤ −6x1 + 1000υ
∧ −3x1 + ζ ≤ 800υ
∧ 0 ≤ −6x1 + 1000υ
∧ 0 ≤ 800υ









. (7.64)

We can now equivalently replace the subformula starting with ∃x2 in (7.60) with our quantifier-
free (7.64). After some obvious simplifications this yields

0 ≤ 800υ ∧ ∃x1(−x1 ≤ 0 ∧ x1 ≤ 100υ ∧
3x1 + ζ ≤ 1000υ ∧ −3x1 + ζ ≤ 800υ ∧ 6x1 ≤ 1000υ).

(7.65)

7 Quantifier Elimination for Divisible Abelian Groups · 7.5 Use Case: Linear Pro . . . 72

We now iterate QE for the next quantifier ∃x1. Compute a positive 1-primitive formula in normal
form:

∃x1













0 ≤ x1
∧ ζ − 800υ ≤ 3x1
∧ x1 ≤ 100υ
∧ 3x1 ≤ −ζ + 1000υ
∧ 6x1 ≤ 1000υ













. (7.66)

Multiply with the co-factors of lcm{1, 3, 6}:

∃x1













0 ≤ 6x1
∧ 2ζ − 1600υ ≤ 6x1
∧ 6x1 ≤ 600υ
∧ 6x1 ≤ −2ζ + 2000υ
∧ 6x1 ≤ 1000υ













. (7.67)

Combine all upper bounds with all lower bounds:
















0 ≤ 600υ
0 ≤ −2ζ + 2000υ
0 ≤ 1000υ

∧ 2ζ − 1600υ ≤ −2ζ + 2000υ
∧ 2ζ − 1600υ ≤ 600υ
∧ 2ζ − 1600υ ≤ 1000υ

















. (7.68)

Finally, simplification yields a quantifier-free equivalent of (7.59):

ϕ′ = 0 ≤ υ ∧ ζ ≤ 900υ ∧ ζ ≤ 1300υ. (7.69)

We now leave our formal QE framework and choose υ = 1 in (7.69). The result is a condition
on ζ describing the range of the objective function subject to the constraints. We obtain ζ ≤ 900.
Next, we choose υ = 1 and ζ = 900 in (7.65) and obtain

TRUE, 0 ≤ x1, x1 ≤ 100, 3x1 ≤ 100, 100 ≤ 3x1, 3x1 ≤ 500, (7.70)

which yields x1 = 100/3. Finally, we get back to (7.60) and choose υ = 1, ζ = 900, and
x1 = 100/3 instead of the existential quantification of x1. This yields

TRUE, TRUE, 200 ≤ x2, x2 ≤ 200, 0 ≤ x2, x2 ≤ 200, (7.71)

which can be simplified to x2 = 200. Hence, in (7.58) the maximum of the objective function
subject to the constraints is 900. Is is assumed exclusively at the point (x1, x2) = (100/3, 200).

In general, one will obtain not a unique value but an interval for the first variable x1 in (7.70).
One can then choose any value from that interval, which in general leads to another interval for
the subsequent variable x2, and so on. This allows to sample the solution space, where choices
for coordinates have to be made in the order of the quantifier elimination for the corresponding
variables.

8 Quantifier Elimination for Z-Groups

We choose the extension language L0 = (0, 1,+,−; <) of the language LGroups< = (0,+,−; <)
of ordered groups and consider the L-structure Z0 = (Z; 0, 1,+,−; <) as a discrete counterpart
of the divisible ordered Abelian group R = (R; 0,+,−; <) in Section 7.4. Recall our definition
kt = ±(t + · · · + t) for k ∈ Z \ {0} and t ∈ T .

Theorem 8.1. Z0 = (Z; 0, 1,+,−; <) does not admit QE.

Proof. It is sufficient to find a definable set that is not quantifier-free definable, using Theo-
rem 4.12. Consider the extended formula ϕ(y) with

ϕ = ∃x(2x = y), (8.1)

which defines the set [ϕ]Z0 = 2Z of all even integers. Let ϕ′(y) be an extended quantifier-free
formula, without loss of generality, in positive normal form. Let α be an atom in ϕ′. Then

α ∈
{

0 = 0, l1 = 0, ky = 0, ky = l1, 0 < 0, l1 < 0, ky < 0, ky < l1
∣

∣ k, l ∈ Z \ {0}
}

, (8.2)

up to equivalence in Z0. For the corresponding extended atom α(y) we obtain

[α]Z0 ∈ D, D =
{

∅, {z}, (−∞ . . z], [z . .∞), Z | z ∈ Z
}

. (8.3)

Since ϕ′ is reduced to ∨, ∧, the set [ϕ′]Z0 is formed from the sets in D via unions and intersec-
tions. This yields a finite disjoint union of integer intervals. Hence [ϕ]Z0 is not quantifier-free
definable.

8.1 Presburger Arithmetic

The proof of the negative result in Theorem 8.1 can be adapted to definable sets mZ instead of
2Z for arbitrary m ∈ {2, 3, . . . }. We thus switch to the infinite language

LPrA = (0, 1,+,−; <,≡(2)
1 ,≡(2)

2 , . . .) (8.4)

of Presburger Arithmetic and consider an LPrA-structure

ZPrA = (Z; 0,+,−; <,≡1,≡2, . . .), (8.5)

where the new relations are defined as follows: For z1, z2 ∈ Z we say that z1 divides z2 and we
write z1 | z2 if there exists q ∈ Z such that qz1 = z2. In these terms,

≡ZPrA
m (z1, z2) =

{

⊤ if m | z1 − z2

⊥ else,
m ∈ N \ {0}. (8.6)

73

8 Quantifier Elimination for Z-Groups · 8.1 Presburger Arithmetic 74

It follows that ZPrA ⊨ x ≡1 y ←→ TRUE. With regard to the proof of Theorem 8.1 we obtain

ZPrA ⊨ ∃x(mx = y) ←→ y ≡m 0, m ∈ N \ {0}. (8.7)

The following three lemmas recall some basic facts about ≡m in ZPrA. The proofs, which are
essentially direct applications of the axioms of Abelian groups along with definition (8.6), are
left as exercises.

Lemma 8.2 (Equivalence relation). Let m ∈ N \ {0}. Then the following hold:

(i) reflexivity: ZPrA ⊨ x ≡m x

(ii) transitivity: ZPrA ⊨ x ≡m y ∧ y ≡m z −→ x ≡m z

(iii) symmetry: ZPrA ⊨ x ≡m y −→ y ≡m x.

Hence ≡n is an equivalence relation.

Lemma 8.3 (Congruence relation). Let m ∈ N \ {0}. Then ≡m is compatible with the non-
constant functions of ZPrA in the following sense:

(i) addition: ZPrA ⊨ x ≡m x′ ∧ y ≡m y′ −→ x + y ≡m x′ + y′

(ii) additive inverse: ZPrA ⊨ x ≡m x′ −→ −x ≡m −x′.

Hence ≡m is even a congruence relation. For z1, z2 ∈ Z with z1 ≡m z2 we say that z1 is
congruent z2 modulo n. Note that compatibility with the constant function 0 in the sense of
Lemma 8.3 amounts to an instance ZPrA ⊨ 0 ≡m 0 of reflexivity, which we have already stated
in Lemma 8.2.

Lemma 8.4 (Computing with congruences). Let m, k ∈ N \ {0}. Then the following hold:

(i) ZPrA ⊨ x ≡m y ←→ x + z ≡m y + z

(ii) ZPrA ⊨ x ≡m y ←→ x − y ≡m 0

(iii) ZPrA ⊨ x ≡m y ←→ kx ≡km ky

(iv) ZPrA ⊨ x ≡km y −→ x ≡m y

(v) If gcd(k, m) = 1, then ZPrA ⊨ kx ≡m ky ←→ x ≡m y.

We generalize the normal forms for terms and equations introduced in Section 7.1 and 7.4
with regard to the constant symbol 1 in LPrA:

(i) Each term t can be written in one of the following forms:

0, k1, k1x1 + · · · + knxn, k1x1 + · · · + knxn + kn+11, (8.8)

where n ≥ 1, k, k1, . . . , kn+1 ∈ Z \ {0} and x1, . . . , xn ∈ V (t).

8 Quantifier Elimination for Z-Groups · 8.1 Presburger Arithmetic 75

(ii) Each equation α can be equivalently rewritten in one of the following forms:

0 = 0, k1 = 0, k1x1 +
n
∑

j=2
kjxj = 0, k1x1 +

n
∑

j=2
kjxj + kn+11 = 0, (8.9)

where k, k1 ∈ N \ {0}, kj ∈ Z \ {0}, and x1, xj ∈ V (α).

Alternatively, in xi-elimination form:

kixi =
n
∑

j=1
j ̸=i

kjxj, kixi =
n
∑

j=1
j ̸=i

kjxj + kn+11, (8.10)

where ki ∈ N \ {0}, kj, kn+1 ∈ Z \ {0}, and xi, xj ∈ V (α).

(iii) Each inequality α can be equivalently rewritten in one of the following forms, where we
use t1 > t2 as a notational variant of t2 < t1:

0 < 0, k1 >
< 0, k1x1 +

n
∑

j=2
kjxj

>
< 0, k1x1 +

n
∑

j=2
kjxj + kn+11 >

< 0, (8.11)

where k, k1 ∈ N \ {0}, kj ∈ Z \ {0}, and x1, xj ∈ V (α).

Alternatively, in xi-elimination form:

kixi
>
<

n
∑

j=1
j ̸=i

kjxj, kixi
>
<

n
∑

j=1
j ̸=i

kjxj + kn+11, (8.12)

where ki ∈ N \ {0}, kj, kn+1 ∈ Z \ {0}, and xi, xj ∈ V (α).

(iv) Each congruence α with modulus m ∈ N \ {0} can be equivalently rewritten in one of the
following forms:

0 ≡m 0, k1 ≡m 0, k1x1 +
n
∑

j=2
kjxj ≡m 0, k1x1 +

n
∑

j=2
kjxj + kn+11 ≡m 0, (8.13)

where k, kj, kn+1 ∈ {1, . . . , m − 1} and x1, xj ∈ V (α).

Alternatively, in xi-elimination form:

kixi ≡m
n
∑

j=1
j ̸=i

kjxj, kixi ≡m
n
∑

j=1
j ̸=i

kjxj + kn+11, (8.14)

where ki, kj, kn+1 ∈ {1, . . . , m − 1} and xi, xj ∈ V (α).

Recall that corresponding weak xi-elimination forms isolate kixi with positive ki one side of a
constraint but do not require any special form of the term on the other side of the constraint.

For the sake of a concise notation we admit summands k1 within in terms where k can become
zero. Unless stated otherwise, the corresponding summand is considered not to be present.

8 Quantifier Elimination for Z-Groups · 8.1 Presburger Arithmetic 76

Lemma 8.5 (Euclidean properties). Let m ∈ N \ {0}. Then the following hold:

(i) ZPrA ⊨
∨m−1
k=0 x ≡m k1, where 0 ⊙ 1 denotes the constant symbol 0

(ii) ZPrA ⊨
∨m−1
k=0 x ≡m y + k1

(iii) ZPrA ⊨ ¬ x ≡m y ←→
∨m−1
k=1 x ≡m y + k1

(iv) ZPrA ⊨ x ≡m y ←→
∧m−1
k=1 ¬ x ≡m y + k1 ∧

∧m−1
k=1 ¬ x ≡m y − k1.

Proof. (i) Let z ∈ Z. Division of z by m yields z = qm + r with r ∈ {0, . . . , m − 1}. It follows
that m | z − r and thus z ≡m r.

(ii) Let z1, z2 ∈ Z. Then there is k ∈ {0, . . . , m − 1} with z1 − z2 ≡m k by part (i). It follows
that z1 ≡m z2 + k by Lemma 8.4(i).

(iii) ZPrA ⊨ ¬ x ≡m y −→
∨m−1
k=1 x ≡m y + k1 follows from part (ii) via rewriting x ≡m y for

k = 0 as ¬¬ x ≡m y. Conversely, let z1, z2 ∈ Z and k ∈ {1, . . . , m − 1} such that z1 ≡m z2 + k.
Assume for a contradiction that z1 ≡m z2. Then z2 ≡m z2 + k. It follows that k ≡m 0 by
Lemma 8.4(i), and thus m | k by (8.6). This contradicts our choice of k.

(iv) First, note that ZPrA ⊨ x ≡m y ←→
∧m−1
k=1 ¬ x ≡m y + k1 is the contrapositive of part

(iii). Second, substitution of y − m for y into this contrapositive yields ZPrA ⊨ x ≡m y − m ←→
∧m−1
k=1 ¬ x ≡m y − k1, and it is easy to see that ZPrA ⊨ x ≡m y − m ←→ x ≡m y. Hence also

ZPrA ⊨ x ≡m y ←→
∧m−1
k=1 ¬ x ≡m y − k1. Together these two results entail (iv).

Part (i) of the lemma can be read as follows: Upon division of x by positive m one can obtain
a positive remainder k with k < m. This observation is closely related to the the validity of the
Euclidean algorithm in Z. Its proof indeed used division with remainder, which goes beyond the
axioms of Abelian groups and definition (8.6). The proofs of parts (ii)–(iv) are based on this
part (i). Part (iii) provides us with positive normal forms for congruences. Recall that positive
normal forms for equations and inequalities are available from Example 3.28.

