
Chapter 1

Preliminaries

This hapter introdues all abstrat onepts needed for the rest of this book.

Generi problem solving atually starts with a problem. In this book problems

will appear in the form of examples. In order to solve a problem in a generi

way, i.e., by generi algorithms, the �rst step is to formalize the problem using

a generi language. A generi language has a mathematially preise syntax

and semantis, beause eventually it is analyzed by a program running on a

omputer. Suh a language is alled a logi. The problem beomes a sentene,

i.e., a formula of the logi. In partiular, semantis in this ontext always means

a notion of truth. The notion of truth is a very expressive instrument to atually

formalize what it means to eventually solve a partiular problem. A solution

to the formula should result in a solution to the problem. Deteting that the

formula is true (false) orresponds to solving the problem.

One the problem is desribed in a logi, the generi language, it needs

rules that reason about the truth of formulas and hene eventually solve the

problem. A logi plus its reasoning rules is alled a alulus. The rules operate

on a symboli representation of a problem state that inludes in partiular the

formula formalizing the problem. Typially, further information is added to the

state representation in order to keep trak of the solution proess. The rules

should enjoy a number of properties in order to be useful. They should be

sound, i.e., whenever they ompute a solution the result is atually a solution

to the initial problem. And whenever they ompute that there is no solution

this should hold as well. The rules should be omplete, i.e., whenever there is a

solution to the problem they ompute it. Finally, they should be terminating.

If they are applied to a starting problem state, they always stop after a �nite

number of steps. Typially, beause no more rule is appliable. Depending on the

omplexity of the problem and the involved logi, not all the desired properties

soundness, ompleteness, termination, an be ahieved, in general. But I will

turn to this later.

The rules of a alulus are typially designed to operate independently and

an therefore be exeuted in a non-deterministi way. The advantage of suh

a presentation is that properties of the rules, e.g., like soundness, an also be

3

4 CHAPTER 1. PRELIMINARIES

shown independently for eah rule. And if a property an be shown for the rule

set, it applies to all potential exeution orderings of the rules. The disadvantage

of suh a presentation is that a random appliation of the rules typially leads to

an ineÆient algorithm. Therefore, a strategy is added to the alulus (rules) and

the strategy plus the rules build an automated reasoning algorithm or shortly an

algorithm. Depending on the type of property and the atual alulus, sometimes

we prove it for the alulus or the respetive algorithm.

An automated reasoning algorithm is still an abstrat, mathematial on-

strut and there is typially a signi�ant gap between suh an algorithm and

an atual omputer program implementing the algorithm. An implementation

often requires a dediated ontrol of the alulus plus the invention of spei�

data strutures and algorithms. The implementation of an algorithm is alled a

system. Eventually the system is applied to real world problems, i.e., an appli-

ation.

Appliation

System + Problem

System

Algorithm + Implementation

Algorithm

Calulus + Strategy

Calulus

Logi + States + Rules

Logi

Syntax + Semantis

C

Typially omputer siene algorithms are formulated in languages

that are lose to atual programming languages suh as C, C++,

or Java

1

. So, in partiular, they rely on deterministi programming

languages with an operational semantis. I overload the notion of a lassial

omputer siene algorithm and an automated reasoning algorithm. An auto-

mated reasoning algorithm is build on a rule set plus a strategy and typially

the strategy does not turn the rules into a deterministi algorithm. There is still

some room left that will eventually be deided for an appliation. The di�erene

in design reets the di�erene in sope. A lassial omputer siene algorithm

solves a very spei� problem, e.g., it sorts a �nite list of numbers. An algo-

rithm is meant to solve a whole lass of problems, e.g., later on I will show that

ordered resolution an solve any polynomial time omputable problem based on

a fragment of �rst-order logi.

As a start, Setion 1.1 studies the overall above approah inluding all men-

tioned properties in full detail on a onrete problem: 4� 4-Sudokus. Although

this is a rather trivial and atually �nite problem and the suggested algorithm is

1

opyright

1.1. SOLVING 4� 4 SUDOKU 5

very naive, it serves niely as a throughout example demonstrating all aspets.

Later on, I will develop far more omplex logis that then an be used to solve

more interesting problems. In partiular, real world problems.

The subsequent setions abstrat from solving Sudokus and develop the un-

derlying onepts needed as a basi toolbox for the rest of this book. Basi

mathematial notions on numbers, sets, relations, and words are de�ned in Se-

tion 1.2. In order to be able to talk about the omplexity of algorithms Se-

tion 1.3 in partiular explains Big O notation and NP-hardness. Setion 1.4 is

devoted to orderings, beause they show up on the meta-level, e.g. as a means

to prove termination. They also serve as a basis for proving properties of rule

sets by indution, Setion 1.5, and also on the logial reasoning level where they

will be atually an e�etive means for de�ning more eÆient rule sets. Finally,

Setion 1.6 introdues the most important onepts of rule based reasoning in

general by an introdution to basi onepts of (abstrat) rewrite systems.

