
Chapter 5

First-Order Logic With Equality

In this Chapter I combine the ideas of Superposition for first-order logic with-
out equality, Section 3.13, and Knuth-Bendix Completion, Section 4.4, to get
a calculus for equational clauses. In Section 3.1 I already argued that any
literal can be represented by an equation by “moving predicates to functions”
and introducing a new sort Bool with specific constant true that is minimal
in any considered ordering.

P (t1, . . . , tn) ⇒ fP (t1, . . . , tn) ≈ true
¬P (t1, . . . , tn) ⇒ fP (t1, . . . , tn) 6≈ true

The concentration on equational literals eases notation as I will show below.
The constant true is minimal in the ordering, so the left hand side of a trans-
formed literal is always strictly maximal. The freshly introduced functions fP
only occur at top level of a term, so a critical pair overlap between two such
functions corresponds exactly to a Superposition Left (resolution) or Factoring
inference of the superposition calculus for first-order logic without equality.
Note that a literal true 6≈ true can be simplified to ⊥ and a literal true ≈ true
to >, respectively. So from now on I only equational clauses, i.e., there are no
predicate symbols, Π = ∅.

Inference rules are to be read modulo symmetry of the equality symbol.
First, I explain the ideas and motivations behind the superposition calculus
with equality and its completeness proof for the ground case. At start I do
not consider selection, it will be eventually added in the obvious way when
considering clauses with variables.

5.1 Ground Superposition

The idea of the superposition calculus without equality was to restrict in-
ferences to maximal literals, Section 3.13. Knuth-Bendix completion considers
critical pairs between maximal sides of equations, Section 4.4. Superposition
on equational clauses combines the two restrictions: inferences are between
maximal left hand sides of maximal literals in the respective clauses. Since all
considered orderings are total on ground terms, they maximality conditions
can be stated positively.
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The ground inference rules corresponding to Knuth-Bendix critical pair
computation generalized to clauses. Superposition Left on first-order logic
without equality is generalized to equational clauses an inferences below top
atom positions. Then the ordering construction of Definition 3.12.1 is lifted to
equational clauses. The multiset {s, t} is assigned to a positive literal s ≈ t, the
multiset {s, s, t, t} is assigned to a negative literal s 6≈ t. The literal ordering
�L compares these multisets using the multiset extension of �. The clause
ordering �C compares clauses by comparing their multisets of literals using
the multiset extension of �L. Eventually � is used for all three orderings
depending on the context.

Superposition Left (N ] {D ∨ t ≈ t′, C ∨ s[t] 6≈ s′}) ⇒SUPE

(N ∪ {D ∨ t ≈ t′, C ∨ s[t] 6≈ s′} ∪ {D ∨ C ∨ s[t′] 6≈ s′})
where t ≈ t′ is strictly maximal and s ≈ s′ are maximal in their respective
clauses, t � t′, s � s′

Superposition Right (N ] {D ∨ t ≈ t′, C ∨ s[t] ≈ s′}) ⇒SUPE

(N ∪ {D ∨ t ≈ t′, C ∨ s[t] ≈ s′} ∪ {D ∨ C ∨ s[t′] ≈ s′})
where t ≈ t′ and s ≈ s′ are strictly maximal in their respective clauses, t � t′,
s � s′

The two rules are not yet sufficient to obtain completeness. There is no
rule corresponding to Factoring and there is no way to apply reflexivity of
equality, i.e., refute negative equations. The latter is solved by the below rule
Equality Resolution.

Equality Resolution (N ] {C ∨ s 6≈ s}) ⇒SUPE (N ∪ {C ∨ s 6≈
s} ∪ {C})
where s 6≈ s is maximal in the clause

Similar to Factoring on ground clauses, Equality Resolution is also a sim-
plification on ground clauses, i.e., the parent clause becomes redundant with
respect to the result of the derivation step. Once Equality Resolution is lifted
to clauses with variables this is no longer the case, because the applied sub-
stitution may instantiate further literals in C.