Theorem 8.6 (Presburger, 1929). ZPrA = (Z; 0, 1,+,−; <,≡1,≡2, . . .) admits effective QE.

Proof. Consider a positive 1-primitive formula in weak x-elimination form:

ϕ = ∃x

[

m
∧

i=1

aix = ti ∧
n
∧

j=1

uj < bjx ∧
p
∧

k=1

ckx < vk ∧
r
∧

l=1

dlx ≡sl wl

]

. (8.15)

Let λ = lcmi,j,k,l{ai, bj, ck, dl}, compute t′i, u
′
j, v

′
k as in the proof of Lemma 7.3, and compute

s′l and w′l analogously. Then dlx ≡sl wl is equivalent to λx ≡s′l w
′
l by Lemma 8.4(iii), and thus

(8.15) is equivalent to

∃x

[

m
∧

i=1

λx = t′i ∧
n
∧

j=1

u′j < λx ∧
p
∧

k=1

λx < v′k ∧
r
∧

l=1

λx ≡s′l w
′
l

]

. (8.16)

We equivalently introduce a new variable y that stands for λx:

∃x∃y

[

y = λx ∧
m
∧

i=1

y = t′i ∧
n
∧

j=1

u′j < y ∧
p
∧

k=1

y < v′k ∧
r
∧

l=1

y ≡s′l w
′
l

]

. (8.17)

8 Quantifier Elimination for Z-Groups · 8.1 Presburger Arithmetic 77

This is semantically equivalent to

∃y

[

m
∧

i=1

y = t′i ∧
n
∧

j=1

u′j < y ∧
p
∧

k=1

y < v′k ∧
r
∧

l=1

y ≡s′l w
′
l ∧ ∃x(λx = y)

]

. (8.18)

Now we can use the equivalence (8.7) to eliminate the quantifier ∃x:

∃y

[

m
∧

i=1

y = t′i ∧
n
∧

j=1

u′j < y ∧
p
∧

k=1

y < v′k ∧
r
∧

l=1

y ≡s′l w
′
l ∧ y ≡λ 0

]

. (8.19)

If m > 0, then (8.19) is semantically equivalent to the quantifier-free formula

ϕ′ =
m
∧

i=2

t′1 = t′i ∧
n
∧

j=1

u′j < t
′
1 ∧

p
∧

k=1

t′1 < v
′
k ∧

r
∧

l=1

t′1 ≡s′l w
′
l ∧ t

′
1 ≡λ 0. (8.20)

Assume now that m = 0. Let s = lcm{s′1, . . . , s
′
r, λ}. Then (8.19) is equivalent to

∃y





n
∧

j=1

u′j < y ∧
p
∧

k=1

y < v′k ∧
∨

h∈{0,1,...,(s−1)1}

[

y ≡s h ∧
r
∧

l=1

h ≡s′l w
′
l ∧ h ≡λ 0

]



 . (8.21)

In order to see this, let µ ∈ {s′1, . . . , s
′
r, λ} and t ∈ {w′1, . . . , w

′
r, 0}, and assume that y ≡µ t. Then

there is h ∈ {0, . . . , s − 1} such that y ≡s h. It follows that µ | s | y − h, thus y ≡µ h, and
transitivity yields h ≡µ y ≡µ t. Conversely, let h ∈ {0, . . . , s − 1} such that y ≡s h and h ≡µ t.
Again, it follows that y ≡µ h and transitivity yields y ≡µ h ≡µ t. Next, (8.21) is semantically
equivalent to

∨

h∈{0,1,...,(s−1)1}

[

∃y

[

n
∧

j=1

u′j < y ∧
p
∧

k=1

y < v′k ∧ y ≡s h

]

∧
r
∧

l=1

h ≡s′l w
′
l ∧ h ≡λ 0

]

. (8.22)

We can thus restrict our attention to positive 1-primitive formulas of the form

∃y

[

n
∧

j=1

u′j < y ∧
p
∧

k=1

y < v′k ∧ y ≡s h

]

. (8.23)

If n = 0 or p = 0, then (8.23) is equivalent to ϕ′ = TRUE, because Z has no minimum or
maximum and y can be chosen as h ∓ qs for sufficiently large q ∈ N. Assume now that n > 0
and p > 0. Then (8.23) is equivalent to the quantifier-free formula

ϕ′ =
n
∨

i=1

[

n
∧

j=1

u′j < u
′
i + 1 ∧

s
∨

l=1

[

p
∧

k=1

u′i + l < v
′
k ∧ u

′
i + l ≡s h

]]

. (8.24)

The idea of (8.24) is to find u′i = maxj u′j by means of a finite case distinction and try u′i + 1,
. . . , u′i + s as candidates for y.

8 Quantifier Elimination for Z-Groups · 8.2 Use Case: Integer Programming 78

Corollary 8.7. ZPrA = (Z; 0, 1,+,−; <,≡1,≡2, . . .) is decidable.

Proof. The language LPrA has a constant symbol 0. All atomic sentences have a normal form in

Θ =
{

0 = 0, k1 = 0, 0 < 0, k1 < 0, 0 < k1, 0 ≡m 0, k′1 ≡m 0
∣

∣ k, m ∈ N \ {0}, k′ ∈ {1, . . . , m − 1}
}

. (8.25)

There is an algorithm taking ϑ ∈ Θ as input and computing τ ∈ {TRUE, FALSE} such that
ZPrA ⊨ ϑ←→ τ. Hence ZPrA is decidable.

8.2 Use Case: Integer Programming

Consider the following linear programming problem over the integers:

maximize: x1 + 3x2 subject to: 7x1 + x2 ≤ 10
−2x1 ≤ −1

−x2 ≤ 0.
(8.26)

Using t1 ≤ t2 as a shorthand for t1 < t2 ∨ t1 = t2 this translates into an LPrA-formula with
one free variable ζ as follows:

ϕ = ∃x1∃x2(ζ ≤ x1 + 3x2 ∧ 7x1 + x2 ≤ 10 ∧ −2x1 ≤ −1 ∧ −x2 ≤ 0). (8.27)

We have discussed the role of the variable ζ as an upper bound on the defining term of the
objective function already in the context of QE-based linear programming over the reals in Sec-
tion 7.5. In contrast to the situation there, the constant symbol 1 inLPrA allows us here to express
plain integer numbers directly. We again use ≤ instead of < throughout the elimination, keeping
an eye on possible issues.

We remove −2x1 ≤ −1 from the scope of ∃x2 in (8.27), which yields

∃x1(−2x1 ≤ −1 ∧ ∃x2(ζ ≤ x1 + 3x2 ∧ 7x1 + x2 ≤ 10 ∧ −x2 ≤ 0)), (8.28)

Step 1 (Elimination of ∃x2). Our input is the subformula of (8.28) starting with ∃x2. It corre-
sponds to (8.15) in the proof of Theorem 8.6:

∃x2





−x1 + ζ ≤ 3x2
∧ 0 ≤ x2
∧ x2 ≤ −7x1 + 10



 . (8.29)

Multiplication with the co-factors of λ = lcm{1, 3} = 3 yields the following instance of (8.16):

∃x2





−x1 + ζ ≤ 3x2
∧ 0 ≤ 3x2
∧ 3x2 ≤ −21x1 + 30



 . (8.30)

8 Quantifier Elimination for Z-Groups · 8.2 Use Case: Integer Programming 79

We introduce a new variable y for 3x2 and obtain the following instance of (8.19) with m = 0,
n = 2, p = 1, and r = 0:

∃y









−x1 + ζ ≤ y

∧ 0 ≤ y

∧ y ≤ −21x1 + 30
∧ y ≡3 0









. (8.31)

We compute s = a = 3 and obtain the following instance of (8.22), in which the quantified
subformula corresponds to (8.23) with n = 2 and p = 1:

2
∨

h=0

∃y









−x1 + ζ ≤ y

∧ 0 ≤ y

∧ y ≤ −21x1 + 30
∧ y ≡3 h









∧ h ≡3 0. (8.32)

There are two possible candidates for the maximum of the lower bounds on y, which we both
try, expressing the case distinction as a disjunction:

2
∨

h=0

[[

0 ≤ −x1 + ζ ∧
2
∨

l=0

[

−x1 + ζ + l ≤ −21x1 + 30
∧ −x1 + ζ + l ≡3 h

]

(8.33)

∨ −x1 + ζ ≤ 0 ∧
2
∨

l=0

[

l ≤ −21x1 + 30
∧ l ≡3 h

]

]

∧ h ≡3 0

]

.

This case distinction within (8.33) essentially matches (8.23) with n = 2, s = 3, and p = 1.
However, our use of ≤ instead of < causes two subtle differences:

1. With the two cases 0 ≤ −x1+ζ and −x1+ζ ≤ 0 we drop a summand +1 on the respective
right hand sides.

2. When substituting the candidate terms −x1 + ζ + l or l for the variable y, we must start
from l = 0 instead of l = 1. We adapt the ranges of the disjunctions over l accordingly.

This concludes the elimination of ∃x2 from the corresponding subformula of (8.28) following
the proof of Theorem 8.6. ⌟

The last atom h ≡3 0 in (8.33), and generally the last atom h ≡λ 0 in (8.22), acts as a filter
on the disjunction over h. In our instance (8.33), only h = 0 survives.1 This in turn entails
l = 0 in the second case of (8.33). With some obvious simplifications this gives us the following
equivalent of (8.33):

2
∨

l=0

(x1 − ζ ≤ 0 ∧ 20x1 + ζ ≤ 30 − l ∧ x1 − ζ ≡3 l) ∨ (0 ≤ x1 − ζ ∧ 7x1 ≤ 10). (8.34)

1This was already visible in (8.32). A corresponding simplification there would just undo the transformation of
(8.31) into (8.32). In fact, the introduction of h in (8.32) is not necessary in our case. The reason is that we
started without any congruences in (8.29).

8 Quantifier Elimination for Z-Groups · 8.2 Use Case: Integer Programming 80

We equivalently replace the subformula starting with ∃x2 in (8.28) with our quantifier-free
formula (8.34) and arrive at the following equivalent of (8.28):

∃x1

[

−2x1 ≤ −1 ∧

[

2
∨

l=0

(x1 − ζ ≤ 0 ∧ 20x1 + ζ ≤ 30 − l ∧ x1 − ζ ≡3 l)

∨ (0 ≤ x1 − ζ ∧ 7x1 ≤ 10)

]]

.

(8.35)

This can be rewritten as a disjunction of four 1-primitive formulas:

2
∨

l=0

∃x1(−2x1 ≤ −1 ∧ x1 − ζ ≤ 0 ∧ 20x1 + ζ ≤ 30 − l ∧ x1 − ζ ≡3 l) (8.36)

∨ ∃x1(−2x1 ≤ −1 ∧ 0 ≤ x1 − ζ ∧ 7x1 ≤ 10). (8.37)

Step 2a (Uniform elimination of ∃x1 in (8.36)). We treat l like a regular variable and start with
the following instance of (8.15):

∃x1









1 ≤ 2x1
∧ 20x1 ≤ −ζ + 30 − l
∧ x1 ≤ ζ

∧ x1 ≡3 ζ + l









. (8.38)

Multiplication with the co-factors of λ = lcm{1, 2, 20} = 20 yields the following instance of
(8.16):

∃x1









10 ≤ 20x1
∧ 20x1 ≤ −ζ + 30 − l
∧ 20x1 ≤ 20ζ
∧ 20x1 ≡60 20ζ + 20l









. (8.39)

We introduce a new variable y for 20x1 and obtain the following instance of (8.19) with m = 0,
n = 1, p = 2, and r = 1:

∃y













10 ≤ y

∧ y ≤ −ζ + 30 − l
∧ y ≤ 20ζ
∧ y ≡60 20ζ + 20l
∧ y ≡20 0













. (8.40)

We compute s = lcm{20, 60} = 60 and obtain the following instance of (8.22):

59
∨

h=0

∃y









10 ≤ y

∧ y ≤ −ζ + 30 − l
∧ y ≤ 20ζ
∧ y ≡60 h









∧ h ≡60 20ζ + 20l ∧ h ≡20 0. (8.41)

8 Quantifier Elimination for Z-Groups · 8.2 Use Case: Integer Programming 81

Clearly, 10 is the maximum of the lower bounds, which we must plug in to arrive at (8.24):

59
∨

h=0

59
∨

l′=0





10 + l′ ≤ −ζ + 30 − l
∧ 10 + l′ ≤ 20ζ
∧ 10 + l′ ≡60 h



 ∧ h ≡60 20ζ + 20l ∧ h ≡20 0. (8.42)

This concludes the uniform elimination of ∃x1 from the three corresponding subformulas of
(8.36), following the proof of Theorem 8.6. ⌟

The last atom h ≡20 0 of (8.42) filters the relevant choices for h in the outer disjunction such
that only h = 0, h = 20, and h = 40 remain. For each of these remaining choices, the atom
10 + l′ ≡60 h yields a unique relevant choice for l′ in the inner disjunction. Those choices for l′

are l′ = 50, l′ = 10, and l′ = 30, respectively. With some obvious simplifications this gives us
the following equivalent of (8.36):