1.1 Solving 4� 4 Sudoku

Consider solving a 4� 4 Sudoku as it is depited on the left in Figure 1.1. The

goal is to �ll in natural numbers from 1 to 4 into the 4�4 square so that in eah

olumn, row and 2�2 box sharing an outer orner with the original square eah

number ours exatly one. Conditions of this kind are alled onstraints as

they restrit �lling the Sudoku with numbers in an arbitrary way. The Sudoku

(Solution) on the right (Figure 1.1) shows the, in this ase, unique solution to

the Sudoku (Start) on the left.

2 1

3 1

1 2

Start

2 1 4 3

3 4 1 2

4 2 3 1

1 3 2 4

Solution

Figure 1.1: A 4� 4 Sudoku and its Solution

Why is this solution unique? It is beause the onstraints of 4� 4 Sudokus

have already fored all other values. To start, the only square for the missing

1 is the square above the 3. All other squares would violate a onstraint. But

then the third olumn is almost �lled so the top square of this olumn must be

a 4, and so on.

In the following, I will build a spei� logi for 4 � 4 Sudokus, inluding

an algorithm in form of a set of rules and a strategy for solving the problem

and atually prove that the algorithm is sound, omplete, and terminating. As

already said, an algorithm is sound if any solution the algorithm delares to

have found is atually a solution. It is omplete if it �nds a solution in ase

6 CHAPTER 1. PRELIMINARIES

one exists. It is terminating if it does not run forever. Sine Sudokus are �nite

ombinatorial puzzles, suh an algorithm exists. The most simple algorithm is

to systematially guess all values for all unde�ned squares of the Sudoku and to

hek whether the guessed values atually onstitute a solution. However, this

amounts to heking 4

16

di�erent assignments of values to the squares. Suh an

approah is even worse than the one I will introdue in the sequel.

I onsider a Sudoku to be a two dimensional array f indexed from 1 to 4 in

eah dimension, starting from the upper left orner. So f(1; 1) is the value of the

square in the upper left orner and in ase of our initial Sudoku. For the start

Sudoku in Figure 1.1 the value of this square is given to be 2 whih I denote

by the equation f(1; 1) � 2. So the logi for Sudokus are �nite onjuntions

(onjuntion denoted by ^) of equations f(x; y) � z, where the variables x, y, z

range over the domain 1, 2, 3, 4. The meaning of a onjuntion is that all values

given by the equations should be simultaneously true in the Sudoku. The overall

left Sudoku (Start in Figure 1.1) is then given by the onjuntion of equations

f(1; 1) � 2 ^ f(1; 2) � 1 ^ f(3; 3) � 3 ^ f(3; 4) � 1 ^ f(4; 1) � 1 ^ f(4; 3) � 2

T

If you are already familiar with lassial logi, you know that the

formulas f(1; 1) � 2^ f(1; 2) � 1 and f(1; 2) � 1^ f(1; 1) � 2 annot

be distinguished semantially. They have always the same truth value,

beause onjuntion (^) is ommutative, and, in addition, assoiative. However,

here, the above onjuntion will beome part of a problem state. The sudoku

logi rules syntatially manipulate problem states. A problem state ontaining

f(1; 1) � 2 ^ f(1; 2) � 1 will be di�erent from one ontaining f(1; 2) � 1 ^

f(1; 1) � 2, beause the former impliitly means that there is no solution to the

sudoku with f(1; 1) � 1, whereas the latter means that there is no solution to

the sudoku with f(1; 1) � 1 in presene of f(1; 2) � 1.

The goal of the algorithm is then to �nd the assignments for the empty

squares with respet to the above mentioned onstraints on the number our-

renes in olumns, rows and boxes. The algorithm onsists of four rules that

eah take a state of the solution proess and transform it into a di�erent one,

loser to a solution. A state is desribed by a triple (N ;D; r) where N on-

tains the equations of the starting Sudoku, for example, the above onjuntion

of equations, D is a onjuntion of additional equations omputed by the al-

gorithm, and r 2 f>;?g desribes whether the atual values for f in N and

D potentially onstitute a solution. If r = > then no onstraint violation has

been deteted and if r = ? a onstraint violation has been deteted but not

yet resolved. The initial problem state is represented by the triple (N ;>;>)

where > also denotes an empty onjuntion and hene truth. The problem state

(N ;>;?) denotes the fail state, i.e., there is no solution for a Sudoku starting

with the assignments ontained in N .

A square f(x; y) where x; y 2 f1; 2; 3; 4g is alled de�ned by N ^D if there is

an equation f(x; y) � z, z 2 f1; 2; 3; 4g in N or D. Otherwise, f(x; y) is alled

unde�ned. For an initial state (N ;>;>) I assume that the same square is not

1.1. SOLVING 4� 4 SUDOKU 7

de�ned several times in N . We say that N ^D

0

is a solution to a Sudoku N , if

all squares are de�ned in N ^D

0

, no square is de�ned more than one in N ^D

0

and the assignments in N ^D

0

do not violate any onstraint. It is a solution to

a problem state (N ;D;>) if all equations from D our in D

0

. In the sequel we

always assume that for any start state (N ;>;>) eah square is de�ned at most

one in N and all variables x; y; z (possibly indexed, primed) range over values

1 to 4. Then the four rules of a �rst (naive) algorithm are

Dedue

(N ;D;>)) (N ;D ^ f(x; y) � 1;>)

provided f(x; y) is unde�ned in N ^D, for any x; y 2 f1; 2; 3; 4g.

