Lecture “Automated Reasoning”
(Winter Term 2016/2017)
Final Examination

Name: ...

Student Number: ...

Some notes:

- Things to do at the beginning:
 Put your student card and identity card (or passport) on the table.
 Switch off mobile phones.
 Whenever you use a new sheet of paper (including scratch paper), first
 write your name and student number on it.

- Things to do at the end:
 Mark every problem that you have solved in the table below.
 Stay at your seat and wait until a supervisor staples and takes your
 examination text.
 Note: Sheets that are accidentally taken out of the lecture room are
 invalid.

Sign here: Good luck!

...

<table>
<thead>
<tr>
<th>Problem</th>
<th>1</th>
<th>2a</th>
<th>2b</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7a</th>
<th>7b</th>
<th>7c</th>
<th>8</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answered?</td>
<td></td>
</tr>
<tr>
<td>Points</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1 \textit{(Superposition Refutation)} (4 points)

Refute the following set of clauses by superposition, including all redundancy rules. You can freely choose an ordering and selection function. As usual one sort for everything and x, y, z are all variables.

1. $\neg R(x, y) \lor \neg R(y, z) \lor R(x, z)$
2. $\neg R(x, x)$
3. $R(x, g(x))$
4. $\neg R(x, y) \lor R(y, x)$
Problem 2 (Superposition Model Building) (4 + 2 = 6 points)
Consider the below clause set N over predicate R, function g and constant a with respect to an LPO with precedence $g \succ R \succ a$. As usual one sort for everything and x, y are variables.

1. Compute $N \prec R(g(a), g(a))$ and determine the minimal false clause.
2. Do the respective superposition inference with the minimal false clause, add it to N giving N' and recompute $(N') \prec R(g(a), g(a))$.

1. $\neg R(x, y) \lor R(y, x)$
2. $\neg R(x, x)$
3. $R(x, g(x))$
4. $\neg R(g(a), a)$
Problem 3 \((CDCL)\) (5 points)

Check satisfiability of the below propositional clauses using \(\Rightarrow_{CDCL}\).

1 \(\neg P_4 \lor P_3\) 2 \(\neg P_3 \lor P_4\) 3 \(P_1 \lor P_2 \lor P_4\)
4 \(\neg P_3 \lor \neg P_4\) 5 \(\neg P_1 \lor \neg P_4 \lor P_2\) 6 \(\neg P_2 \lor \neg P_4 \lor P_1\)
7 \(\neg P_1 \lor \neg P_2 \lor P_4\)
Problem 4 \((CNF)\)
(6 points)
Transform the following formula into CNF using \(\Rightarrow_{ACNF}\). As usual one sort for everything.

\[
\forall x. \exists y. \forall z. \exists u. (R(x, y) \rightarrow (R(g(u), g(z)) \leftrightarrow R(u, z)))
\]
Problem 5 \((Tableau)\) (4 points)
Prove validity of the following formula using standard Tableau (don’t use free-variable Tableau). As usual one sort for everything.

\[
[(\exists x.\forall y R(x, y)) \land (\forall x, y. (R(x, y) \rightarrow R(y, x)))] \rightarrow \exists x.\forall y R(y, x)
\]
Problem 6 (Knuth Bendix Completion)

Apply \Rightarrow_{KBC} to the following set of equations. Choose an appropriate ordering. As usual one sort for everything.

$$E = \{ f(g(x), x) \approx h(x), \ f(g(x), h(y)) \approx f(x, y), \ h(a) \approx a \}$$
Problem 7 (Conjectures) (2 + 2 + 2 = 6 points)

Which of the following statements are true or false? Provide a proof or a counter example.

1. Let s, t be two terms with unifier σ. Then every term in $\text{codom}(\sigma)$ is a subterm of s or a subterm of t.

2. Let $C \lor A$ and $D \lor \neg A$ be two first-order ground clauses. Let A and $\neg A$ be strictly maximal literals in their respective clauses. Then the clause $C \lor D$, the result of a superposition left inference, is smaller than both parent clauses.

3. Let N be a set of satisfiable ground clauses. Assume N is saturated by superposition up to redundancy where in every clause containing a negative literal, one negative literal is always selected. Then $N_I = \{ A \mid A$ is a positive unit clause in $N \}$.
Problem 8 (Standard Unification) (4 points)

Let s, t be two linear, unifiable terms such that $\text{vars}(s) \cap \text{vars}(t) = \emptyset$. Recall a term is linear, if every variable occurs at most once in the term. Let
\[
\{s = t\} \Rightarrow^*_{\text{SU}} \{x_1 = l_1, \ldots, x_n = l_n\}
\]
be a derivation resulting in the above solved form. Prove that each l_i is either a subterm of s or t.