∨

l∈{0,1,2}
(h,l′)∈{(0,50),(20,10),(40,30)}

10 + l′ ≤ 20ζ ∧ ζ ≤ 20 − l′ − l ∧ 20ζ ≡60 h − 20l. (8.43)

This unfolds as follows, where the rows are choices of (h, l′) and the columns are choices of l:

(3 ≤ ζ ≤ −30 ∧ ζ ≡3 0) ∨ (3 ≤ ζ ≤ −31 ∧ ζ ≡3 2) ∨ (3 ≤ ζ ≤ −32 ∧ ζ ≡3 1)

∨ (1 ≤ ζ ≤ 10 ∧ ζ ≡3 1) ∨ (1 ≤ ζ ≤ 9 ∧ ζ ≡3 0) ∨ (1 ≤ ζ ≤ 8 ∧ ζ ≡3 2)

∨ (−1 ≤ ζ ≤ −10 ∧ ζ ≡3 2) ∨ (−1 ≤ ζ ≤ −11 ∧ ζ ≡3 1) ∨ (−1 ≤ ζ ≤ −12 ∧ ζ ≡3 0)
(8.44)

The first and the last row of (8.44) are equivalent to FALSE due to the inequalities. The second
row gives us ζ ∈ {1, 4, 7, 10} ∪ {3, 6, 9} ∪ {2, 5, 8}, which can be written in LPrA as

1 ≤ ζ ∧ ζ ≤ 10. (8.45)

Step 2b (Elimination of ∃x1 in (8.37)). We start with the following instance of (8.15):

∃x1





1 ≤ 2x1
∧ ζ ≤ x1
∧ 7x1 ≤ 10



 . (8.46)

Multiplication with the co-factors of a = lcm{1, 2, 7} = 14 yields an instance of (8.16):

∃x1





7 ≤ 14x1
∧ 14ζ ≤ 14x1
∧ 14x1 ≤ 20



 . (8.47)

We introduce y for 14x1 and obtain an following instance of (8.19) with m = 0, n = 2, p = 1,
and r = 0:

∃y









7 ≤ y

∧ 14ζ ≤ y

∧ y ≤ 20
∧ y ≡14 0









. (8.48)

8 Quantifier Elimination for Z-Groups · 8.3 Definable Sets in Presburger Arithmetic 82

We compute s = λ = 14 and obtain the following instance of (8.22), in which the quantified
subformula corresponds to (8.23) with n = 2 and p = 1:

13
∨

h=0

∃y









7 ≤ y

∧ 14ζ ≤ y

∧ y ≤ 20
∧ y ≡14 h









∧ h ≡14 0. (8.49)

There are two possible candidates for the maximum of the lower bounds on y, which we both
try in a case distinction:

13
∨

h=0

[[

14ζ ≤ 7 ∧
13
∨

l=0

[

7 + l ≤ 20
∧ 7 + l ≡14 h

]

∨ 7 ≤ 14ζ ∧
13
∨

l=0

[

14ζ + l ≤ 20
∧ 14ζ + l ≡14 h

]

]

∧ h ≡14 0

]

.

(8.50)

This concludes the elimination of ∃x1 from (8.37) following the proof of Theorem 8.6. ⌟

The only possible solution for the last constraint h ≡14 0 in (8.50) is h = 0. It follows that the
only possible solutions of 7 + l ≡14 0 and 14ζ + l ≡14 0 are l = 7 and l = 0, respectively. With
some obvious simplifications (8.50) is equivalent to 2ζ ≤ 1 ∨ (1 ≤ 2ζ ∧ 7ζ ≤ 10), which is in
turn equivalent to

ζ ≤ 1. (8.51)

Taking our elimination results in (8.45) and (8.51) together, we obtain a quantifier-free equiv-
alent of (8.35) and hence also of our original input formula (8.27):

ζ ≤ 10. (8.52)

The final QE result in (8.52) makes a statement about the integer linear programming problem
in (8.26): The maximum value of the objective function x1+3x2 subject to the constraints equals
10. For constructing a point where the maximum is assumed, we get back to the result (8.35)
of the elimination of ∃x2. We drop the quantifier ∃x1, substitute [10/ζ], and simplify. This
yields x1 = 1. Next, we get back to our initial input (8.27), drop both quantifiers, substitute
[10/ζ, 1/x1], and simplify. This yields x2 = 3. Hence, the maximum is assumed exclusively at
the point (x1, x2) = (1, 3).

8.3 Definable Sets in Presburger Arithmetic

A set A ⊆ Z is called periodic if there exists p ∈ N \ {0} such that for all z ∈ Z the following
condition holds:

z ∈ A iff z + p ∈ A. (8.53)

Suitable numbers p are then called a period of A. It is easy to see that within the definition,
(8.53) can be equivalently phrased as

if z ∈ A then z ± p ∈ A. (8.54)

8 Quantifier Elimination for Z-Groups · 8.3 Definable Sets in Presburger Arithmetic 83

Example 8.8 (Periodic sets). The sets ∅, 2Z, 6Z, and 2Z∪ (3Z+ 1) are periodic. All those sets
have period 6. The set 2Z also has period 2, and ∅ has period p for all p ∈ N \ {0}. ⌟

For a set A ⊆ Z we define the complement of A as Z \ A. We write ∁A for Z \ A and agree
that the unary operator ∁ binds stronger than all binary operators.

Lemma 8.9 (Closedness under Boolean operations). Let A, B ⊆ Z be periodic. Then also ∁A,
A ∪ B, and A ∩ B are periodic.

Proof. Let a, b ∈ N \ {0} be periods of A and B, respectively. Starting with ∁A, we have z ∈ A
if and only if z + a ∈ A by (8.53) and therefore z ∈ ∁A if and only if z + a ∈ ∁A. Next,
consider A ∪ B. Let l = lcm{a, b}, and let a′ = l/a and b′ = l/b. Let z ∈ A ∪ B. If z ∈ A, then
z ± l = z ± a′a ∈ A. If z ∈ B, then z ± l = z ± b′b ∈ B. In both cases, z ± l ∈ A ∪ B. Finally,
A ∩ B = ∁

(

∁A ∪ ∁B
)

by de Morgan’s law, and it follows that A ∩ B is periodic with a period
l.

We agree that gcd(a, b) ≥ 0 for a, b ∈ Z. The following lemma is commonly known as
Bézout’s identity. It has been stated for the integers by Bachet de Méziriac in 1624 and proved
by Bézout for polynomials in 1779. We give a proof over the integers, which is the relevant
domain here.

Lemma 8.10 (Bézout, 1779). Let a, b ∈ Z with gcd(a, b) = g. Then there exist u, v ∈ Z such
that ua+vb = g. Moreover, the integers of the form as+btwith s, t ∈ Z are exactly the multiples
of g.

Proof. If a = 0, then g = ±b, and we can choose u = 0 and v = ±1. Assume now that a ̸= 0.
Let ⟨a, b⟩ = { ua + vb ∈ Z | u, v ∈ Z } and denote ⟨a, b⟩∗ = ⟨a, b⟩ ∩ [1 . .∞). It is easy to see
that ⟨a, b⟩∗ ̸= ∅. Let d = min ⟨a, b⟩∗. It is easy to see that g | d. Division with remainder yields
a = qd+ r with r ∈ [0 . . d− 1]. It follows that a = q(ua+ vb) + r, thus r = (1− qu)a+ (−qv)b,
and therefore r = 0, due to the minimality of d ∈ ⟨a, b⟩∗. Hence d | a, analogously d | b, and
together d | g. We have shown that g | d and d | g, and with g ≥ 0 it follows that d = g.

For the second part of the lemma, let d = kg be a multiple of g = ua + vb. Then d =
kua + kvb ∈ ⟨a, b⟩. Conversely, for d ∈ ⟨a, b⟩ it is easy to see that g | d = ua + vb.

From a modern point of view, and using concepts that were not available to Bézout at the
time, the lemma states that, as a Euclidean domain, Z is also a principal ideal domain and that
⟨a, b⟩ = ⟨g⟩. Of course, the first part of the lemma has its algorithmic counterpart in the extended
Euclidean algorithm, which was published by Saunderson in 1740. Our proof of the following
theorem requires both parts.

Theorem 8.11 (Linear congruence in one variable). Let a, b ∈ Z, let m ∈ N \ {0}, and let
g = gcd(a, m) > 0. Then the following hold:

(i) ZPrA ⊨ ∃x(ax ≡m b) if and only if g | b.

(ii) Assume that g | b. Then ax ≡m b has exactly g solutions in {0, . . . , m − 1}. All those g
solutions are congruent modulo m/g.

8 Quantifier Elimination for Z-Groups · 8.3 Definable Sets in Presburger Arithmetic 84

Proof. (i) By definition, ∃x(ax ≡m b) is equivalent to ∃x∃y(ax + my = b), and we can apply
the second part of Bézout’s Lemma 8.10.

(ii) Let a′ = a/g, b′ = b/g, m′ = m/g. Then ax ≡m b is equivalent to

a′x ≡m′ b′ (8.55)

by Lemma 8.4(iii). It is easy to see that gcd(a′, m′) = 1. Thus by Bézout’s Lemma 8.10 there
are u, v ∈ Z with a′u + m′v = 1, from which it follows that a′u ≡m′ 1. Moreover, gcd(u, m′) | 1,
thus gcd(u, m′) = 1, and multiplication of (8.55) with u equivalently yields

x ≡m′ b′u, (8.56)

using Lemma 8.4(v). Division with remainder yields b′u = qm′ + r with a unique remainder
r ∈ {0, . . . , m′ − 1}. Since b′u ≡m′ r, it follows that (8.56) is equivalent to

x ≡m′ r. (8.57)

The set of all solutions of (8.57), and thus of the original congruence a ≡m b, is m′Z+r. Finally,

(m′Z + r) ∩ {0, . . . , m − 1} = {r, r + m′, . . . , r + (g − 1)m′}. (8.58)

Regarding the equality in (8.58), notice that m′(g − 1) + r = m − (m′ − r) ≤ m − 1 and
m′g + r = m + r > m − 1. From the right hand side of (8.58) we can read off the cardinality of
the set, which is g.

The solutions in (8.58) are called essentially different solutions of a ≡m b. The following
corollary is an immediate consequence of Theorem 8.11.

Corollary 8.12 (Sets generated by congruences). Let a, b ∈ Z, let m ∈ N \ {0}, and let g =
gcd(a, m). Consider the extended formula α(x) with α = (ax ≡m b). Then [α]ZPrA is a periodic
set with period m/g, possibly empty.

A set A ⊆ Z is called ultimately periodic if there exist n ∈ N \ {0} and periodic sets A+ and
A− such that

A ∩ (−∞ . .−n] = A− ∩ (−∞ . .−n] and A ∩ [n . .∞) = A+ ∩ [n . .∞). (8.59)

Example 8.13 (Ultimately periodic sets).

(i) The following set is ultimately periodic:

A =
(

5Z ∩ (−∞ . . 233]
)

∪ {2, 3, 5, 8, 13, 21, 34, 55} ∪
(

89Z ∩ [144 . .∞)
)

. (8.60)

For instance, n = 1000, A− = 5Z, and A+ = 89Z.

(ii) Consider a directed graph (V,E). For v, w ∈ V the set of all possible lengths of paths from
v to w is an ultimately periodic set. The intuition is that a path with a length greater than
|E| can only be constructed by iterating loops of certain lengths within that path. This in
turn allows arbitrarily many iterations.

8 Quantifier Elimination for Z-Groups · 8.3 Definable Sets in Presburger Arithmetic 85

(iii) Consider a a context-free language L. The set of all possible word lengths in L is an
ultimately periodic set. This observation is related to the Pumping Lemma. ⌟

Lemma 8.14 (Sufficient conditions for ultimate periodicity). Let A ⊆ Z.

(i) If A is periodic, then A is ultimately periodic.

(ii) If A is bounded, then A is ultimately periodic.

(iii) Assume that A is periodic, and let z, z′ ∈ Z. Then A ∩ [z . . z′], A ∩ (−∞ . . z′), and
A ∩ [z . .∞) are ultimately periodic. Notice that our choice of z, z′ admits z > z′ with
[z . . z′] = ∅.

Proof. (i) Assume that A is periodic. Then we can choose A− = A+ = A and any n ∈ N \ {0}.
(ii) Assume that A is bounded with lower bound l ∈ Z and upper bound u ∈ Z. Then

A ⊆ [l . . u]. For n = max{|l|, |u|} + 1 we obtain A ⊆ [−n + 1 . . n − 1], and we can choose
A− = A+ = ∅, which is periodic.

(iii) To start with, A ∩ [z . . z′] is bounded so that ultimate periodicity follows from (ii). Next,
for A ∩ (−∞ . . z′) we can choose n = |z′|+ 1, A− = A, and A+ = ∅. Similarly, for A ∩ [z . .∞)
we choose n = |z| + 1, A− = ∅, and A+ = A.

Lemma 8.15 (Closedness under Boolean operations). Let A, B ⊆ Z be ultimately periodic.
Then also ∁A, A ∪ B, and A ∩ B are ultimately periodic.