Conit

(N ;D;>)) (N ;D;?)

provided for (i) f(x; y) = f(x; z) for f(x; y), f(x; z) de�ned in N ^D for some

x; y; z and y 6= z, or,

(ii) f(y; x) = f(z; x) for f(y; x), f(z; x) de�ned in N ^ D for some x; y; z and

y 6= z, or,

(iii) f(x; y) = f(x

0

; y

0

) for f(x; y), f(x

0

; y

0

) de�ned in N ^D and [x; x

0

2 f1; 2g

or x; x

0

2 f3; 4g℄ and [y; y

0

2 f1; 2g or y; y

0

2 f3; 4g℄ and (x; y) 6= (x

0

; y

0

).

Baktrak

(N ;D

0

^f(x; y) � z^D

00

;?)) (N ;D

0

^f(x; y) � z+1;>)

provided z < 4 andD

00

= > orD

00

ontains only equations of the form f(x

0

; y

0

) �

4.

Fail

(N ;D;?)) (N ;>;?)

provided D 6= > and D ontains only equations of the form f(x; y) � 4.

Rules are applied to a state by �rst mathing the left hand side of the rule

(left side of)) to the state, heking the side onditions desribed below the

rule and if they are ful�lled then replaing the state by the right hand side of

the rule. There is no order among the rules, so they are applied \don't are non-

deterministially". A strategy will �x the ordering and turn into an algorithm.

Furthermore, even a single rule may not be deterministi. For example rule

Dedue does not speify onrete values for x; y so it an be applied to any

unde�ned square f(x; y).

Starting with the state orresponding to the initial Sudoku shown on the left

in Figure 1.1, a one step derivation by rule Dedue is (N ;>;>)! (N ; f(1; 3) �

1;>). Atually the rule Dedue is the only appliable rule to (N ;>;>). Con-

erning the new state (N ; f(1; 3) � 1;>) two rules are appliable: Dedue and

Conit. An appliation of Conit, where side ondition (i) is satis�ed, yields

(N ; f(1; 3) � 1;?) and after an appliation of Baktrak to this state the rule

omputes (N ; f(1; 3) � 2;>). Applying Dedue to (N ; f(1; 3) � 1;>) results,

e.g., in (N ; f(1; 3) � 1:f(1; 4) � 1;>). Figure 1.2 shows this sequene of rule

appliations together with the orresponding Sudokus.

This is one reason why the rule set is ineÆient. Dedue still �res in ase of

an already existing onstraint violation and Dedue does not onsider already

8 CHAPTER 1. PRELIMINARIES

2 1

3 1

1 2

(N = f(1; 1) � 2 ^ f(1; 2) � 1^

f(3; 3) � 3 ^ f(3; 4) � 1^

f(4; 1) � 1 ^ f(4; 3) � 2;>;>)

+ Dedue f(1; 3) � 1

2 1 1

3 1

1 2

(N ; f(1; 3) � 1;>)

+ Conit

2 1 1

3 1

1 2

(N ; f(1; 3) � 1;?)

+ Baktrak f(1; 3) � 2;

2 1 2

3 1

1 2

(N ; f(1; 3) � 2;>)

Figure 1.2: E�et of Applying the Inferene Rules

existing equations when assigning a new value. It simply always assigns \1".

Improving the algorithm along the seond line is subjet to Exerises 1.1, 1.2.

Furthermore, note that if in a start state (N ;>;>) the initial assignments in N

already ontain a onstraint violation, then the rule onit diretly produes

the �nal fail state. An appropriate, very simple strategy turns the rule set into

an algorithm and prefers Conit over Dedue.

The Algorithm 1, SimpleSudoku(S), onsists of the four rules together with

a rule appliation strategy. The sope of loops and if-then-else statements is

indiated by indentation. A statement Rule(S) for some Rule means that the

appliation of the rule is tested and if appliable it is applied to the problem

state S. If suh a statement ours in a ifrule ondition, it is applied as before

and returns true i� (if and only if) the rule was appliable. For example, the

statement at line 1

ifrule (Conit(S)) then

return S;

is a shorthand for

if (the rule Conit is appliable to state S) then

1.1. SOLVING 4� 4 SUDOKU 9

Algorithm 1: SimpleSudoku(S)

Input : An initial state S = (N ;>;>).

Output: A �nal state S = (N ;D;>) or S = (N ;>;?)

1 ifrule (Conit(S)) then

2 return S;

3 while (any rule appliable) do

4 ifrule (Conit(S)) then

5 Baktrak(S);

6 Fail(S);

7 else

8 Dedue(S);

9 end

10 return S;

apply rule Conit to S;

return S;

where the appliation ondition is separated from the rule appliation.

