
232 CHAPTER 6. DECIDABLE LOGICS

∃x2 ∃x1. φ[x1, x2, ~y]
↔ ∃x2.

(∨
t1∈T1

φ[x1, x2, ~y] {x1 7→ t1}
)

↔
∨
t1∈T1

(∃x2. φ[x1, x2, ~y] {x1 7→ t1})
↔

∨
t1∈T1

∨
t2∈T2

(φ[x1, x2, ~y] {x1 7→ t1} {x2 7→ t2})

A sequence ofm quantifier alternations ∃∀∃∀ . . . ∃ turns the top-level disjunc-
tion after moving the inner negation into a top-level conjunction. An existential
quantifier does not distribute over a conjunction, so the procedure needs O(n2)
runtime for each step, therefore doubly exponential runtime in sum, O(n2m).

I

The formulas resulting from one virtual substitution step are typically
highly redundant, because >, ⊥ are introduced into the formula. In
any implementation, redundancy elimination, even beyond the elim-

ination of >, ⊥ is mandatory for good performance. For example, an equation
can also in virtual substitution be eliminated by a substitution, see FM, if the
boolean structure and quantification enables it.

As a prerequisite, also virtual substitution needs the initial transformation
into negation normal form. In case of the occurrence of logical equivalences, this
can already result in an exponential blow up in size of the formula. Renaming,
Section 3.9, is not an option because the LA language does not contain free
predicate symbols.

C

The application of a test point set to a formula results in an equivalent
formula. Actually, it is typically the goal of a quantifier elimination
procedure to produce an equivalent formula with one quantifier less.

If the goal is only to test whether a formula true, then a respective procedure
gains more freedom. For example, instead of expanding the overall test point
set disjunctions, it can just choose one test point and continue. Resulting in a
less space consuming depth first procedure, rather then the breadth first search
performed by virtual substitution.

The virtual substitution method can also be extended to non-linear arith-
metic over the reals. It is recognized to be an efficient procedure in case of
polynomials with low degrees.

6.2.4 Cooper’s Algorithm for Linear Integer Arithmetic

At the beginning of the 20th century, mathematicians had the intuition that a
problem will typically get easier if the domain under consideration gets smaller.
A prominent example was thinking that (linear) rational (or real) arithmetic
is more complicated than linear integer arithmetic. In this and the following
section I show that it is the other way round by first presenting Cooper’s [16]
quantifier elimination algorithm in LIA and then a Branch & Bound approach
for conjunctions of LIA atoms.

6.2. LINEAR ARITHMETIC 233

The first obvious difference between LRA and LIA is the restriction of the
domain and coefficients to the integers. A first consequence of the integer do-
main is that strict and non-strict inequations can be easily exchanged, e.g.,
t ≤ c iff t < c + 1. Now, following the development of the FM procedure from
Section 6.2.1, I consider a conjunction of inequations with atoms over {<,>}.
Then the first FM step isolates some variable x, i.e., transforms all inequations
containing x into x ◦i ti where ti does not contain x and ◦i ∈ {<,>}. However,
in LIA this is not possible. For example, an inequation 5x − 2y > 5 can only
be equivalently transformed into x > 2

5y + 1 if x is to be isolated. But this
inequation contains rational coefficients. Therefore, the isolation of x has to be
done in two steps. Firstly, isolating x keeping the positive integer coefficients of
x resulting in inequations cix◦i ti where ci ∈ N. Negative coefficients of x can be
removed by multiplication of the inequation with −1. Now in order to combine
the inequations and eliminate x, the ci have to be all equal, i.e., the respective
inequations have to be multiplied by some integer constant such that they have
the form dx ◦i t′i where d is the least common multiple (lcm) of all ci. Following
the FM idea, solvability of the dx < t′i, dx > s′j is equivalent to solvability of
the s′j < t′i. This is not the case for LIA, in general. A hint is already contained
in the proof of Lemma 6.2.4, where the respective value for x in case is satisfia-
bility of the s′j < t′i is computed by 1

2 (min(∪i{t′i}) + max(∪j{s′j})) which is not
necessarily an integer.

For example, consider the two inequations 3x > 4 and 2x < 3. The lcm of
2, 3 is 6, so the tranformed equations are 6x > 8 and 6x < 9 resulting after
elimination of x in 8 < 9 which is obviously true. In LRA the solution for 6x is
then 8+9

2 = 17
2 , i.e., a solution for x is 17

12 , following the proof of Lemma 6.2.4.
In fact, this is a solution to the initial inequations. However, it is not an integer
solution. The two initial inequations do not have in integer solution because
x = 2 satisfies the first but not the second, for x = 1 it is the other way
round, and also for all other integers either the first or second inequation is true.
Something is missing. For the example, the condition is missing that between
8 and 9 there is an integer that is divisible by 6. This can be expressed by
a divisibility constraints c | t expressing that the positive integer c divides t.
Then the conjunction 6x > 8 ∧ 6x < 9 is replaced with the LIA equivalent
conjunction x > 8 ∧ x < 9 ∧ 6 |x. This conjunction has a solution if there is
a value for x strictly greater 8 and smaller than 9 that is dividable by 6. This
can be expressed by the finite disjunction

i≤6∨
i=1

(8 + i > 8 ∧ 8 + i < 9 ∧ 6 | 8 + i)

where the first atom 8 + i > 8 is obsolete, because it is true by construction. All
of these six disjuncts are false in LIA, hence the initial inequations don’t have
a solution.

Definition 6.2.6 (LIA Syntax). The syntax of LIA is

ΣLIA = ({LIA}, {0, 1,+,−} ∪ Z, {≤, <, | , 6 | , >,≥})

234 CHAPTER 6. DECIDABLE LOGICS

where − is unitary and all other symbols have the usual arities. The bar | is the
devisability operator between a positive integer constant d and a term t, i.e., it
generates atoms of the form d | t.