Proof. Let n, m ∈ N \ {0}, and let A+, A−, B+, B− be periodic sets such that

A ∩ [n . .∞) = A+ ∩ [n . .∞), A ∩ (−∞ . .−n] = A− ∩ (−∞ . .−n],

B ∩ [m . .∞) = B+ ∩ [m . .∞), B ∩ (−∞ . .−m] = B− ∩ (−∞ . .−m].
(8.61)

Starting with ∁A, it follows from (8.61) that also

∁A ∩ [n . .∞) =
(

∁A ∩ [n . .∞)
)

∪
(

∁ [n . .∞) ∩ [n . .∞)
)

=
(

∁A ∪ ∁[n . .∞)
)

∩ [n . .∞)

= ∁
(

A ∩ [n . .∞)
)

∩ [n . .∞)

= ∁
(

A+ ∩ [n . .∞)
)

∩ [n . .∞)

= ∁A
+ ∩ [n . .∞)

(8.62)

and, analogously, ∁A ∩ (−∞ . .−n] = ∁A− ∩ (−∞ . .−n]. According to Lemma 8.9, ∁A+

and ∁A− are periodic sets. Therefore, ∁A is ultimately periodic. Next, consider A ∪ B. Let
µ = max{n, m}. It follows from (8.61) that

A ∩ [µ . .∞) = A+ ∩ [µ . .∞), A ∩ (−∞ . .−µ] = A− ∩ (−∞ . .−µ],

B ∩ [µ . .∞) = B+ ∩ [µ . .∞), B ∩ (−∞ . .−µ] = B− ∩ (−∞ . .−µ].
(8.63)

From (8.63) it follows in turn that also
(

A ∪ B
)

∩ [µ . .∞) =
(

A ∪ B
)

∩ [µ . .∞) ∩ [µ . .∞)

=
((

A ∩ [µ . .∞)
)

∪
(

B ∩ [µ . .∞)
))

∩ [µ . .∞)

=
((

A+ ∩ [µ . .∞)
)

∪
(

B+ ∩ [µ . .∞)
))

∩ [µ . .∞)

=
(

A+ ∪ B+) ∩ [µ . .∞)

(8.64)

8 Quantifier Elimination for Z-Groups · 8.3 Definable Sets in Presburger Arithmetic 86

and, analogously, (A ∪ B) ∩ (−∞ . .−µ] = (A− ∪ B−) ∩ (−∞ . .−µ]. According to Lemma 8.9,
A+∪B+ and A−∪B− are periodic sets. Therefore, A∪B is ultimately periodic. Finally, A∩B =
∁
(

∁A ∪ ∁B
)

by de Morgan’s law, and it follows that also A ∩ B is ultimately periodic.

The main result of this section is a special case of a result by Ginsburg and Spanier, who
more generally considered subsets of Zn defined by extended Presburger formulas ϕ(x1, . . . , xn)
along with a generalization of ultimately periodic sets in Z to semi-linear sets in Zn.

Theorem 8.16 (Ginsburg–Spanier, 1964). A set A ⊆ Z is definable in ZPrA if and only if A is
ultimately periodic.

Proof. Assume that A is definable. Let ϕ(x) be an extended formula with [ϕ]ZPrA = A. There is
a positive extended quantifier-free formula ϕ′(x) with ZPrA ⊨ ϕ←→ ϕ′. Since

ZPrA ⊨ x = y ←→ x − 1 < y ∧ y < x + 1, (8.65)

we can assume that there are no equations in ϕ′. It follows that all atomic formulas in ϕ′ are
either atomic sentences or have one of the following normal forms

(a) kx >
< 0 or kx >

< l1 with k ∈ N \ {0} and l ∈ Z \ {0}

(b) kx ≡m 0 or kx ≡m l1 with m ∈ N \ {0} and k, l ∈ {1, . . . , m − 1}.

According to Theorem 8.11, the normal forms in (b) are either equivalent to FALSE or to a
disjunction of atomic formulas where each one is of the form

(b′) x ≡m 0 or x ≡m l1 with m ∈ N \ {0} and l ∈ {1, . . . , m − 1}.

All atomic sentences are equivalent to either TRUE or FALSE, and all occurrences of TRUE,
FALSE in ϕ′ can be equivalently eliminated. Hence ϕ′ is either equivalent to one of TRUE,
FALSE with [TRUE]ZPrA = Z and [FALSE]ZPrA = ∅ periodic, or to a disjunctive normal form
∨

i ϕ
′
i, where each ϕ′i is of the form

n
∧

j=1

uj < bjx ∧
p
∧

k=1

ckx < vk ∧
r
∧

l=1

x ≡sl wl (8.66)

with bj, ck, sl ∈ N \ {0}, uj, vk ∈ { 0, k1 | k ∈ Z \ {0} }, wl ∈ {0, 1, . . . , (sl − 1)1}. We may
assume that r > 0, since one can equivalently add to ϕ′i, e.g., x ≡1 0. Let s = lcm{s1, . . . sr}.
Then (8.66) is equivalent to

∨

h∈{0,1,...,(s−1)1}

[

n
∧

j=1

uj < bjx ∧
p
∧

k=1

ckx < vk ∧ x ≡s h ∧
r
∧

l=1

h ≡sl wl

]

. (8.67)

Each
∧

l h ≡sl wl is a sentence and thus equivalent to either TRUE or FALSE. It follows that ϕ′

is either equivalent to FALSE, again with [FALSE]ZPrA = ∅ periodic, or to a disjunctive normal
form

∨

i ϕ
′′
i , where each ϕ′′i is of the form

n
∧

j=1

uj < bjx ∧
p
∧

k=1

ckx < vk ∧ x ≡s h. (8.68)

8 Quantifier Elimination for Z-Groups · 8.4 The Ring and the Ordered Ring of the . . . 87

Let µ = maxj
⌊

u
ZPrA
j /b

ZPrA
j

⌋

and ν = mink
⌈

v
ZPrA
k /c

ZPrA
k

⌉

. Using the extended formula ϕ′′i (x), we
obtain

[ϕ′′i]
ZPrA =



















[x ≡s h]ZPrA if n = p = 0
[x ≡s h]ZPrA ∩ (−∞ . . ν] if n = 0, p > 0
[x ≡s h]ZPrA ∩ [µ . .∞) if n > 0, p = 0
[x ≡s h]ZPrA ∩ [µ . . ν] if n > 0, p > 0,

(8.69)

where possibly [µ . . ν] = ∅. According to Corollary 8.12, [x ≡s h]ZPrA is periodic, and using
Lemma 8.14 it follows that [ϕ′′i]

ZPrA is ultimately periodic. Finally,

A = [ϕ]ZPrA = [ϕ′]ZPrA =
[

∨

i ϕ
′′
i

]ZPrA =
⋃

i[ϕ
′′
i]

ZPrA (8.70)

is ultimately periodic by Lemma 8.15.
Conversely, assume that A is ultimately periodic. Let n ∈ N \ {0}, and let A−, A+ ⊆ Z be

periodic sets such that A ∩ (−∞ . .−n] = A− ∩ (−∞ . .−n] and A ∩ [n . .∞) = A+ ∩ [n . .∞). It
follows that

A =
(

A− ∩ (−∞ . .−n]
)

∪
(

A ∩ [−n + 1 . . n − 1]
)

∪
(

A+ ∩ [n . .∞)
)

. (8.71)

Let p+ be a period of A+ and consider the finite set A+ ∩ [1 . . p+] = {z+1 , . . . , z
+
m}. Then z ∈ A+

if and only if there is z+i ∈ {z
+
1 , . . . , z

+
m} ⊆ N \ {0} and k ∈ Z with z = z+i + kp+. Thus

A+ = [ϕ+]ZPrA with ϕ+ =
m
∨

i=1

∃k(x = z+i 1 + p+k), (8.72)

using the extended formula ϕ+(x). We analogously construct ϕ− =
∨

j ∃k(x = z−j 1+p−k) such
that A− = [ϕ−]ZPrA . Finally, consider the finite set A ∩ [−n + 1 . . n − 1] = {a1, . . . , ar}:

A ∩ [−n + 1 . . n − 1] = [ϕ0]ZPrA with ϕ0 =
r
∨

i=1

{

x = 0 if ai = 0
x = ai1 else,

(8.73)

using the extended formula ϕ0(x). Hence

A = [ϕ]ZPrA for ϕ = (x < −n + 1 ∧ ϕ−) ∨ ϕ0 ∨ (n − 1 < x ∧ ϕ+), (8.74)

using the extended formula ϕ(x).

8.4 The Ring and the Ordered Ring of the Integers

Our next goal is to add multiplication and investigate the ring and the ordered ring of integers.
While both are certainly interesting from a practical point of view, we will obtain negative re-
sults. We need two well-known theorems, which we present here without proofs. The first one is
the undecidability of Peano Arithmetic, i.e., the natural numbers in the language LPeA = (+, ·).

Theorem 8.17 (Gödel, 1931; Rosser 1936). NPeA = (N; +, ·) is undecidable.

8 Quantifier Elimination for Z-Groups · 8.4 The Ring and the Ordered Ring of the . . . 88

It is easy to see that 0, 1 ∈ N, ordering, and congruences are definable in NPeA. Recall
that expansion structures of undecidable structures are undecidable as well, by Corollary 4.20.
Therefore it is generally interesting to formulate undecidability results for small languages.

The second result we need is Lagrange’s Four-square Theorem. It provides an integer coun-
terpart to the observation that every non-negative real number can be represented as a square of
a real number, which we have used, e.g., in the proof of Theorem 4.13.

Theorem 8.18 (Lagrange, 1770). Every non-negative integer can be represented as a sum of
four squares of integers.

We are now equipped to consider the integers Z instead of N in the Peano language LPeA.

Theorem 8.19. ZPeA = (Z; +, ·) is undecidable.

Proof. Assume for a contradiction that ZPeA is decidable. Using Lagrange’s Four-square Theo-
rem 8.18, the substructure NPeA ⊆ ZPeA is definable by χN(x) with

χN = ∃y1∃y2∃y3∃y4(x = y1 · y1 + y2 · y2 + y3 · y3 + y4 · y4). (8.75)

It follows that NPeA is decidable by Theorem 6.6, which contradicts the Gödel–Rosser Theo-
rem 8.17.

Corollary 8.20. Every expansion structure of ZPeA is undecidable. This holds in particular for
the ring and the ordered ring of the integers:

(i) ZRings = (Z; 0, 1,+,−, ·) is undecidable.

(ii) ZRings< = (Z; 0, 1,+,−, · ; <) is undecidable.

Proof. This is a direct application of Corollary 4.20.

So far, we have derived quite a number of decidability results via Theorem 4.26, which com-
bines effective quantifier eliminability with effective equivalence to τ ∈ {TRUE, FALSE} of
atomic formulas in one or zero variables, depending on the availability of a constant symbol
in the language. We are now in a situation where we have derived undecidability of the ring and
the ordered ring of integers not via effective QE but via reduction to another known undecidabil-
ity result, namely the Gödel–Rosser Theorem for Peano Arithmetic. On these grounds we can
use the contrapositive of Theorem 4.26 to disprove effective quantifier eliminability.

Corollary 8.21. Consider the ring of integers and the ordered ring of integers.

(i) ZRings = (Z; 0, 1,+,−, ·) does not admit effective QE.

(ii) ZRings< = (Z; 0, 1,+,−, · ; <) does not admit effective QE.

Proof. (i) Note that LRings has a constant symbol. Assume for a contradiction that ZRings admits
effective QE. All atomic sentences have a normal form in Θ = { 0 = 0, k1 = 0 | k ∈ N \
{0} }. There is an algorithm taking ϑ ∈ Θ as input and computing τ ∈ {TRUE, FALSE} such
that ZRings ⊨ ϑ ←→ τ. Hence ZRings is decidable by Theorem 4.26(i). This contradicts our
corresponding undecidability result in Corollary 8.20 above.

(ii) The same argument as in (i) holds for ZRings< instead of ZRings, considering also normal
forms of inequalities, i.e., Θ = { 0 = 0, k1 = 0, 0 < 0, k1 < 0, 0 < k1 | k ∈ N \ {0} }.

8 Quantifier Elimination for Z-Groups · 8.5 Presburger Arithmetic with Divisibility 89

8.5 Presburger Arithmetic with Divisibility

We now leave multiplication aside and consider the additive ordered group of the integers along
with several flavors of divisibility relations instead of congruences. As a preparation, we remind
ourselves of the Fundamental Theorem of Arithmetic, the first complete proof of which has
been given by Gauss. This came surprisingly late, taking into consideration that the existence of
prime decompositions in a geometric setting was known to Euclid around 300 BC and proved
by Kamāl al-Dı̄n al-Fārisı̄ around 1300.

Theorem 8.22 (Gauss, 1801). Every integer greater than 1 can be represented uniquely as a
product of prime numbers, up to the order of the factors.

To start with, we consider LDivP = (0, 1,+,−; <, 1|(1), 2|(1), . . .) along with ZDivP where

n|ZDivP (z) =

{

⊤ if n | z
⊥ else,

n ∈ N \ {0}, z ∈ Z. (8.76)

We refer to n| as a passive divisibility.2 It is quite obvious that ZDivP is ZPrA in disguise, and thus
our results are positive. Nevertheless, it is worth having a look at the exact proof argument.