At line 1 the rule Conit is tested and if appliable it will produe the

�nal state S = (N ;>;?), so the algorithm returns S. The while-loop starting

at line 3 terminates if no rule is appliable anymore. For otherwise, the rule

Conit is tested before Dedue in order to prevent useless Dedue steps. The

rules Baktrak and Fail are only appliable after an appliation of Conit, so

they are guarded by an appliation of Conit. Therefore, SimpleSudoku is a

fair algorithm in the sense that no rule appliation needed to ompute a �nal

state will be prohibited.

If the rules are onsidered in the ontext of the SimpleSudoku algorithm, then

they an be simpli�ed. For example, the ondition for rule Fail that all equations

are of the form f(x; y) � 4 an be dropped, beause in SimpleSudoku the rule

Fail is only tested and potentially applied after having tested Baktraking.

C

It is a design issue how muh rule appliation ontrol is atually put

into the side onditions of the rules and how muh ontrol into the

algorithm. It depends, of ourse, on the problem to be solved but also

on whih level properties an be shown. For SimpleSudoku all properties an be

shown on the alulus, i.e., rule level. In general, showing termination of a rule

set often requires a partiular strategy, i.e., algorithm.

In the sequel, I will prove that the four rules are sound, omplete and ter-

minating. Sound means that whenever the rules ompute some state (N ;D;>)

and it has a solution, then this solution is also a solution for N . Complete means

that whenever there is a solution to the Sudoku, exhaustive appliation of the

four rules will ompute a solution. Note that for ompleteness the omputation

of any solution, not an a priori seleted one, is suÆient. In ase of the Sudoku

rules even strong ompleteness holds: for any solution N ^ D of the Sudoku,

10 CHAPTER 1. PRELIMINARIES

there is a sequene of rule appliations so that (N ;D;>) is a terminating state.

So any a priori seleted solution an be generated. Termination at the rule level

means that independently of the atual sequene of rule appliations to a start

state, there is no in�nite sequene of rule appliations possible. In the sequel,

I will onsider a fourth property important for rule based systems: onuene.

A set of rules is onuent if whenever there are several rules appliable to a

given state, then the di�erent generated states an be rejoined by further rule

appliations. So onuene guarantees unique results on termination. Beause

of the above informal fairness argument for the SimpleSudoku algorithm, all

these properties also hold not only for the rule set but also for the algorithm.

Proposition 1.1.1 (Soundness). The rules Dedue, Conit, Baktrak and

Fail are sound. Starting from an initial state (N ;>;>): (i) for any �nal state

(N ;D;>), the equations in N ^ D are a solution, and, (ii) for any �nal state

(N ;>;?) there is no solution to the initial problem.

Proof. First of all note that no rule manipulates N , the �rst omponent of a

state (N ;D; r). This justi�es the way this proposition is stated. (i) So assume a

�nal state (N ;D;>) so that no rule is appliable. In partiular, this means that

for all x; y 2 f1; 2; 3; 4g the square f(x; y) is de�ned in N ^D as for otherwise

Dedue would be appliable, ontraditing that (N ;D;>) is a �nal state. So

all squares are de�ned by N ^ D. No square is de�ned more than one. What

remains to be shown is that those assignments atually onstitute a solution to

the Sudoku. However, if some assignment in N ^ D results in a repetition of

a number in some olumn, row or 2 � 2 box of the Sudoku, then rule Conit

is appliable, ontraditing that (N ;D;>) is a �nal state. In sum, (N ;D;>) is

a solution to the Sudoku and hene the rules Dedue, Conit, Baktrak and

Fail are sound.

(ii) So assume that the initial problem (N ;>;>) has a solution. I prove by

ontradition based on an indutive argument that in this ase the rules annot

generate a state (N ;>;?). So let (N ;D;>) be an arbitrary state with D of max-

imal length still having a solution, but (N ;>;?) is reahable from (N ;D;>).

This inludes the initial state if D = >. An appropriate seletion of rule ap-

pliations orretly deides the next square. Sine (N ;D;>) still has a solution

the only appliable rule is Dedue. It generates (N ;D^f(x; y) � 1;>) for some

x; y 2 f1; 2; 3; 4g. If (N ;D ^ f(x; y) � 1;>) still has a solution the proof is

done sine this violates D to be of maximal length. So (N ;D ^ f(x; y) � 1;>)

does not have a solution anymore. But then eventually Conit and Baktrak

are appliable to a state (N ;D ^ f(x; y) � 1 ^ D

0

;?) where D

0

only ontains

equations of the form f(x

0

; y

0

) � 4 resulting in (N ;D ^ f(x; y) � 2;>). Now

repeating the argument we will eventually reah a state (N ;D ^ f(x; y) � k;>)

that has a solution, �nally ontraditing D to be of maximal length.

For the �rst part of the soundness proof, Proposition 1.1.1, neither the rule

Baktrak nor Fail shows up. This is beause an empty rule system is trivially

sound. The rules Baktrak or Fail are indispensable for the seond part of the

proof and for showing ompleteness.

1.1. SOLVING 4� 4 SUDOKU 11

CThe above proof ontains a \handwaving argument", the sentene

\But then eventually Conit and Baktrak are appliable to a state

(N ;D ^ f(x; y) � 1 ^ D

0

;?) where D

0

only ontains equations of the form

f(x

0

; y

0

) � 4 resulting in (N ;D ^ f(x; y) � 2;>)." needs a proof on its own. I

will not do the proof here, but for some of the rule sets for deiding satis�ability

of propositional logi, Chapter 2, I will do analogous proofs in full detail.