It turns out that a direct adaption of the Factoring rule from superpo-
sition for first-order logic without equality is not sufficient for completeness.
This becomes obvious in the context of the model construction. Basically,
for the model construction the same ideas as in the completeness proof for
superposition without equality apply, see Section 3.13. However, a Herbrand
interpretation does not work for equality: the equality symbol ≈ must be in-
terpreted by equality in the interpretation. The solution is to define a set E
of ground equations and take T (Σ, ∅)/E = T (Σ, ∅)/≈E as the universe. Then
two ground terms s and t are equal in the interpretation if and only if s ≈E t.
If E is a terminating and confluent rewrite system R, then two ground terms
s and t are equal in the interpretation, if and only if s ↓R t.
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Now the problem with the standard factoring rule is that in the complete-
ness proof for the superposition calculus without equality, the following prop-
erty holds: if C = C ′∨A with a strictly maximal atom A is false in the current
interpretation NC with respect to some clause set, see Definition 3.12.5, then
adding A to the current interpretation cannot make any literal in C ′ true. This
does not hold anymore in the presence of equality. Let b � c � d. Assume that
the current rewrite system (representing the current interpretation) contains
the rule c → d. Now consider the clause b ≈ c ∨ b ≈ d where b ≈ c is strictly
maximal. A further needed inference rule to deal with clauses of this kind,
is the below Equality Factoring rule, a generalization of the non-equational
Factoring rule.

Equality Factoring (N ] {C ∨ s ≈ t′ ∨ s ≈ t}) ⇒SUPE (N ∪ {C ∨ s ≈
t′ ∨ s ≈ t} ∪ {C ∨ t 6≈ t′ ∨ s ≈ t′})
where s � t′, s � t and s ≈ t is maximal in the clause

5.2 Superposition

The lifting from the ground case to the first-order case with variables
is then identical to the case of superposition without equality: identity is
replaced by unifiability, the mgu is applied to the resulting clause, and � is
replaced by 6�. In addition, as in Knuth-Bendix completion, overlaps at or
below a variable position are not considered. The consequence is that there
are inferences between ground instances Dσ and Cσ of clauses D and C which
are not ground instances of inferences between D and C. Such inferences have
to be treated in a special way in the completeness proof and will be shown to
be obsolete.

Until now I mostly described the ideas behind the superposition calculus
and its completeness proof. Now, precise definitions and proofs will be given.
Inference rules are applied with respect to the commutativity of equality ≈.
Selection of negative literals is considered as well.

Superposition Right (N ] {D ∨ t ≈ t′, C ∨ s[u] ≈ s′}) ⇒SUPE

(N ∪ {D ∨ t ≈ t′, C ∨ s[u] ≈ s′} ∪ {(D ∨ C ∨ s[t′] ≈ s′)σ})
where σ is the mgu of t, u, u is not a variable tσ 6� t′σ, sσ 6� s′σ, (t ≈ t′)σ
strictly maximal in (D ∨ t ≈ t′)σ, nothing selected and (s ≈ s′)σ maximal in
(C ∨ s ≈ s′)σ and nothing selected

Superposition Left (N ] {D ∨ t ≈ t′, C ∨ s[u] 6≈ s′}) ⇒SUPE

(N ∪ {D ∨ t ≈ t′, C ∨ s[u] 6≈ s′} ∪ {(D ∨ C ∨ s[t′] 6≈ s′)σ})
where σ is the mgu of t, u, u is not a variable tσ 6� t′σ, sσ 6� s′σ, (t ≈ t′)σ
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strictly maximal in (D ∨ t ≈ t′)σ, nothing selected and (s 6≈ s′)σ maximal in
(C ∨ s 6≈ s′)σ or selected