Theorem 8.23. ZDivP = (Z; 0, 1,+,−; <, 1|, 2|, . . .) admits effective QE.

Proof. Let n ∈ N \ {0}, and let z1, z2 ∈ Z. Recall from (8.6) that ≡nZPrA (z1, z2) = ⊤ if and
only if n | z1 − z2. It follows that passive LDivP divisibilities n|(t) can be translated into LPrA
congruences ≡n, and vice versa:

ZDivP ⊨ n|(t) iff ZPrA ⊨ t ≡n 0, ZPrA ⊨ t1 ≡n t2 iff ZDivP ⊨ n|(t1 − t2), (8.77)

where t, t1, t2 are terms over the common algebraic sublanguage (0, 1,+,−) of LDivP and LPrA.
On these grounds, a quantifier elimination procedure for ZDivP is obtained as follows. Let ϕ(x)
be an extended LDivP-formula with x ∈ Vk. Compute an LPrA-formula ϕ̄ by translating every
passive divisibility in ϕ into a congruence. Apply QE in ZPrA to compute a quantifier-free
LPrA-formula ϕ̄′ with ZPrA ⊨ ϕ̄ ←→ ϕ̄′, using Theorem 8.6. Finally, compute a quantifier-
free LDivP-formula ϕ′ by translating every congruence in ϕ̄′ back into a passive divisibility. For
z ∈ Zk we have

ZDivP ⊨ ϕ(z) iff ZPrA ⊨ ϕ̄(z) iff ZPrA ⊨ ϕ̄′(z) iff ZDivP ⊨ ϕ′(z), (8.78)

using extended formulas ϕ(x), ϕ̄(x), ϕ̄′(x), and ϕ′(x). Hence, ZDivP ⊨ ϕ←→ ϕ′.

Decidability of ZDivP follows similarly to Corollary 8.7 for Presburger Arithmetic.

Corollary 8.24. ZDivP = (Z; 0, 1,+,−; <, 1|, 2|, . . .) is decidable.

2The argument term t of n|(t) is passive in the sense that it is being trial divided by n.

8 Quantifier Elimination for Z-Groups · 8.5 Presburger Arithmetic with Divisibility 90

Having coined the notion of passive divisibilities it is natural to think about active divisibilities
for a moment. We consider the languageLDivA = (0, 1,+,−; <, |1(1), |2(1), . . .) along with ZDivA
where

|nZDivA (z) =

{

⊤ if z | n
⊥ else,

n ∈ N \ {0}, z ∈ Z. (8.79)

We refer to |n as an active divisibility. We encounter a situation where QE is not admissible but
decidability holds.

Theorem 8.25. ZDivA = (Z; 0, 1,+,−; <, |1, |2, . . .) does not admit QE.

Proof. Let n ∈ N \ {0} with prime decomposition n = p
e1
1 · · · p

ek
k , and let P1 = {1, p1, . . . , p

e1
1 },

. . . , Pk = {1, pk, . . . , p
ek
k }. Then the finite set of all integer divisors of n can be computed as

D = {± q1 · · · qk ∈ Z | q1 ∈ P1, . . . , qk ∈ Pk }. (8.80)

Thus active divisibilities |n(t) with terms t can be equivalently rewritten as disjunctions of equa-
tions by means of the equivalence

ZDivA ⊨ |n(t) ←→
∨

k∈D

t = k1. (8.81)

It follows that the quantifier-free definable sets in ZDivA are the same as in Z0. Hence ZDivA does
not admit QE, according to the proof of Theorem 8.1.

Theorem 8.26. ZDivA = (Z; 0, 1,+,−; <, |1, |2, . . .) is decidable.

Proof. Let ϑ be an LDivA-sentence. We rewrite all active divisibilities |n(t) in ϑ according to
(8.81) and obtain an L0-sentence ϑ̄ with ZDivA ⊨ ϑ ←→ ϑ̄. Since ZDivA|L0 = Z0 = ZPrA|L0 , we
can decide ϑ in ZDivA by applying to ϑ̄ any decision procedure for ZPrA.

We finally generalize from active and passive divisibilities to the regular binary divisibility
relation in Z. Consider LDiv =

(

0, 1,+,−; <, |(2)) along with ZDiv where

|ZDiv (z1, z2) =

{

⊤ if z1 | z2

⊥ else,
z1, z2 ∈ Z. (8.82)

We are heading for negative results regarding both quantifier eliminability and decidability
of ZDiv. Recall that we have obtained corresponding negative results for ZRings via step-wise
reduction to the undecidable structure NPeA known from the Gödel–Rosser Theorem 8.17. For
establishing a similar chain of arguments for ZDiv, we consider the language LRob = (+; |)
along with NRob = (N; +; |) as a foundational undecidable structure. We attribute the following
theorem to Julia Robinson. Robinson has actually shown a slightly stronger result considering
(N; s; |) with the successor function instead of addition, using essentially the proof given below.

Theorem 8.27 (J. Robinson, 1949). NRob = (N; +; |) is undecidable.

8 Quantifier Elimination for Z-Groups · 8.5 Presburger Arithmetic with Divisibility 91

Proof. We show that the graph of the multiplication in N is definable in NRob. Define the ex-
tended formula λ(x1, x2, y) with

λ = x1 | y ∧ x2 | y ∧ ∀y′(0 < y′ ∧ x1 | y′ ∧ x2 | y′ −→ y | y′). (8.83)

For n1, n2, m ∈ N \ {0} we have NRob ⊨ λ(n1, n2, m) if and only if lcm(n1, n2) = m. As an
intermediate step, define η(x1, y) with

η = λ[x1 + 1/x2]. (8.84)

For n1, m ∈ N \ {0} we have NRob ⊨ η(n1, m) if and only if m = lcm(n1, n1 + 1) = n1(n1 + 1) =
n2

1 + n1. We use η for constructing σ(x1, y) with

σ = η[x1 + y/y]. (8.85)

Then for n1, m ∈ N \ {0} we have NRob ⊨ σ(n1, m) if and only if n2
1 = m. Next, define

µ∗(x1, x2, y) with

µ∗ = ∃x′1∃x
′
2∃s(σ[x′1/y] ∧ σ[x2/x1, x

′
2/y] ∧ σ[x1 + x2/x1, s/y]

∧ s = x′1 + 2y + x′2).
(8.86)

For n1, n2, m ∈ N \ {0} we have NRob ⊨ µ∗(n1, n2, m) if and only if there exist n′1, n′2, ns ∈ Z
such that

n′1 = n2
1, n′2 = n2

2, ns = (n1 + n2)2, and ns = n′1 + 2m + n′2. (8.87)

This is equivalent to n1n2 = m by the binomial identity (n1 + n2)2 = n2
1 + 2n1n2 + n

2
2. Finally,

let ν = x1 ̸= 0 ∧ x2 ̸= 0 ∧ y ̸= 0 and define µ(x1, x2, y) with

µ = (ν ∧ µ∗(x1, x2, y)) ∨ (¬ν ∧ (y = 0←→ x1 = 0 ∨ x2 = 0)). (8.88)

Then for all n1, n2, m ∈ N we have NRob ⊨ µ(n1, n2, m) if and only if n1n2 = m.
Next, let L = (+, · ; |), and let N = (N; +, · ; |). Then N is an L-expansion of both NPeA

and NRob. We have shown above that N ⊨ x1 · x2 = y ←→ µ. We now show that for all
L-sentences ϑ one can compute an LRob-sentence ϑ′ such that N ⊨ ϑ ←→ ϑ′. We proceed by
induction on the number n of occurrences of the function symbol · in ϑ. If n = 0, then we can
choose ϑ′ = ϑ. Else, let v1, v2, w be variables that do not occur in µ, ϑ. Select any subterm of
the form t1 · t2 in ϑ and let ϕ be the L-formula obtained from ϑ by replacing that subterm with
w. Then

N ⊨ ϑ ←→ ϑ̃′, ϑ̃′ = ∃v1∃v2∃w(v1 = t1 ∧ v2 = t2 ∧ µ[v1/x1, v2/x2, w/y] ∧ ϕ), (8.89)

and by the induction hypothesis one can compute an LRob-sentence ϑ′ such that N ⊨ ϑ̃′ ←→ ϑ′.
Finally, assume for a contradiction that NRob is decidable. We give a decision procedure for

NPeA. Let ϑ be an LPeA-sentence. Compute an LRob-sentence ϑ′ with N ⊨ ϑ ←→ ϑ′. Using
a decision procedure for NRob, compute τ ∈ {TRUE, FALSE} such that NRob ⊨ ϑ′ ←→ τ.
Since NRob = N|LRob , it follows that also N ⊨ ϑ′ ←→ τ, and thus also N ⊨ ϑ ←→ τ. Since
NPeA = N|LPeA , it follows that NPeA ⊨ ϑ←→ τ. This contradicts Theorem 8.17.

8 Quantifier Elimination for Z-Groups · 8.6 Z-Groups 92

Theorem 8.28. ZRob< = (Z; +; <, |) is undecidable.

Proof. Assume for a contradiction that ZRob< is decidable. Denote NRob< = (N; +; <, |). Then
the substructure NRob< ⊆ ZRob< is definable by χN(x) with

χN = ∀y(y = y + x ∨ y < y + x). (8.90)

It follows that NRob< is decidable by Theorem 6.6 and further that the LRob-restriction NRob of
NRob< is decidable, by Lemma 4.19. This contradicts Robinson’s Theorem 8.27.

Corollary 8.29. Every expansion structure of ZRob< is undecidable. In particular, ZDiv =
(Z; 0, 1,+,−; <, |) is undecidable.

Proof. This is a direct application of Corollary 4.20.

Corollary 8.30. ZDiv = (Z; 0, 1,+,−; <, |) does not admit effective QE.

Proof. Note that LDiv has a constant symbol. Assume for a contradiction that ZDiv admits ef-
fective QE. Since z1 | z2 for z1, z2 ∈ Z is equivalent to divisibility of the respective absolute
values, all atomic sentences have a normal form in

Θ =
{

0 = 0, k1 = 0, 0 < 0, k1 < 0, 0 < k1, 0 | 0, k1 | 0, 0 | k1, k1 | l1
∣

∣ k, l ∈ N \ {0}
}

. (8.91)

There is an algorithm taking ϑ ∈ Θ as input and computing τ ∈ {TRUE, FALSE} such that
ZDiv ⊨ ϑ ←→ τ, where for k1 | l1 one can employ, e.g., the Euclidean algorithm. Hence ZDiv is
decidable by Theorem 4.26(i). This contradicts Corollary 8.29.

8.6 Z-Groups

Throughout this section we have studied a variety of concrete structures, which were all related
to ZPrA = (Z; 0, 1,+,−; <,≡1,≡2, . . .) in Theorem 8.6. We finally get back to ZPrA and its
language LPrA and axiomatize an elementary class that contains ZPrA and admits effective QE
following the proof of Theorem 8.6. An analysis of the proof shows that we have used only the
following elementary properties of ZPrA:

(i) ZPrA is a non-trivial Abelian group, corresponding formal axioms ΞNtAGroups have been
given in (7.4);

(ii) 1 is a smallest positive element:

Ξ1 = {0 < x←→ x = 1 ∨ 1 < x}; (8.92)

(iii) the definition the congruences

Ξ≡ = { x ≡m y ←→ ∃z(mz = x − y) | m ∈ N \ {0} }; (8.93)

8 Quantifier Elimination for Z-Groups · 8.6 Z-Groups 93

(iv) Lemma 8.5(i) along with consequences of it in combination with the other axioms:

ΞEuclidean =
{

∨m−1
i=0 x ≡m i1

∣

∣ m ∈ N \ {0}
}

, 3 (8.94)

where 0 ⊙ 1 denotes the constant symbol 0.

We define the class ZGroups of all Z-groups4 as follows:

ΞZGroups = ΞNtAGroups ∪ Ξ1 ∪ Ξ≡ ∪ ΞEuclidean, ZGroups = Mod(ΞZGroups). (8.95)

One can now generalize and apply the proofs of Theorem 8.6 and Corollary 8.7 to the class
ZGroups instead of the single LPrA-structure ZPrA ∈ ZGroups. This yields the following corol-
lary:

Corollary 8.31. The class ZGroups admits effective QE. It follows that ZGroups is substructure
complete and model complete. Furthermore, ZGroups is complete and decidable.