Proposition 1.1.2 (Strong Completeness). The rules Dedue, Conit, Bak-

trak and Fail are strongly omplete. For any solution N ^ D of the Sudoku

there is a sequene of rule appliations so that (N ;D;>) is a �nal state.

Proof. A partiular strategy for the rule appliations is needed to indeed gen-

erate (N ;D;>) out of (N ;>;>) for some spei� solution N ^D. Without loss

of generality I assume the assignments in D to be sorted so that assignments

to a number k 2 f1; 2; 3; 4g preede any assignment to some number l > k. So

if, for example, N does not assign all four values 1, then the �rst assignment

in D is of the form f(x; y) � 1 for some x; y. Now I apply the following strat-

egy, subsequently adding all assignments from D to (N ;>;>). The strategy has

ahieved state (N ;D

0

;>) and the next assignment from D to be established is

f(x; y) � k, meaning f(x; y) is not de�ned in N ^ D

0

. Then until l = k the

strategy does the following, starting from l = 1. It applies Dedue adding the

assignment f(x; y) � l. If Conit is appliable to this assignment, it is applied

and then Baktrak, generating the new assignment f(x; y) � l+ 1 and so on.

I need to show that this strategy in fat eventually adds f(x; y) � k to

D

0

. As long as l < k any added assignment f(x; y) � l results in rule Conit

appliable, beause D is ordered and all four values for all l < k are already

established. The eventual assignment f(x; y) � k does not generate a onit

beause D is a solution. For the same reason, the rule Fail is never appliable.

Therefore, the strategy generates (N ;D;>) out of (N ;>;>).

Note the subtle di�erene between the seond part of proving Proposi-

tion 1.1.1 and the above strong ompleteness proof. The former shows that any

solution an be produed by the rules whereas the latter shows that a spei�,

a priori seleted solution an be generated.

Proposition 1.1.3 (Termination). The rules Dedue, Conit, Baktrak and

Fail terminate on any input state (N ;>;>).

Proof. One the rule Fail is appliable, no other rule is appliable on the result

anymore. So there is no need to onsider rule Fail for termination. The idea of

the proof is to assign a measure over the natural numbers to every state so that

eah rule stritly dereases this measure and that the measure annot get below

0. The measure is as follows.

For any given state S = (N ;D; r) with r 2 f>;?g with D = f(x

1

; y

1

) �

k

1

^ : : : ^ f(x

n

; y

n

) � k

n

I assign the measure �(S) by

�(S) = 2

49

� p�

n

X

i=1

k

i

� 2

49�3i

12 CHAPTER 1. PRELIMINARIES

where p = 0 if r = > and p = 1 otherwise.

The measure �(S) is well-de�ned and annot beome negative as n � 16,

p � 1, and 1 � k

i

� 4 for any D. In partiular, the former holds beause the

rule Dedue only adds values for unde�ned squares and the overall number of

squares is bound to 16. What remains to be shown is that eah rule appliation

dereases �. I do this by a ase analysis over the rules.

Dedue:

�((N ;D;>)) = 2

49

�

P

n

i=1

k

i

� 2

49�3i

> 2

49

�

P

n

i=1

k

i

� 2

49�3i

� 1 � 2

49�3(n+1)

= �((N ;D ^ f(x; y) � 1;>))

Conit:

�((N ;D;>)) = 2

49

�

P

n

i=1

k

i

� 2

49�3i

> 2

49

� 1�

P

n

i=1

k

i

� 2

49�3i

= �((N ;D;?))

Baktrak:

�((N ;D

0

^ f(x

l

; y

l

) � k

l

^D

00

;?))

= 2

49

� 1� (

P

l�1

i=1

k

i

� 2

49�3i

)� k

l

� 2

49�3l

�

P

n

i=l+1

k

i

� 2

49�3i

> 2

49

� (

P

l�1

i=1

k

i

� 2

49�3i

)� (k

l

+ 1) � 2

49�3l

= �(N ;D

0

^ f(x

l

; y

l

) � k

l

+ 1;>)

where the strit inequation holds beause 2

49�3l

>

P

n

i=l+1

k

i

� 2

49�3i

+ 1.

As already mentioned, there is another important property for don't are

non-deterministi rule sets: onuene. It means that whenever several sequenes

of rules are appliable to a given state, the respetive results an be rejoined

by further rule appliations to a ommon problem state. A weaker ondition

is loal onuene where only one step of di�erent rule appliations needs to

be rejoined. In Setion 1.6, Lemma 1.6.6, the equivalene of onuene and

loal onuene in ase of a terminating rule system is shown. Assuming this

result, for the Sudoku rule system only one step of so alled overlaps needs to

be onsidered. There are two potential kinds of overlaps for the Sudoku rule

system. First, an appliation of Dedue and Conit to some state. Seond, two

di�erent appliations of Dedue to a state. The below Proposition 1.1.4 shows

that the former ase an in fat be rejoined and Example 1.1.5 shows that the

latter annot. So in sum, the system is not loally onuent and hene not

onuent. This fat has already shown up in the soundness and ompleteness

proofs.