Equality Resolution (N ] {C ∨ s 6≈ s′}) ⇒SUPE (N ∪ {C ∨ s 6≈
s′} ∪ {Cσ})

where σ is the mgu of s, s′, (s 6≈ s′)σ maximal in (C ∨ s 6≈ s′)σ or selected

Equality Factoring (N ]{C ∨ s′ ≈ t′ ∨ s ≈ t}) ⇒SUPE (N ∪{C ∨ s′ ≈
t′ ∨ s ≈ t} ∪ {(C ∨ t 6≈ t′ ∨ s ≈ t′)σ})

where σ is the mgu of s, s′, s′σ 6� t′σ, sσ 6� tσ, (s ≈ t)σ maximal in (C ∨ s′ ≈
t′ ∨ s ≈ t)σ and nothing selected

Proving soundness of the rules is not difficult, completeness, however, re-
quires a non-trivial proof.

Theorem 5.2.1 (Superposition Soundness). All inference rules of the su-
perposition calculus are sound, i.e., for every rule N ] {C1, . . . , Cn} ⇒
N ∪ {C1, . . . , Cn} ∪ {D} it holds that {C1, . . . , Cn} |= D.

The notion of redundancy does not change, i.e., a clause is redundant if it
is implied by smaller clauses.

Definition 5.2.2 (Abstract Redundancy). A clause C is redundant with
respect to a clause set N if for all ground instances Cσ there are clauses
{C1, . . . , Cn} ⊆ N with ground instances C1τ1, . . . , Cnτn such that Ciτi ≺ Cσ
for all i and C1τ1, . . . , Cnτn |= Cσ.

Given a set N of clauses red(N) is the set of clauses redundant with respect
to N .

Definition 5.2.3 (Saturation). A clause set N is saturated up to redundancy
if for every derivation N \ red(N)⇒SUPE N ∪{C} it holds C ∈ (N ∪ red(N)).

For a set E of ground equations, T (Σ, ∅)/E is an E-interpretation (or E-
algebra) with universe {[t] | t ∈ T (Σ, ∅)}. Then for every ground equation
s ≈ t, T (Σ, ∅)/E |= s ≈ t holds if and only if s↔∗E t, see Theorem 4.1.11. In
particular, if E is a convergent set of rewrite rules R and s ≈ t is a ground
equation, then T (Σ, ∅)/R |= s ≈ t if and only if s ↓R t. An equation or clause
is valid (or true) in R if and only if it is true in T (Σ, ∅)/R.

Definition 5.2.4 (Partial Model Construction). Given a clause set N and
an ordering � a (partial) model NI can be constructed inductively over all
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ground clause instances of N as follows:

NC :=
⋃D∈grd(Σ,N)
D≺C ED

ED :=



{s ≈ t} if D = D′ ∨ s ≈ t,
(i) s ≈ t is strictly maximal in D

(ii) s � t
(iii) D is false in ND

(iv) D′ is false in ND ∪ {s→ t}
(v) s is irreducible by ND

(vi) no negative literal is selected in D′

∅ otherwise

NI :=
⋃
C∈grd(Σ,N)NC

where ND, NI , ED are also considered as rewrite systems with respect to �.
If ED 6= ∅ then D is called productive.

Lemma 5.2.5 (Maximal Terms in Productive Clauses). If EC = {s → t}
and ED = {l→ r}, then s � l if and only if C � D.

Corollary 5.2.6 (Partial Models are Convergent Rewrite Systems). The
rewrite systems NC and NI are convergent.

Proof. Obviously, s � t for all rules s → t in NC and NI . Furthermore, it is
easy to check that there are no critical pairs between any two rules: Assume
that there are rules l → r in ED and s → t in EC so that l is a subterm of
s. As � is a reduction ordering that is total on ground terms, l ≺ s holds
and therefore D ≺ C and ED ⊆ NC . But then s would be reducible by NC ,
contradicting condition Definition 5.2.4 (v).

Lemma 5.2.7 (Ordering Consequences in Productive Clauses). If D � C
and EC = {s→ t}, then s � r for every term r occurring in a negative literal
in D and s � l for every term l occurring in a positive literal in D.

Corollary 5.2.8 (Model Monotonicity True Clauses). If D is true in ND,
then D is true in NI and NC for all C � D.