Example 8.32 (Z-groups). Of course, ZPrA ∈ ZGroups. Furthermore, we have

(Q × Z; (0, 0), (0, 1), +, −; <lex, ≡1, ≡2, . . .) ∈ ZGroups, (8.96)

where addition and additive inverse are defined component-wise, and (q1, z1) ≡m (q2, z2) if and
only if z1 ≡m z2. It is easy to see that {0} × Z ⊆ Q × Z is the universe of a substructure of
(8.96), which is isomorphic to ZPrA. More generally, we have

(Q × · · · ×Q × Z; (0, . . . , 0), (0, . . . , 0, 1), +, −; <lex, ≡1, ≡2, . . .) ∈ ZGroups. (8.97)

Alternatively, one can consider, e.g., R × Z instead of Q × Z. ⌟

Let us once more return to the languageL0 = (0, 1,+,−; <) from the beginning of the chapter
and consider the class ZGroups′ of all Z-groups as L0-structures:

ZGroups′ =
{

A|L0

∣

∣ A ∈ ZGroups
}

. (8.98)

For each A ∈ ZGroups there is, by definition, a unique A|L0 ∈ ZGroups′. Conversely, for each
A′ ∈ ZGroups′ there is a unique A ∈ ZGroups with A|L0 = A′, in which the congruences are
defined according to (iii). An axiomatization of the class ZGroups′ can be derived from the
axiomatization of ZGroups above as follows.

(i′) Leave (i) unchanged.

(ii′) Leave (ii) unchanged.

(iii′) Drop the defining axioms (iii) of the congruences.

3The formulas
∨m−1

i=0 x ≡m i1 can be read as follows: Upon division of x by positive m one can obtain a positive
remainder i with i < m. This observation is closely related to the Eucidean algorithm and to so-called Euclidean
domains, which motivates the naming ΞEuclidean.

4Care must be taken, because the term Z-group refers to a number of distinct types of groups.

8 Quantifier Elimination for Z-Groups · 8.6 Z-Groups 94

(iv′) Adapt (iv) as follows:

Ξ′Euclidean =
{

∃z
∨m−1
i=0 mz = x − i1

∣

∣ m ∈ N \ {0}
}

. (8.99)

Recall that the existential quantifier can be semantically equivalently moved inside the
disjunction, which might be more intuitive.

This yields the following set of axioms:

Ξ′ZGroups = ΞNtAGroups ∪ Ξ1 ∪ Ξ′Euclidean. (8.100)

It is not hard to see that Mod(Ξ′ZGroups) = ZGroups′ as in (8.98), and it follows that ZGroups′ is
an elementary class.

Corollary 8.33. The class ZGroups′ has the following properties:

(i) ZGroups′ does not admit QE.

(ii) ZGroups′ is not substructure complete.

(iii) ZGroups′ is complete.

(iv) ZGroups′ is decidable.

(v) ZGroups′ admits effective QE down to existential quantifiers.

(vi) ZGroups′ is model complete.

Proof. (i) The class ZGroups′ does not admit QE, because Z0 ∈ ZGroups′ does not admit QE,
according to Theorem 8.1.

(ii) We have observed that ZGroups′ is an elementary class, and we know that ZGroups′

does not admit QE by (i). It follows that ZGroups′ is not substructure complete, using the
contrapositive of Theorem 6.10.

(iii) Let ϑ be an L0-sentence. Assume that ZGroups ⊨ ϑ, and let A′ ∈ ZGroups′. By the
definition of ZGroups′ there is A ∈ ZGroups with A′ = A|L0 . Since A ⊨ ϑ, it follows that
A′ ⊨ ϑ, using Lemma 3.9, and we have shown that ZGroups′ ⊨ ϑ. Conversely assume that
ZGroups′ ⊨ ϑ, and let A ∈ ZGroups. Then A|L0 ∈ ZGroups′ and thus A|L0 ⊨ ϑ. It follows
that A ⊨ ϑ, again using Lemma 3.9, and we have shown that ZGroups ⊨ ϑ. Hence for all
L0-sentences ϑ,

ZGroups′ ⊨ ϑ iff ZGroups ⊨ ϑ, (8.101)

and completeness of ZGroups′ follows from the completeness of ZGroups in Corollary 8.31.
(iv) Let ϑ be an L0-sentence. According to (8.101), we can decide ZGroups′ ⊨ ϑ using a

decision procedure for ZGroups, which exists by Corollary 8.31.
(v) Let ϕ(x) be an extended L0-formula with x ∈ Vn. Apply effective QE in ZGroups, which

is available by Corollary 8.31, to compute an extended positive quantifier-free LPrA-formula
ϕ′(x) such that ZGroups ⊨ ϕ ←→ ϕ′. From ϕ′ compute an extended positive L0-formula ϕ′′(x)
by replacing each congruence t1 ≡m t2 equivalently in ZGroups by ∃z(mz = t1 − t2), where

8 Quantifier Elimination for Z-Groups · 8.6 Z-Groups 95

without loss of generality z /∈ V (t1 − t2). Let now A′ ∈ ZGroups′. Then there is A ∈ ZGroups
such that A′ = A|L0 and, by definition of the L0-restriction, A′ = A. For a ∈ A′n we obtain

A′ ⊨ ϕ(a) iff A ⊨ ϕ(a) iff A ⊨ ϕ′(a) iff A ⊨ ϕ′′(a) iff A′ ⊨ ϕ′′(a), (8.102)

and there is a semantically equivalent prenex normal form of ϕ′′ which is an existential formula.
(vi) We have observed that ZGroups′ is an elementary class, and we know that ZGroups′

admits QE down to existential quantifiers by (v). It follows that ZGroups′ is model complete,
using the equivalence between (i) and (iii) in Theorem 6.12.

Example 8.34. We started this chapter with the L0-structure Z0 = (Z; 0, 1,+,−; <) and found
that ϕ = ∃x(2x = y) has no quantifier-free equivalent. This motivated the introduction of LPrA
and ZPrA. Nevertheless, Z0 ∈ ZGroups′ and therefore Z0 is decidable, using Theorem 4.23. It
should be noted that the decidability of Z0 = ZPrA|L0 also follows directly from the decidability
of ZPrA, using Lemma 4.19. ⌟

9 Quantifier Elimination for Fields

We are going to discuss various classes of fields using the language LRings = (0, 1,+,−, ·). We
admit t1 ̸= t2 as a shorthand for ¬ t1 = t2. Recall Example 3.12. The axioms

ΞRings = {x + (y + z) = (x + y) + z, x + y = y + x, x + 0 = x, x + −x = 0,

x · (y · z) = (x · y) · z, x · y = y · x, x · 1 = x,

x · (y + z) = (x · y) + (x · z)},

Ξ10 = {1 ̸= 0},

ΞMultInv = {x ̸= 0 −→ ∃y(x · y = 1)}

(9.1)

yield the axioms and the model class of fields:

ΞFields = ΞRings ∪ Ξ10 ∪ ΞMultInv, Fields = Mod(ΞFields). (9.2)

Note that there is no function symbol for the multiplicative inverse, which is a partial function
because 0K for K ∈ Fields has not multiplicative inverse. Our logical framework, in contrast,
requires function symbols to be interpreted by total functions. Of course, multiplicative inverses
and, more generally, division are definable in Fields.

Lemma 9.1. Fields ⊨ x · y = 0←→ x = 0 ∨ y = 0

Proof. Let K ∈ Fields, and let x∗, y∗ ∈ K. We start with the implication from the right to the
left. Assume that, without loss of generality, x∗ = 0K. Then, with the functions of K,

x∗ · y∗ = 0 · y∗ = (1 − 1) · y∗ = y∗ − y∗ = 0. (9.3)

Conversely, assume for a contradiction that x∗ ·K y∗ = 0K but x∗ ̸= 0K and y∗ ̸= 0K. Let x̄∗, ȳ∗

be multiplicative inverses of x∗, y∗ ∈ K, respectively. Then, with the functions of K,

1 = x∗ · y∗ · x̄∗ · ȳ∗ = 0 · x̄∗ · ȳ∗ = 0. (9.4)

Consider the extension language LRings< = (0, 1,+,−, · ; <) of LRings. Recall the axioms of
linear ordered sets from (5.13) and of monotonicity with respect to addition from (7.47). We
newly introduce ΞProdPos, which states that the product of positive numbers is positive:

ΞLosets = {¬ x < x, x < y ∨ x = y ∨ y < x, x < y ∧ y < z −→ x < z},
ΞMonotone = {x < y −→ x + z < y + z},
ΞProdPos = {0 < x ∧ 0 < y −→ 0 < x · y}.

(9.5)

96

9 Quantifier Elimination for Fields · 9.1 The Field of the Rational Numbers 97

It is not hard to see that ΞProdPos could be equivalently replaced with monotonicity of the linear
order with respect to multiplication by positive numbers:

{x < y ∧ 0 < z −→ x · z < y · z}. (9.6)

In combination with the axioms of fields from above we obtain the axioms of ordered fields and
the class of all ordered fields:

ΞFields< = ΞFields ∪ ΞLosets ∪ ΞMonotone ∪ ΞProdPos, Fields< = Mod(ΞFields<). (9.7)

9.1 The Field of the Rational Numbers

Consider the field of rational numbers Q = (Q; 0, 1,+,−, ·) ∈ Fields. The following theorem
states that Z is a definable set in Q.

Theorem 9.2 (J. Robinson, 1949). Consider Q = (Q; 0, 1,+,−, ·) and the extended formula
χZ(q) with

χZ = ∀a∀b
((

∃x∃y∃z(2 + bz2 = x2 + ay2) ∧ ∀m
(

∃x∃y∃z(2 + abm2 + bz2 = x2 + ay2)

−→ ∃x∃y∃z(2 + ab(m + 1)2 + bz2 = x2 + ay2)
))

−→ ∃x∃y∃z(2 + abq2 + bz2 = x2 + ay2)
)

. (9.8)

Then for q∗ ∈ Q we have Q ⊨ χZ(q∗) if and only if q∗ ∈ Z. In other words, [χZ]Q = Z.

Thus the ring of integers (Z; 0, 1,+,−, ·) is a definable substructure of Q, and it follows
that Q is undecidable. For general reasons, the same holds for all expansion structures of Q, in
particular for Q< ∈ Fields<.

Corollary 9.3. The field and the ordered field of rational numbers are undecidable:

(i) Q = (Q; 0, 1,+,−, ·) is undecidable.

(ii) Q< = (Q; 0, 1,+,−; <) is undecidable.

More generally, every expansion structure of Q is undecidable.

Proof. Assume for a contradiction that Q is decidable. Then ZRings ⊆ Q is definable by χZ(y)
with χZ as in (9.8). Therefore, ZRings is decidable, by Theorem 6.6. This contradicts Corol-
lary 8.20. It follows further that every expansion structure of Q is undecidable, by Corol-
lary 4.20, and Q< is one such expansion structure.

Corollary 9.4. Consider the field and the ordered field of the rational numbers.

(i) Q = (Q; 0, 1,+,−, ·) does not admit effective QE.

(ii) Q< = (Q; 0, 1,+,−, · ; <) does not admit effective QE.

Proof. Analogous to the proof of Corollary 8.21 for the integers.

9 Quantifier Elimination for Fields · 9.2 Algebraically Closed Fields 98

As an important consequence, both the class of all fields and the class of all ordered fields do
not admit effective QE. This motivates our interest in algebraically closed fields as an important
subclass of Fields in the next section.

Corollary 9.5.

(i) The class Fields does not admit effective QE.

(ii) The class Fields< does not admit effective QE.

Proof. The class Fields does not admit effective QE, because Q ∈ Fields does not admit effective
QE, according to Corollary 9.4. Analogously, the class Fields< does not admit effective QE,
because Q< ∈ Fields<.

9.2 Algebraically Closed Fields

For Presburger Arithmetic we used normal forms of terms t in a language (0, 1,+,−) ⊆ LPrA
that were essentially integer linear combinations of variables plus a constant summand; compare
(8.8) in the previous chapter:

k1x1 + . . . knxn + kn+1, ki ∈ Z \ {0}, xi ∈ V (t). (9.9)

The presence of multiplication in LRings = (0, 1,+,−, ·) more generally calls for multivariate
polynomials as normal forms of terms t, e.g., in distributive representation
∑

e∈S

kex
e1
1 · · · x

en
n , S ⊆ Nn finite, ke ∈ Z \ {0}, e = (e1, . . . , en), xi ∈ V (t). (9.10)

For S = ∅ we obtain the empty sum, which denotes the term 0. The set of all such distributive
normal forms is the polynomial ring Z[x1, . . . , xn], where the ring operations are respective term
constructions with subsequent normal form computation.

For separating a certain variable, say x1, from the others we use a semi-distributive represen-
tation of t as

d
∑

i=0

pix
i
1, pi ∈ Z[x2, . . . , xn], pd ̸= 0. (9.11)

From an algebraic viewpoint, semi-distributive normal forms are elements of Z[x2, . . . , xn][x1],
which is a univariate polynomial ring in x1 with coefficients from a polynomial ring Z[x2, . . . , xn].

Fix now s ∈ N, y ∈ Vs, x ∈ V , and consider f =
∑m
i=0 aix

i ∈ Z[y][x]. We define the x-degree
of f as

degx(f) =

{

m if f ̸= 0
−∞ else.

(9.12)

We agree that −∞ < m and (−∞) + (−∞) = (−∞) + m = m + (−∞) = −∞ for m ∈ N. In the
special case that f ∈ Z[x] is univariate we speak of the degree of f and write deg(f).

Lemma 9.6. Let f , g ∈ Z[y][x]. Then the following hold:

9 Quantifier Elimination for Fields · 9.2 Algebraically Closed Fields 99

(i) degx(fg) = degx(f) + degx(g)

(ii) If degx(fg) < deg(f) then g = 0.