Proposition 1.1.4 (Dedue and Conit are onuent). Given a state

(N ;D;>) out of whih two di�erent states (N ;D

1

;>) and (N ;D

2

;?) an be

generated by Dedue and Conit, respetively, then the two states an be re-

joined to a state (N ;D

0

; �) via further rule appliations.

1.1. SOLVING 4� 4 SUDOKU 13

Proof. Consider an appliation of Dedue and Conit to a state (N ;D;>)

resulting in (N ;D ^ f(x; y) � 1;>) and (N ;D;?), respetively. We will now

show that in fat we an rejoin the two states. Notie that sine Conit is

appliable to (N ;D;>) it is also appliable to (N ;D ^ f(x; y) � 1;>). So the

�rst sequene of rejoin steps is

(N ;D ^ f(x; y) � 1;>)) (N ;D ^ f(x; y) � 1;?)

) (N ;D ^ f(x; y) � 2;>)

)

�

(N ;D ^ f(x; y) � 4;?)

where we subsequently applied Conit and Baktrak to reah the state (N ;D^

f(x; y) � 4;?) and)

�

abbreviates those �nite number of rule appliations.

Finally applying Baktrak (or Fail) to (N ;D;?) and (N ;D ^ f(x; y) � 4;?)

results in the same state.

Example 1.1.5 (Dedue is not onuent). Consider the Sudoku state (f(1; 1) �

1 ^ f(2; 2) � 1;>;>) and two appliations of Dedue generating the respe-

tive suessor states (f(1; 1) � 1 ^ f(2; 2) � 1; f(3; 3) � 1;>) and (f(1; 1) �

1 ^ f(2; 2) � 1; f(3; 4) � 1;>). Obviously, both states an be ompleted to a

solution, but don not have a ommon solution. Therefore, it will not be possible

to rejoin the two states, see Figure 1.3.

1

1

Start

1

1

1

1

1

1

Dedue: f(3; 3) � 1Dedue: f(3; 4) � 1

Figure 1.3: Divergene of Rule Dedue

C

Is it desirable that a rule set for Sudoku is onuent? It depends on

the purpose of the algorithm. In ase of the above rules set for Sudoku,

strong ompleteness and onuene annot both be ahieved, beause

any solution of the Sudoku results in its own, unique, �nal state.

Exerises

(1.1) Improve the Sudoku rule system:

14 CHAPTER 1. PRELIMINARIES

(a) Re�ne the Dedue rule so that it does not generate an immediate on-

straint violation.

(b) Prove for the improved rule system that it is sound, omplete, and termi-

nating.

(1.2) Further improve the Sudoku rule system:

(a) In addition to the re�ned Dedue rule, add a rule Propagate to the rule

set that exploits all unique deisions. For example, if a row, olumn, box

is �lled exept one square, the appliation of the rule �lls the remaining

square with the orret value.

(b) Prove for the new rule system onsisting of Dedue, Propagate, Conit,

Baktrak, and Fail that it is sound, omplete, terminating. Is it also

loally onuent? Note that the introdution of the additional Propagate

rule may also require hanges to the other rules in order to obtain a system

enjoying the before mentioned properties.

(1.3) Modify the Sudoku rule set so that the rules beome onuent and are

still sound and omplete.

(1.4) Prove the statement \But then eventually Conit and Baktrak are ap-

pliable to a state (N ;D^f(x; y) � 1^D

0

;?) where D

0

only ontains equations

of the form f(x

0

; y

0

) � 4 resulting in (N ;D^ f(x; y) � 2;>)." from the proof of

Proposition 1.1.1.

(1.5)� Develop a deterministi algorithm in some imperative while-style pseudo

programming language that solves 4� 4 Sudokus.

(a) Prove that this algorithm is sound, omplete and terminating.

(b) What is the di�erene between the rule-based and while-based formulation

and what are the onsequenes when proving the desired properties of the

algorithm?

(1.6)� Implement one of the Sudoku algorithms. Think of an appropriate, �le

based simple input format. Think arefully of data strutures for representing

N , the board, D, the urrent solution attempt and in partiular for supporting

the baktraking proedure.

1.2 Basi Mathematial Prerequisites

The set of the natural numbers inluding 0 is denoted by N, N = f0; 1; 2; : : :g,

the set of positive natural numbers without 0 by N

+

, N

+

= f1; 2; : : :g, and the

set of integers by Z. Aordingly Q denotes the rational numbers and R the real

numbers, respetively.

Given a set M , a multi-set S over M is a mapping S : M ! N, where S

spei�es the number of ourrenes of elements m of the base set M within the

multiset S. I use the standard set notations 2, �, �, [, \ with the analogous

1.3. BASIC COMPUTER SCIENCE PREREQUISITES 15

meaning for multisets, for example (S

1

[S

2

)(m) = S

1

(m) + S

2

(m). I also write

multi-sets in a set like notation, e.g., the multi-set S = f1; 2; 2; 4g denotes a

multi-set over the set f1; 2; 3; 4g where S(1) = 1, S(2) = 2, S(3) = 0, and

S(4) = 1. A multi-set S over a set M is �nite if fm 2 M j S(m) > 0g is �nite.