Proof. If a positive literal of D is true in ND, then this is obvious. Otherwise,
some negative literal s 6≈ t of D must be true in ND, hence s 6↓ND t. As the
rules in NI \ND have left-hand sides that are larger than s and t, they cannot
be used in a rewrite proof of s ↓ t, hence s 6↓NC t and s 6↓NI t.

Corollary 5.2.9 (Model Monotonicity False Clauses). If D = D′ ∨ s ≈ t is
productive, then D′ is false and D is true in NI and NC for all C � D.
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Proof. Obviously, D is true in NI and NC for all C � D. Since all negative
literals of D′ are false in ND, it is clear that they are false in NI and NC .
For the positive literals s′ ≈ t′ of D′, condition Definition 5.2.4 (iv) ensures
that they are false in ND ∪ {s → t}. Since s′ � s and t′ � s and all rules
in NI \ND have left-hand sides that are larger than s, these rules cannot be
used in a rewrite proof of s′ ↓ t′, hence s′ 6↓NC t′ and s′ 6↓NI t′.

Lemma 5.2.10 (Lifting Single Clause Inferences). Let C be a clause and let
σ be a substitution such that Cσ is ground. Then every equality resolution or
equality factoring inference from Cσ is a ground instance of an inference from
C.

Lemma 5.2.11 (Lifting Two Clause Inferences). Let D = D′ ∨ u ≈ v and
C = C ′ ∨ [¬]s ≈ t be two clauses (without common variables) and let σ be
a substitution such that Dσ and Cσ are ground. If there is a superposition
inference between Dσ and Cσ where uσ and some subterm of sσ are over-
lapped and uσ does not occur in sσ at or below a variable position of s then
the inference is a ground instance of a superposition inference from D and C.

For the below theorem and the rest of the chapter I assume that clauses
are variable disjoint and unifiers are idempotent.

Theorem 5.2.12 (Model Construction). Let N be a set of clauses that is
saturated up to redundancy and does not contain the empty clause. Then for
every ground clause Cσ ∈ grd(Σ, N) it holds that:

1. ECσ = ∅ if and only if Cσ is true in NCσ.

2. If Cσ is redundant with respect to grd(Σ, N) then it is true in NCσ.

3. Cσ is true in NI and in ND for every D ∈ grd(Σ, N) with D � Cσ.

Proof. The proof does not consider selection. The proof is by induction on the
clause ordering � and with the induction hypothesis that 1.–3. are already
satisfied for all clauses in grd(Σ, N) that are smaller than Cσ. Note that the
“if” part of 1. is obvious from the construction and that condition 3. follows
immediately from 1. and Corollaries 5.2.8 and 5.2.9. So it remains to show
condition 2. and the “only if” part of 1.

(Condition 2) Case Cσ is redundant with respect to grd(Σ, N): If Cσ is re-
dundant with respect to grd(Σ, N), then it follows from clauses in grd(Σ, N)
that are smaller than Cσ. By part 3. of the induction hypothesis, these clauses
are true in NCσ. Hence Cσ is true in NCσ.

(Condition 1) If ECσ = ∅ then Cσ is true in NCσ.

(Condition 1.1) Case xσ is reducible by NCσ: Suppose there is a variable x
occurring in C so that xσ is reducible by NCσ, say xσ →NCσ w. Let the
substitution σ′ be defined by xσ′ = w and yσ′ = yσ for every variable y 6≈ x.
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The clause Cσ′ is smaller than Cσ. By part 3. of the induction hypothesis, it
is true in NCσ. By congruence, every literal of Cσ is true in NCσ if and only
if the corresponding literal of Cσ′ is true in NCσ; hence Cσ is true in NCσ.

(Condition 1.2) Case Cσ contains a maximal negative literal: Suppose that Cσ
does not fall into Condition 2 and Condition 1.1 and that Cσ = C ′σ∨sσ 6≈ s′σ,
where sσ 6≈ s′σ is maximal in Cσ. If sσ ≈ s′σ is false in NCσ, then Cσ is
clearly true in NCσ and this part of the proof is done. So assume that sσ ≈ s′σ
is true in NCσ, that is, sσ ↓NCσ s′σ. without loss of generality, sσ � s′σ.