Definition 6.2.7 (Linear Integer Arithmetic Standard Semantics). The ΣLIA

algebra ALIA is defined by LAALIA = Z and all other signature symbols are
assigned the standard interpretations over the integers.

In particular, a | b for a, b ∈ Z, a > 0 if there is some c ∈ Z such that a∗c = b.
Obviously, the difference between the respective syntax, Definition 6.2.1, and
semantics, Definition 6.2.2, of rational integer arithmetic is the restriction to
integer coefficients and to the integer domain plus the additional divisibility
operator.

Cooper [15] showed that given two strict inequations x < t and x > s,
and a divisibility constraint d |x the variable x can be eliminated in the above
described way.

∃x.(x < t ∧ x > s ∧ d |x) iff

i≤d∨
i=1

(s+ i < t ∧ d | s+ i)

This needs to be further generalized to cope with 6 | , multiple inequations, and
divisibility constraints for some variable x. The actual procedure is then similar
to virtual substitution, Section 6.2.3. Note that virtual substitution was invented
after Cooper’s algorithm for variable elimination over the integers.

Let ∃x.φ be a formula of LIA, where φ is in negation normal form, φ does not
contain any quantifiers nor negation symbols, and the LIA relations occurring
in φ are {<,>, | , 6 | }. Any LIA formula can be effectively transformed into
this form, see the discussion above and Section 6.2.1, and the rule ElimNeg.
Furthermore, for all inequations cx◦t and divisibility atoms a◦′bx+s, ◦ ∈ {<,>},
◦′ ∈ { | , 6 | }, I assume c = 1, b = 1. If c is negative for some inequation it is
multiplied by −1 and then transformed into its strict form. If b is negative, for
divisibility atoms it is sufficient to multiply the right hand side by −1. If there
are atoms cix ◦i ti, aj ◦′j bjx+ sj , in φ with ci > 1 or bj > 1 for some i, j, then

the lcm d of the ci, bj is computed, the atoms are first replaced by dx ◦i d
ci
ti,

aj◦′jdx+ d
bj
sj , respectively, and finally they are replaced by x◦i dci ti, aj◦

′
jx+ d

bj
sj ,

respectively, and the divisibility constraint d |x is added conjunctively to φ.

Similar to the arguments for composing the virtual substitution test points,
solutions for ∃x.φ can be considered from −∞ to ∞ or the other way round. I
explain the former, the latter is then a standard exercise. Let x < ti, x > sj ,
ak |x + rk, bh 6 |x + lh be all atoms in φ containing x where the ti, sj , rk, lh
do not contain x. Let p1, . . . , pn be the positions of the atoms x < ti in φ and
q1, . . . , qo be the positions of the atoms x > sj in φ. Let d be the lcm of the ak,
bh. Then

6.2. LINEAR ARITHMETIC 235

ALIA(β) |= ∃x.φ
iff

ALIA(β) |=
m≤d∨
m=1

φ[>]p1,...,pn [⊥]q1,...,qo{x 7→ m} ∨
m≤d∨
m=1

∨
sj

φ{x 7→ sj +m}

The first formula

m≤d∨
m=1

φ[>]p1,...,pn [⊥]q1,...,qo{x 7→ m}

expresses the virtual substitution of −∞ for x. In this case all atoms x < ti are
true and all atoms x > sj are false for a sufficiently small value of x. For the
divisibility constraints it is sufficient to find a satisfying assignment between 1
and d as a representative for a sufficiently small value of x.

The second formula
m≤d∨
m=1

∨
sj

φ{x 7→ sj +m}

represents the elimination of x by considering all solutions of combinations sj <
ti plus the requirement of the existence of a value for x that can be divided by
d. This is implemented by substituting sj +m for x for all lower bounds sj and
all values of m between 1 and d. Of course, all resulting atoms sj +m > sj are
true for all j.

The worst-case complexity of Cooper’s variable elimination procedure is im-
mense. The lcm d computed for each eliminated variable x grows worst-case
exponentially in the size of φ. Thus also the formula after eliminating x is expo-
nentially larger then φ. The overall runtime is again non-elementary, similar to
FM quantifier elimination. The formulas resulting from the test points −∞ and
sj + m contain a lot of redundancy that can be eliminated afterwards. How-
ever, even if the formula size can be drastically reduced through redundancy
elimination, in each step the exponentially growing coefficients m remain.

Due to its inherent complexity, Cooper’s elimination procedure is rarely used
in practice. It mainly serves as a theoretical background for more practical pro-
cedures. The next section, Section 6.2.5, introduces a search procedure for con-
junctions of LIA inequations where variables can be a priori singly exponentially
bound.

There are two operations on divisibility atoms that can be used for sim-
plification. Given two divisibility constraints c1 | a1x + t1 and c2 | a2x + t2 the
variable x can be eliminated from one of the constraints by

c1 | a1x+ t1 ∧ c2 | a2x+ t2
iff

c1c2 | dx+ t1c2p+ t2c1q ∧ d | t1a2 − t2a1

236 CHAPTER 6. DECIDABLE LOGICS

where d = gcd(a1c2, a2c1) and d = pa1c2 + qa2c1 for integers p, q. If Eu-
clid’s algorithm is used for the gcd computation, then p, q also result from the
algorithm as a by-product.

A divisibility atom c | ax+t has a solution iff d | t where d = gcd(c, a). In case
there is a solution, they are x = −p td + i cd for all integers i where d = pa + qc
for integers p, q. Note that p, q always exists because d = gcd(c, a).

6.2.5 Branch and Bound for LIA

Historic and Bibliographic Remarks