If degx(f) > 0, then we define the leading x-coefficient and the x-reductum of f as

lcx(f) = am, redx(f) =
m−1
∑

i=0

aix
i, (9.13)

respectively. It is easy to see that t = lcx(f)xm + redx(f). The variable x does not occur in
lcx(f), and in redx(f) it occurs only with powers smaller than degx(f).

Lemma 9.7. Let f ∈ Z[y][x] with degx(f) > 0. Then

Fields ⊨ lcx(f) = 0 ∧ f = 0←→ lcx(f) = 0 ∧ redx(f) = 0. (9.14)

Consider f , g ∈ Z[y][x] with degx(f) ≥ degx(g) ≥ 0, say

f =
m
∑

i=0

aix
i, g =

n
∑

j=0

bix
i, m ≥ n ≥ 0. (9.15)

We compute h1 ∈ Z[y][x] as follows:

h1 = bnf − amxm−ng =
m−1
∑

k=0

(bnak − ambk−m+n)xk. (9.16)

It is well possible that bnak = ambk−m+n in Z[y] so that not necessarily degx(h1) = m − 1.
However, we generally have degx(h1) < m, including the case h1 = 0 with degx(h1) = −∞. We
say that h1 is obtained by x-pseudo-reduction of f modulo g, and we write f −→g h1. Note that
h1 is uniquely determined by f and g.

When iterating x-pseudo-reduction with the same divisor g, the degree strictly decreases with
each reduction step. After finitely many steps we obtain

f −→g h1 −→g · · · −→g hr = h with degx(h) < degx(g), (9.17)

and there is no further reduction possible. We say that h is completely reduced modulo g. By
induction on r ∈ N there is a unique polynomial q ∈ Z[y][x] such that

h = brnf − qg. (9.18)

We say that we have performed x-pseudo-division of f by g with quotient q and remainder h.

Lemma 9.8. Let f , g ∈ Z[y][x] with degx(f) ≥ degx(g) > 0. Let h be the remainder upon
x-pseudo-division of f by g. Then

Fields ⊨ lcx(g) ̸= 0 ∧ g = 0 ∧ f = 0←→ lcx(g) ̸= 0 ∧ g = 0 ∧ h = 0. (9.19)

9 Quantifier Elimination for Fields · 9.2 Algebraically Closed Fields 100

Proof. Recall that y ∈ Vs. Let K ∈ Fields and let x∗ ∈ K, y∗ ∈ Ks. Assume that lcx(g)K(y∗) ̸=
0 and gK(x∗, y∗) = 0. We show that fK(x∗, y∗) = 0 if and only if hK(x∗, y∗) = 0. From
h = lcx(g)rf − qg it follows that

hK(x∗, y∗) = lcx(g)rK(y∗)fK(x∗, y∗) − qK(x∗, y∗)gK(x∗, y∗), (9.20)

where lcx(g)rK(y∗) =
(

lcx(g)K(y∗)
)r ̸= 0 and qK(x∗, y∗)gK(x∗, y∗) = 0. Hence

hK(x∗, y∗) = λfK(x∗, y∗) (9.21)

with λ = lcx(g)rK(y∗) ̸= 0.

For equations we have normal forms t = 0 with t ∈ Z[y][x]. Recall that we shortly write t ̸= 0
for ¬ t = 0. We start with a quantifier elimination procedure for the field of complex numbers.

Theorem 9.9 (Tarski, 1935). C = (C; 0, 1,+,−, ·) admits effective QE.

Proof. Consider a 1-primitive formula

ϕ = ∃x

[

M
∧

i=1

fi = 0 ∧
N
∧

j=1

gj ̸= 0

]

, fi, gj ∈ Z[y][x]. (9.22)

We may assume that x occurs in all atomic formulas and thus degx(fi) > 0 and degx(gj) > 0;
compare the remark after Theorem 4.2. Formula (9.22) is equivalent to

∃x

[

M
∧

i=1

fi = 0 ∧ g ̸= 0

]

, g =
N
∏

j=1

gj. (9.23)

Recall that g = 1 for N = 0. Let g =
∑n
j=0 bjx

j with bj ∈ Z[y].

Case 1: M = 0. Then (9.23) is equivalent to ∃x[g ̸= 0]. We show that this is equivalent to

ϕ′ =
n
∨

j=0

bj ̸= 0. (9.24)

Let y∗ ∈ Cs and note that g∗ = g(x, y∗) =
∑n
j=0 bj(y

∗)xj ∈ C[x] is a univariate
polynomial. According to the fundamental theorem of algebra, there exists x∗ ∈ C with
g∗(x∗) ̸= 0 if and only if g∗ is not the zero polynomial if and only if C ⊨ ϕ′(y∗).

Case 2: M = 1. Then (9.23) is equivalent to ∃x[f1 = 0 ∧ g ̸= 0]. Let f1 =
∑m
i=0 aix

i with
ai ∈ Z[y]. We show by strong induction on m = degx(f1) > 0 that we can construct a
quantifier-free equivalent ϕ′ of (9.23). We equivalently rewrite (9.23) as

(

am ̸= 0 ∧ ∃x [f1 = 0 ∧ g ̸= 0]
)

∨ (9.25)
(

am = 0 ∧ ∃x [redx(f1) = 0 ∧ g ̸= 0]
)

, (9.26)

9 Quantifier Elimination for Fields · 9.2 Algebraically Closed Fields 101

using Lemma 9.7. For (9.26) we distinguish two cases regarding m′ = degx(redx(f1)):
If m′ ≤ 0, then (9.26) matches Case 1, and we can construct a quantifier-free equivalent
following the proof there. Else we have 0 < m′ < m, and we can construct a quantifier-
free equivalent by the induction hypothesis.

It remains to construct a quantifier-free equivalent for (9.25). Pseudo-division of gm by
f1 yields a quotient q ∈ Z[x, y] and a remainder

h = armg
m − qf1 ∈ Z[x, y], degx(h) < degx(f1). (9.27)

Let h =
∑p
k=0 ckx

k with ck ∈ Z[y]. We show that (9.25) is equivalent to

ϕ′ = am ̸= 0 ∧
p
∨

k=0

ck ̸= 0. (9.28)

Let y∗ ∈ Cs with am(y∗) ̸= 0. We use notations a∗m = am(y∗), b∗n = bn(y∗) ∈ C and

f∗1 = f1(x, y∗), g∗ = g(x, y∗), h∗ = h(x, y∗), q∗ = q(x, y∗) ∈ C[x]. (9.29)

Note that the evaluation homomorphism yields h∗ = a∗m
rg∗m − q∗f∗1 with

degx(h∗) ≤ degx(h) < degx(f1) = degx(f∗1), (9.30)

where degx(f∗1) = degx(f1) follows from our choice of y∗ with a∗m ̸= 0.

Assume that there exists x∗ ∈ C such that f∗1 (x∗) = 0 and g∗(x∗) ̸= 0. It follows
that h∗(x∗) = a∗m

rg∗m(x∗) ̸= 0. Thus h∗ is not the zero polynomial, and it follows that
C ⊨ ϕ′(y∗).
Conversely, assume that C ⊨ ϕ′(y∗). Univariate polynomial factorization yields

f∗1 = a∗m

µ
∏

i=1

(x − αi)ti , g∗ = b∗n

ν
∏

j=1

(x − βj)uj , (9.31)

where the αi ∈ C and βj ∈ C are pairwise different, respectively, 0 < ti ≤ m, and
0 < uj < n.

Assume for a contradiction that {α1, . . . , αµ} ⊆ {β1, . . . , βν}, without loss of generality
(α1, . . . , αµ) = (β1, . . . , βµ). It follows that g∗m is divisible by f∗1 with a polynomial
quotient

g∗m/f∗1 = a∗m
−1b∗n

m
µ
∏

i=1

(x − βi)mui−ti
ν
∏

j=µ+1

(x − βj)muj ∈ C[x]. (9.32)

With q′ = a∗m
rg∗m/f∗1 ∈ C[x] this yields q′f∗1 = a∗m

rg∗m = h∗ + q∗f∗1 , and it follows
that

h∗ = (q′ − q∗)f∗1 . (9.33)

With (9.30) and Lemma 9.6 it follows that h∗ = 0. However, our assumption C ⊨ ϕ′(y∗)
states that h∗ ̸= 0, a contradiction.

Hence, we can choose x∗ ∈ {α1, . . . , αµ}\{β1, . . . , βν} ≠ ∅, which satisfies f∗1 (x∗) = 0
and g∗(x∗) ̸= 0.

9 Quantifier Elimination for Fields · 9.2 Algebraically Closed Fields 102

Case 3: m > 1. We proceed by strong induction on d =
∑M
i=1 degx(fi) ∈ N \ {0, 1}. Assume

without loss of generality that

d > degx(f1) ≥ · · · ≥ degx(fM) > 0. (9.34)

Pseudo-division of f1 by f2 yields h = lcx(f2)rf1 − qf2 with degx(h) < degx(f2).
Formula (9.23) is equivalent to

∃x

[

lcx(f2) ̸= 0 ∧ h = 0 ∧ f2 = 0 ∧
M
∧

i=3

fi = 0 ∧ g ̸= 0

]

(9.35)

∨ ∃x

[

lcx(f2) = 0 ∧ redx(f2) = 0 ∧ f1 = 0 ∧
M
∧

i=3

fi = 0 ∧ g ̸= 0

]

(9.36)

by introducing a case distinction on the vanishing of lcx(f2) and applying Lemma 9.8
and 9.7 in (9.35) and (9.36), respectively.

In (9.35) the induction parameter d has decreased by degx(f1) > 0 if x does not occur
in h, and by degx(f1) − degx(h) > 0 else. Similarly, in (9.36) d has decreased by
degx(f2) > 0 if x not in redx(f2), and by degx(f2) − degx(redx(f2)) > 0 else. In both
cases we are either in Case 2, or we obtain a quantifier-free equivalent by the induction
hypothesis.

Corollary 9.10 (Tarski, 1935). C = (C; 0, 1,+,−, ·) is decidable.

Proof. The language LRings has a constant symbol. All atomic sentences have a normal form
in Θ = { k = 0 | k ∈ Z }. There is an algorithm taking ϑ ∈ Θ as input and computing
τ ∈ {TRUE, FALSE} such that C ⊨ ϑ ←→ τ. Hence C is complete and decidable for the set of
all atomic sentences. General decidability follows by Theorem 4.26(i).

An analysis of the proof shows that we have used the following elementary properties of C:

(i) C is a field; the field axioms ΞFields are listed in (9.2);

(ii) C algebraically closed, i.e., every univariate polynomial f ∈ C[X] of positive degree has
at least one zero:

ΞAC =
{

an ̸= 0 −→ ∃x
∑n
i=0 aix

i = 0
∣

∣ n ∈ N \ {0}
}

. (9.37)

We define the class ACF of all algebraically closed fields as follows:

ΞACF = ΞFields ∪ ΞAC, ACF = Mod(ΞACF). (9.38)

Lemma 9.11 (Properties of algebraically closed fields). Let K ∈ ACF. Then the following hold:

(i) Every f ∈ K[x] of degree n ∈ N \ {0} factors into n linear factors.

(ii) K is infinite.

9 Quantifier Elimination for Fields · 9.2 Algebraically Closed Fields 103

Proof. (i) We proceed by strong induction on deg(f) = n ∈ N \ {0}. According to ΞAC, there
is at least one k ∈ K with f (k) = 0. Division with remainder yields h = f − q(x − k) with
deg(h) < deg(x − k) = 1 and thus h ∈ K. Furthermore, h(k) = f (k) − q(k)(k − k) = 0 and
thus h = 0. Hence f = q(x− k) and deg(q) = deg(f)− 1 using Lemma 9.6. If deg(q) = 1, then
we are finished, else we apply the induction hypothesis to q.

(ii) Assume for a contradiction that K is finite, say K = {k1, . . . , kn}. Consider the polyno-
mial f = 1 +

∏n
i=1(x − ki). We have f (k) = 1 for all k ∈ K. According to (i), f factors into

linear factors. It follows that there are k ∈ K and q ∈ K[x] such that f = (x − k)q and thus
f (k) = 0, a contradiction.

One can now generalize and apply the proof of Theorem 9.9 to the class ACF instead of the
single LRings-structure C ∈ ACF. This yields the following corollary of the Theorem 9.9.

Corollary 9.12 (Tarski, 1935). The class ACF admits effective QE.

Every field K has a characteristic char(K), which is the smallest number n ∈ N \ {0} such
that K ⊨ n ⊙ 1 = 0, provided that such a number exists. Otherwise char(K) = 0. For instance,
the finite fields Z/p have characteristic p, and Q, R, C all have characteristic 0.

Lemma 9.13. Let K be a field with char(K) = n ∈ N \ {0}. Then n is prime.