(Condition 1.2.1) Case sσ = s′σ: If sσ = s′σ, then there is an equality
resolution inference N ] {C ′σ ∨ sσ 6≈ s′σ} ⇒ N ∪ {C ′σ}. As shown in
the Lifting Lemma, this is an instance of an equality resolution inference
N ] {C ′ ∨ s 6≈ s′} ⇒ N ∪ {C ′θ} where C = C ′ ∨ s 6≈ s′ is contained
in N and σ = θ ◦ ρ. without loss of generality, θ is idempotent, therefore
C ′σ = C ′θρ = C ′θθρ = C ′θσ, so C ′σ is a ground instance of C ′θ. Since Cσ
is not redundant with respect to grd(Σ, N), C is not redundant with respect
to N . As N is saturated up to redundancy, the conclusion C ′θ of the infer-
ence from C is contained in N ∪ red(N). Therefore, C ′σ is either contained
in grd(Σ, N) and smaller than Cσ, or it follows from clauses in grd(Σ, N)
that are smaller than itself (and therefore smaller than Cσ). By the induction
hypothesis, clauses in grd(Σ, N) that are smaller than Cσ are true in NCσ,
thus C ′σ and Cσ are true in NCσ.

(Condition 1.2.2) Case sσ � s′σ: If sσ ↓NCσ s′σ and sσ � s′σ, then sσ must
be reducible by some rule in some EDσ ⊆ NCσ. Let Dσ = D′σ ∨ tσ ≈ t′σ
with EDσ = {tσ → t′σ}. Since Dσ is productive, D′σ is false in NCσ. Besides,
by part 2. of the induction hypothesis, Dσ is not redundant with respect to
grd(Σ, N), so D is not redundant with respect to N . Note that tσ cannot occur
in sσ at or below a variable position of s, say xσ = w[tσ], since otherwise Cσ
would be subject to Case 1.1 above. Consequently, the left superposition infer-
ence N]{D′σ∨tσ ≈ t′σ,C ′σ∨sσ[tσ] 6≈ s′σ} ⇒ N∪{D′σ∨C ′σ∨sσ[t′σ] 6≈ s′σ}
is a ground instance of a left superposition inference from D and C. By satu-
ration up to redundancy, its conclusion is either contained in grd(Σ, N) and
smaller than Cσ, or it follows from clauses in grd(Σ, N) that are smaller than
itself (and therefore smaller than Cσ). By the induction hypothesis, these
clauses are true in NCθ, thus D′σ ∨ C ′σ ∨ sσ[t′σ] 6≈ s′σ is true in NCσ. Since
D′σ and sσ[t′σ] 6≈ s′σ are false in NCσ, both C ′σ and Cσ must be true.

(Condition 1.3) Case Cσ does not contain a maximal negative literal: Suppose
that Cσ does not fall into Cases 1.1 and 1.2. Then Cσ can be written as
C ′σ ∨ sσ ≈ s′σ, where sσ ≈ s′σ is a maximal literal of Cσ. If ECσ = {sσ →
s′σ} or C ′σ is true in NCσ or sσ = s′σ, then there is nothing to show, so
assume that ECσ = ∅ and that C ′σ is false in NCθ. without loss of generality,
sσ � s′σ.

(Condition 1.3.1) Case sσ ≈ s′σ is maximal in Cσ, but not strictly maximal:
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If sσ ≈ s′σ is maximal in Cσ, but not strictly maximal, then Cσ can be
written as C ′′σ ∨ tσ ≈ t′σ ∨ sσ ≈ s′σ, where tσ = sσ and t′σ = s′σ. In this
case, there is a equality factoring inference N ]{C ′′σ∨ tσ ≈ t′σ∨sσ ≈ s′σ} ⇒
N ∪ {C ′′σ ∨ t′σ 6≈ s′σ ∨ tσ ≈ t′σ}. This inference is a ground instance of
an inference from C. By induction hypothesis, its conclusion is true in NCσ.
Trivially, t′σ = s′σ implies t′σ ↓NCσ s′σ, so t′σ 6≈ s′σ must be false and Cσ
must be true in NCσ.