For the purpose of this book I only onsider �nite multi-sets.

An n-ary relation R over some set M is a subset of M

n

: R � M

n

. For two

n-ary relations R;Q over some setM , their union ([) or intersetion (\) is again

an n-ary relation, where R [Q := f(m

1

; : : : ;m

n

) 2 M j (m

1

; : : : ;m

n

) 2 R or

(m

1

; : : : ;m

n

) 2 Qg and R \ Q := f(m

1

; : : : ;m

n

) 2 M j (m

1

; : : : ;m

n

) 2 R

and (m

1

; : : : ;m

n

) 2 Qg . A relation Q is a subrelation of a relation R if

Q � R. The harateristi funtion of a relation R or sometimes alled pred-

iate indiates membership. In addition of writing (m

1

; : : : ;m

n

) 2 R I also

write R(m

1

; : : : ;m

n

). So the prediate R(m

1

; : : : ;m

n

) holds or is true if in fat

(m

1

; : : : ;m

n

) belongs to the relation R.

Given a nonempty alphabet � the set �

�

of �nite words over � is de�ned

by the (i) empty word � 2 �

�

, (ii) for eah letter a 2 � also a 2 �

�

and, �nally,

(iii) if u; v 2 �

�

so uv 2 �

�

where uv denotes the onatenation of u and v. The

length juj of a word u 2 �

�

is de�ned by (i) j�j := 0, (ii) jaj := 1 for any a 2 �

and (iii) juvj := juj+ jvj for any u; v 2 �

�

.

1.3 Basi Computer Siene Prerequisites

1.3.1 Data Strutures

1.3.2 While Languages over Rules

When presenting pseudoode for algorithms in textbooks typially so alled

while languages are used (e.g., see [15℄). I assume familiarity with suh lan-

guages and speialize it here to rules. So let Rule be a rule de�ned on some

state S. Then

Rule(S);

is a shorthand for

if Rule is appliable to S then apply it one to S;

where in partiular nothing happens if Rule is not appliable to S. There may

be several potential appliations ofRule to S. In this ase any of these is hosen.

The statement

whilerule(Rule(S)) do Body ;

is a shorthand for

while (Rule is appliable to S) do

apply Rule one to S;

exeute Body ;

16 CHAPTER 1. PRELIMINARIES

where the sope of the while loop is shown by indentation. The ondition of

the whilerule statement may also be a disjuntion of rule statements. In this

ase the disjuntion is exeuted in a non-deterministi, lazy way. We use k to

indiate the disjuntion. Furthermore, a single rule statement may be followed

by a negation, indiated by !. In this ase the rule is tested for appliation,

if it is appliable it is applied and the ondition beomes false. If the rule is

not appliable the ondition beomes true. Exept for these extensions, boolean

ombinations over rule statements are not part of the language. Finally, the

statement

ifrule(Rule(S)) then Body ;

is a shorthand for

if (Rule is appliable to S) then

apply Rule one to S;

exeute one Body ;

In Setion 1.1 I have already used the language for desribing an algorithm

solving sudokus, Algorithm 1, SimpleSudoku(S).

1.3.3 Complexity

This book is about algorithms solving problems presented in logi. Suh an al-

gorithm is typially represented by a �nite set of rules, manipulating a problem

state that ontains the logial representation plus bookkeeping information. For

example, for solving 4 � 4-Sudokus, see Setion 1.1, we represented the board

by a �nite onjuntion of equations. The problem state was given by the repre-

sentation of the board plus assignments for remaining empty squares, plus an

indiation whether two oniting assignments have been deteted. The rules

then take a start problem state and eventually transform it into a solved form.

In order to ompare the performane of this rule set with a di�erent one or to

give an overall performane guarantee of the rule set, the lassial way in om-

puter siene is to onsider the (worst ase) running time until termination. A

onsequene of the Sudoku termination proof, Lemma 1.1.3, is that at most 2

49

rule appliations are needed. Generalizing this result, for a given n�n-Sudoku,

the running time would by of \order" n

n

2

, beause in the worst ase we need to

guess n di�erent numbers for eah square and there are n

2

squares of the board.

The so alled big O notation overs the term \order" formally.

De�nition 1.3.1 (Big O). Let f(n) and g(n) be funtions from the naturals

into the nonnegative reals. Then

O(f(n)) = fg(n) j 9 > 0 9n

0

2 N

+

8n � n

0

g(n) � � f(n)g

Thus, the running time of the Sudoku algorithm for an n � n-Sudoku is

O(n

n

2

), if the number of rule appliations are taken to be the onstant time

units. This sounds somewhat surprising beause it means that the algorithm

1.3. BASIC COMPUTER SCIENCE PREREQUISITES 17

will already fail for reasonably small n, if implemented in pratie. For example,

for the well-established 9�9-Sudoku puzzles the algorithm will in the worst ase

need about 9

81

� 2 �10

77

rule appliations to �gure out whether a given Sudoku

has a solution. This way, assuming a fast omputer that an perform 1 Million

rule appliations per seond it will take longer to solve a single Sudoku than the

urrently estimated age of the universe. Nevertheless, human beings typially

solve a 9 � 9-Sudoku in some minutes. So what is wrong here? First of all, as

I already said, the algorithm presented in Setion 1.1 is ompletely naive. This

algorithm will de�nitely not solve 9 � 9-Sudokus in reasonable time. It an be

turned into an algorithm that will work niely in pratie, see Exerise (1.2).