Proof. To start with, we show by induction on r ∈ N \ {0} that

K ⊨ (r ⊙ 1) · (s ⊙ 1) = (r × s) ⊙ 1, r, s ∈ N \ {0}. (9.39)

Notice that (9.39) combines three different notions of multiplication: The n-fold addition ⊙,
the function ·K of the field K, and meta-mathematical multiplication × of positive integers. For
r = 1 we obtain

(

(1 ⊙ 1) · (s ⊙ 1)
)K

=
(

1 · (s ⊙ 1)
)K

=
(

s ⊙ 1
)K

=
(

(1 × s) ⊙ 1
)K
, (9.40)

using the neutrality of 1 in both K and N. For r + 1 we obtain
(

((r + 1) ⊙ 1) · (s ⊙ 1)
)K

=
(

(r ⊙ 1 + 1) · (s ⊙ 1)
)K

=
(

(r ⊙ 1) · (s ⊙ 1) + 1 · (s ⊙ 1)
)K

=
(

(r × s) ⊙ 1 + s ⊙ 1
)K

=
(

((r + 1) × s) ⊙ 1
)K
,

(9.41)

using the law of distributivity, the neutrality of 1, and the induction hypothesis.
Assume for a contradiction that char(K) = n = r × s with r, s ∈ N \ {0, 1}. Using (9.39)

above we obtain
K ⊨ (r ⊙ 1) · (s ⊙ 1) = 0. (9.42)

It follows that, without loss of generality, K ⊨ r ⊙ 1 = 0 and thus char(K) ≤ r < r × s.

We define the class ACF0 = {K ∈ ACF | char(K) = 0 }, and for each prime p we define the
class ACFp = {K ∈ ACF | char(K) = p }. This yields a partitioning of the class ACF. The
following theorem resembles Theorem 5.2 for sets.

9 Quantifier Elimination for Fields · 9.2 Algebraically Closed Fields 104

Theorem 9.14. Let ϑ be an LRings-sentence. Then one can compute a set Pϑ of primes with the
following properties:

(i) Pϑ is finite or cofinite;

(ii) ACFp ⊨ ϑ if and only if p ∈ Pϑ;

(iii) ACF0 ⊨ ϑ if and only if Pϑ is cofinite.

Proof. Without loss of generality, ϑ is reduced to ¬, ∧, and ∨. We proceed by strong induction
on the word length |ϑ| ∈ N. If ϑ is atomic, then ϑ has a normal form k = 0 with k ∈ Z. If
k = 0, then Pϑ is the set of all primes. Otherwise, Pϑ = { p ∈ Z | p prime and p divides k }.
If ϑ is of the form ¬ϑ1, then we can construct Pϑ1 by the induction hypothesis, and Pϑ is the
complement of Pϑ1 in the set of all primes, which has a finite representation. Similarly, if ϑ is of
the form ϑ1 ∧ ϑ2 or ϑ1 ∨ ϑ2, then we apply the induction hypothesis to ϑ1 and ϑ2 and compute
Pϑ = Pϑ1 ∩ Pϑ2 or Pϑ = Pϑ1 ∪ Pϑ2 , respectively.

Corollary 9.15 (Completeness and decidability results for subclasses of ACF).

(i) The class ACFp is complete and decidable for each prime p.

(ii) The class ACF0 is complete and decidable.

Proof. Both parts are direct applications of parts (ii) and (iii) of Theorem 9.14, respectively.

Corollary 9.16. The class ACF is decidable but not complete.

Proof. Let ϑ be an LRings-sentence. Then ACF ⊨ ϑ if and only if both ACF0 ⊨ ϑ and ACFp ⊨ ϑ
for all primes p, if and only if Pϑ in Theorem 9.14 is the set of all primes. Regarding com-
pleteness, consider the sentence ϑ = (1 + 1 = 0). Then Pϑ = {2} and P¬ϑ is the complement
{3, 5, . . . } of {2} in the set of all primes. Thus

ACF2 ⊨ ϑ, ACF3 ⊭ ϑ, ACF2 ⊭ ¬ϑ, ACF3 ⊨ ¬ϑ, (9.43)

and it follows that neither ACF ⊨ ϑ nor ACF ⊨ ¬ϑ.

Example 9.17 (Algebraically closed fields). We start with some negative examples:

R /∈ ACF, Q /∈ ACF, Z/p /∈ ACF. (9.44)

The field R of real numbers is not algebraically closed, because x2 + 1 has no zero in R. The
same argument holds for Q. The fields Z/pwith p prime are finite and therefore not algebraically
closed by Lemma 9.11. More explicitly, e.g., Z/2 is not algebraically closed, because x2 +x+1
has no zero in Z/2.

C[[t]] /∈ ACF, C((t)) /∈ ACF. (9.45)

The ring C[[t]] of formal power series over C is not a field. A formal power series
∑∞
k=0 akt

k

with ak ∈ C has a multiplicative inverse if and only if a0 ̸= 0. The field C((t)) of formal Laurent
series

∑∞
k=z akt

k with z ∈ Z and ak ∈ C is not algebraically closed, because x2 − t has no zero
in C((t)).

9 Quantifier Elimination for Fields · 9.2 Algebraically Closed Fields 105

According to a more general result by Steinitz (1910), every field possesses an algebraically
closed extension field. For instance,

R ⊊ C ∈ ACF0, Q ⊊ Q ∈ ACF0, Q = { a + ib ∈ C | a, b ∈ A }. (9.46)

The real algebraic numbers A = { a ∈ R | exists f ∈ Z[x] with f (a) = 0 } used in the defini-
tion of Q form themselves a field, which is not algebraically closed. It is noteworthy that real
algebraic numbers have finite representations on which the ring operations are effective. For
every prime p, the field Z/p has an infinite algebraically closed extension field

Z/p ⊊ Z/p ∈ ACFp. (9.47)

The field C((t)) of formal Laurent series over C has the field of Puiseux series over C as an
algebraically closed extension field:

C[[t]] ⊊ C((t)) ⊊ C⟨⟨t⟩⟩ ∈ ACF0, C⟨⟨t⟩⟩ =
⋃

n∈N\{0}

C((t1/n)). (9.48)

More generally, K⟨⟨t⟩⟩ ∈ ACF whenever K ∈ ACF, and then char(K⟨⟨t⟩⟩) = char(K). In
particular, Z/p ⟨⟨t⟩⟩ ∈ ACFp for every prime p. ⌟

The following Lefshetz principle has been extensively used and cited in algebraic geometry.
It reflects a common strategy, proving over the complex numbers, exploiting convenient topo-
logical properties there, and transferring the results and proofs to other domains of interest. We
deliberately state the principle in an informal style, outside our logical framework.

Corollary 9.18 (Lefshetz, 1953). Let ϑ be an elementary statement that holds in C. Then ϑ
holds in all algebraically closed fields of characteristic 0. Furthermore, ϑ holds in all alge-
braically closed fields of sufficiently large prime characteristic. Lower bounds on the required
characteristic can be computed.

In his original work, Lefshetz did not make precise to which kind of statements his prin-
ciple would be applicable. Tarski’s results on quantifier elimination and completeness for al-
gebraically closed fields, which we have presented here, show that the Lefshetz principle is
applicable at least to LRings-sentences. This has been remarked by Seidenberg (1958).

Index

1-existential formula, 28
1-primitive formula, 28

Abelian group, 61
absorption, 24
active divisibility, 90
algebra, 16
algebraic language, 15
algebraic set, 35
algebraically closed field, 102
alphabet, 17, 18
arity, 15
associativity, 24
atomic formula, 18
atomic formulas, 19
axiom, 21
axiomatization, 21
axioms of linear ordered sets, 27

basic semialgebraic set, 35
biconditionals, 19
big operators, 22
bound occurrence, 19

characteristic, 103
characteristic function, 18, 20
CNF, 27
commutation of quantifiers, 25
commutation of ∃x and ∀y, 25
commutativity, 24
compatibility with ∨, ∧, 25
complement, 83
complete, 37
completely reduced, 99
congruent modulo n, 74
conjunctions, 19
conjunctive normal form, 27

constant, 16
constant symbol, 15
contrapositive, 25
countable language, 15

de Morgan’s laws, 25
decision procedure, 37
definable function, 34
definable set, 33
definable substructure, 54
defined set, 33
definiteness, 24
degree, 98
dense linear order without endpoints, 47
discrete linear orders with left endpoint, 51
disjunctions, 19
disjunctive normal form, 27
distributive representation, 98
distributivity, 24
divides, 13, 73
divisibility, 90
divisible group, 62
divisible ordered Abelian groups, 69
DNF, 27
dual quantifier symbol, 26

effective quantifier elimination, 28
elementary class, 21
elementary equivalent, 56
elementary extension structure, 57
elementary properties, 47
elementary substructure, 57
elimination form, 61, 67, 75
endpoints, 47
entails, 24
equation, 18
equivalent, 24

106

INDEX 107

existential formula, 28, 54
existentially quantified formulas, 19
expansion, 17
extended atomic formula, 18
extended first-order formula, 20
extended term, 18
extension language, 15
extension structure, 53

field axioms, 21, 96
finite language, 15
finite model property, 44
finite structure, 16
first-order formula, 19
formula, 19
free occurrence, 19
function, 16
function symbol, 15

graph, 34
graph coloring, 46
group axioms, 60
group with p-torsion, 65
Gödel number, 37
Gödel numbering, 37

holds, 21

idempotence, 24
image, 34
implications, 19
incomplete, 37
infix notation, 17
interpretation, 16
involution, 24

language, 15
language of monoids, 16
language of ordered rings, 15
language of Presburger Arithmetic, 73
language of rings, 15
leading coefficient, 99
Lefshetz principle, 105
left endpoint, 51
lexicographic order, 48

linear ordered sets, 27
literals, 19
logical operators, 19

miniscoping, 25
mod, 64
model, 21
model class, 21
model complete, 58

negation normal form, 26
negation of quantifiers, 25
negations, 19
negative literal, 19
neutral elements, 24
NNF, 26
non-trivial group, 60
normal forms, 26

occurrence, 19

passive divisibility, 89
Peano Arithmetic, 87
period, 82
periodic set, 82
PNF, 26
positive, 27
positive primitive formula, 28
positive 1-existential formula, 28
positive 1-primitive formula, 28
positive conjunctive normal form, 27
positive disjunctive normal form, 27
positive existential formula, 28
positive literal, 19
positive negation normal form, 27
positive normal form, 27
power set, 8
predicate, 18
prefix notation, 17
prenex normal form, 26
prime number, 64
primitive formula, 28
projection function, 34
projection of D, 34
pseudo-division, 99

INDEX 108

pseudo-quotient, 99
pseudo-reduction, 99
pseudo-remainder, 99

QE, 28
quantifier elimination, 28
quantifier symbols, 19
quantifier-free definable function, 34
quantifier-free definable set, 33
quantifier-free formula, 19
quantifiers, 19

real algebraic numbers, 105
reduction to ¬, ∨, ∧:, 25
reductum, 99
relation, 16
relation symbol, 15
relational L-structure, 16
relational language, 15
renaming, 25
restriction, 17
ring axioms, 21, 96

satisfiable, 21
semantically equivalent, 24
semi-distributive representation, 98
semialgebraic set, 35
sentence, 20
small model property, 44
special symbols, 17, 18
strict inequalities, 12
structure, 16

sublanguage, 15
substitution, 22
substructure, 53
substructure complete, 57
sum of linear orders, 51

Tarski–Seidenberg Theorem, 37
term function, 18
tertium non datur, 24
torsion-free group, 62
trivial elimination, 25
trivial group, 60
trivial ordered group, 69
truth values, 19

ultimately periodic set, 84
undecidable, 37
universal closure, 20
universal formula, 54
universally quantified formulas, 19
universe, 16

valid, 21
variables, 17
vertex coloring problem, 46

weak elimination form, 61
weak inequalities, 12
weak elimination form, 67
weak elimination form, 75

Z-group, 93

	Introduction
	Quantifier Elimination
	History
	Classical Algebra
	Mathematical Logic
	Symbolic Computation

	Scope and Plan of the Course

	Examples for Elimination of Variables
	Graphs and Sets
	Single Equations
	Systems of Linear Equations
	Systems of Linear Inequalities
	Universal Statements

	Interpreted First-order Logic
	Languages and L-Structures
	Terms and Term Functions
	First-order Formulas and Their Characteristic Functions
	Models and Axioms
	Substitution
	Entailment and Semantic Equivalence
	Normal Forms

	Quantifier Elimination, Completeness, and Decidability
	Quantifier Elimination
	Definable Sets and Projection
	Completeness and Decidability

	Quantifier Elimination for Sets and Linear Orders
	Sets
	Use Case: Graph Coloring
	Dense Linear Orders Without Endpoints
	Discrete Linear Orders with Left Endpoint

	Substructures
	Substructures
	Elementary Equivalence and Substructure Completeness
	Elementary Substructures and Model Completeness

	Quantifier Elimination for Divisible Abelian Groups
	Non-trivial Abelian Groups
	Divisible Torsion-free Abelian Groups
	Infinite Divisible Abelian Groups with Prime Torsion
	Dense Ordered Abelian Groups
	Use Case: Linear Programming

	Quantifier Elimination for Z-Groups
	Presburger Arithmetic
	Use Case: Integer Programming
	Definable Sets in Presburger Arithmetic
	The Ring and the Ordered Ring of the Integers
	Presburger Arithmetic with Divisibility
	Z-Groups

	Quantifier Elimination for Fields
	The Field of the Rational Numbers
	Algebraically Closed Fields