(Condition 1.3.2) Case sσ ≈ s′σ is strictly maximal in Cσ and sσ is reducible:
Suppose that sσ ≈ s′σ is strictly maximal in Cσ and sσ is reducible by some
rule in EDσ ⊆ NCσ. Let Dσ = D′σ ∨ tσ ≈ t′σ and EDσ = {tσ → t′σ}.
Since Dσ is productive, Dσ is not redundant and D′σ is false in NCσ. Now
proceed in essentially the same way as in Case 1.2.2: If tσ occurred in sσ at or
below a variable position of s, say xσ = w[tσ], then Cσ would be subject to
Case 1.1 above. Otherwise, the right superposition inference N ] {D′σ ∨ tσ ≈
t′σ,C ′σ ∨ sσ[tσ] ≈ s′σ} ⇒ N ∪ {D′σ ∨ C ′σ ∨ sσ[t′σ] ≈ s′σ} is a ground
instance of a right superposition inference from D and C. By saturation up
to redundancy, its conclusion is true in NCσ. Since D′σ and C ′σ are false in
NCσ, sσ[t′σ] ≈ s′σ must be true in NCσ. On the other hand, tσ ≈ t′σ is true
in NCσ, so by congruence, sσ[tσ] ≈ s′σ and Cσ are true in NCσ.

(Condition 1.3.3) Case sσ ≈ s′σ is strictly maximal in Cσ and sσ is irre-
ducible: Suppose that sσ ≈ s′σ is strictly maximal in Cσ and sσ is irreducible
by NCσ. Then there are three possibilities: Cσ can be true in NCσ, or C ′σ
can be true in NCσ ∪ {sσ → s′σ}, or ECσ = {sσ → s′σ}. In the first and
the third case, there is nothing to show. Therefore assume that Cσ is false
in NCσ and C ′σ is true in NCσ ∪ {sσ → s′σ}. Then C ′σ = C ′′σ ∨ tσ ≈ t′σ,
where the literal tσ ≈ t′σ is true in NCσ ∪ {sσ → s′σ} and false in NCσ.
In other words, tσ ↓NCσ∪{sσ→s′σ} t′σ, but not tσ ↓NCσ t′σ. Consequently,
there is a rewrite proof of tσ →∗ u ∗← t′σ by NCσ ∪ {sσ → s′σ} in which
the rule sσ → s′σ is used at least once. without loss of generality assume
that tσ � t′σ. Since sσ ≈ s′σ � tσ ≈ t′σ and sσ � s′σ it can be con-
cluded that sσ � tσ � t′σ. But then there is only one possibility how the
rule sσ → s′σ can be used in the rewrite proof: sσ = tσ must hold and the
rewrite proof must have the form tσ → s′σ →∗ u ←∗ t′σ, where the first
step uses sσ → s′σ and all other steps use rules from NCσ. Consequently,
s′σ ≈ t′σ is true in NCσ. Now observe that there is an equality factoring in-
ference N ] {C ′′σ ∨ tσ ≈ t′σ ∨ sσ ≈ s′σ} ⇒ N ∪ {C ′′σ ∨ t′σ 6≈ s′σ ∨ tσ ≈ t′σ}
whose conclusion is true in NCσ by saturation. Since the literal t′σ 6≈ s′σ must
be false in NCσ, the rest of the clause must be true in NCσ, and therefore Cσ
must be true in NCσ, contradicting the assumption. This concludes the proof
of the theorem.

Lemma 5.2.13 (Lifting Models). Let N be a set of clauses with variables
and let A be a term-generated Σ-algebra. Then A is a model of grd(Σ, N) if
and only if it is a model of N .