Nevertheless, problems suh as Sudokus are diÆult to solve, in general. Testing

whether a partiular assignment is a solution an be done eÆiently, in ase of

Sudokus in time O(n

2

). For the purpose of this book, I say a problem an be

eÆiently solved if there is an algorithm solving the problem and a polynomial

p(n) so that the exeution time on inputs of size n is O(p(n)). Although it is

eÆient for Sudokus to validate whether an assignment is a solution, there are

exponentially many possible assignments to hek in order to �gure out whether

there exists a solution. So if we are allowed to make guesses, then Sudokus an

be solved eÆiently. This property desribes the lass of NP (Nondeterministi

Polynomial) problems in general that I will introdue now.

A deision problem is a subset L � �

�

for some �xed �nite alphabet �.

The funtion hr(L; x) denotes the harateristi funtion for some deision

problem L and is de�ned by hr(L; u) = 1 if u 2 L and hr(L; u) = 0 otherwise.

A deision problem is solvable in polynomial-time i� its harateristi funtion

an be omputed in polynomial-time. The lass P denotes all polynomial-time

deision problems.

De�nition 1.3.2 (NP). A deision problem L is in NP i� there is a prediate

Q(x; y) and a polynomial p(n) so that for all u 2 �

�

we have (i) u 2 L i� there

is an v 2 �

�

with jvj � p(juj) and Q(u; v) holds, and (ii) the prediate Q is in

P.

A deision problem L is polynomial time reduible to a deision problem L

0

if there is a funtion g 2 P so that for all u 2 �

�

we have u 2 L i� g(u) 2 L

0

.

For example, if L is reduible to L

0

and L

0

2 P then L 2 P. A deision problem

is NP-hard if every problem in NP is polynomial time reduible to it. A deision

problem is NP-omplete if it is NP-hard and in NP. Atually, the �rst NP-

omplete problem [7℄ has been propositional satis�ability (SAT). Chapter 2 is

ompletely devoted to solving SAT.

1.3.4 Word Grammars

When G�odel presented his undeidability proof on the basis of arithmeti, many

people still believed that the onstrution is so arti�ial that suh problems will

never arise in pratie. This didn't hange with Turing's invention of the Turing

mahine and the undeidable halting problem of suh a mahine. However, then

18 CHAPTER 1. PRELIMINARIES

Post presented his orrespondene problem in 1946 [18℄ it beame obvious that

undeidability is not an arti�ial onept.

De�nition 1.3.3 (Finite Word). Given a nonempty alphabet � the set �

�

of

�nite words over � is de�ned by

1. the empty word � 2 �

�

2. for eah letter a 2 � also a 2 �

�

3. if u; v 2 �

�

so uv 2 �

�

where uv denotes the onatenation of u and v.

De�nition 1.3.4 (Length of a Finite Word). The length juj of a word u 2 �

�

is de�ned by

1. j�j := 0,

2. jaj := 1 for any a 2 � and

3. juvj := juj+ jvj for any u; v 2 �

�

.

De�nition 1.3.5 (PCP). Given two �nite lists of words (u

1

; : : : ; u

n

) and

(v

1

; : : : ; v

n

) the Post Correspondene Problem (PCP) is to �nd a �nite index

list (i

1

; : : : ; i

k

), 1 � i

j

� n, so that u

i

1

u

i

2

: : : u

i

k

= v

i

1

v

i

2

: : : v

i

k

.

Take for example the two lists (a; b; bb) and (ab; ab; b) over alphabet � =

fa; bg. Then the index list (1; 3) is a solution to the PCP with ommon word

abb.

Theorem 1.3.6 (Post 1942). PCP is undeidable.

De�nition 1.3.7 (Context-Free Grammar). A ontext-free grammar G =

(N;T; P; S) onsists of:

1. a set of non-terminal symbols N

2. a set of terminal symbols T

3. a set P of rules A) w where A 2 N and w 2 (N [T)

�

4. a start symbol S where S 2 N

For rules A) w

1

, A) w

2

we write A) w

1

j w

2

.

Given a ontext free grammarG and two words u; v 2 (N[T)

�

I write u) v

if u = u

1

Au

2

and v = u

1

wu

2

and there is a rule A) w in G. The language

generated by G is L(G) = fw 2 T

�

j S)

�

wg, where)

�

is the reexive and

transitive losure of).

A ontext free grammar G is in Chomsky Normal Form [6℄ if all rules are if

the form A) B

1

B

2

with B

i

2 N or A) w with w 2 T

�

. It is said to be in

Greibah Normal Form [12℄ if all rules are of the form A) aw with a 2 T and

w 2 N

�

.

