Rewrite Systems on Logics: Calculi

<table>
<thead>
<tr>
<th></th>
<th>Validity</th>
<th>Satisfiability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound</td>
<td>If the calculus derives a proof of validity for the formula, it is valid.</td>
<td>If the calculus derives satisfiability of the formula, it has a model.</td>
</tr>
<tr>
<td>Complete</td>
<td>If the formula is valid, a proof of validity is derivable by the calculus.</td>
<td>If the formula has a model, the calculus derives satisfiability.</td>
</tr>
<tr>
<td>Strongly Complete</td>
<td>For any validity proof of the formula, there is a derivation in the calculus producing this proof.</td>
<td>For any model of the formula, there is a derivation in the calculus producing this model.</td>
</tr>
</tbody>
</table>
Propositional Logic: Syntax

2.1.1 Definition (Propositional Formula)

The set $\text{PROP}(\Sigma)$ of *propositional formulas* over a signature Σ, is inductively defined by:

<table>
<thead>
<tr>
<th>$\text{PROP}(\Sigma)$</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bot</td>
<td>connective \bot denotes “false”</td>
</tr>
<tr>
<td>\top</td>
<td>connective \top denotes “true”</td>
</tr>
<tr>
<td>P</td>
<td>for any propositional variable $P \in \Sigma$</td>
</tr>
<tr>
<td>$\neg \phi$</td>
<td>connective \neg denotes “negation”</td>
</tr>
<tr>
<td>$(\phi \land \psi)$</td>
<td>connective \land denotes “conjunction”</td>
</tr>
<tr>
<td>$(\phi \lor \psi)$</td>
<td>connective \lor denotes “disjunction”</td>
</tr>
<tr>
<td>$(\phi \rightarrow \psi)$</td>
<td>connective \rightarrow denotes “implication”</td>
</tr>
<tr>
<td>$(\phi \leftrightarrow \psi)$</td>
<td>connective \leftrightarrow denotes “equivalence”</td>
</tr>
</tbody>
</table>

where $\phi, \psi \in \text{PROP}(\Sigma)$.
Propositional Logic: Semantics

2.2.1 Definition ((Partial) Valuation)

A \(\Sigma \)-valuation is a map

\[\mathcal{A} : \Sigma \to \{0, 1\}. \]

where \(\{0, 1\} \) is the set of truth values. A partial \(\Sigma \)-valuation is a map \(\mathcal{A}' : \Sigma' \to \{0, 1\} \) where \(\Sigma' \subseteq \Sigma \).
2.2.2 Definition (Semantics)

A Σ-valuation \mathcal{A} is inductively extended from propositional variables to propositional formulas $\phi, \psi \in \text{PROP}(\Sigma)$ by

\[
\begin{align*}
\mathcal{A}(\bot) & := 0 \\
\mathcal{A}(\top) & := 1 \\
\mathcal{A}(\neg \phi) & := 1 - \mathcal{A}(\phi) \\
\mathcal{A}(\phi \land \psi) & := \min(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\
\mathcal{A}(\phi \lor \psi) & := \max(\{\mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\
\mathcal{A}(\phi \rightarrow \psi) & := \max(\{1 - \mathcal{A}(\phi), \mathcal{A}(\psi)\}) \\
\mathcal{A}(\phi \leftrightarrow \psi) & := \text{if } \mathcal{A}(\phi) = \mathcal{A}(\psi) \text{ then } 1 \text{ else } 0
\end{align*}
\]
If $\mathcal{A}(\phi) = 1$ for some Σ-valuation \mathcal{A} of a formula ϕ then ϕ is \textit{satisfiable} and we write $\mathcal{A} \models \phi$. In this case \mathcal{A} is a \textit{model} of ϕ.

If $\mathcal{A}(\phi) = 1$ for all Σ-valuations \mathcal{A} of a formula ϕ then ϕ is \textit{valid} and we write $\models \phi$.

If there is no Σ-valuation \mathcal{A} for a formula ϕ where $\mathcal{A}(\phi) = 1$ we say ϕ is \textit{unsatisfiable}.

A formula ϕ \textit{entails} ψ, written $\phi \models \psi$, if for all Σ-valuations \mathcal{A} whenever $\mathcal{A} \models \phi$ then $\mathcal{A} \models \psi$.
2.1.2 Definition (Atom, Literal, Clause)

A propositional variable P is called an *atom*. It is also called a *(positive) literal* and its negation $\neg P$ is called a *(negative) literal*. The functions comp and atom map a literal to its complement, or atom, respectively: if $\text{comp}(\neg P) = P$ and $\text{comp}(P) = \neg P$, $\text{atom}(\neg P) = P$ and $\text{atom}(P) = P$ for all $P \in \Sigma$. Literals are denoted by letters L, K. Two literals P and $\neg P$ are called *complementary*.

A disjunction of literals $L_1 \lor \ldots \lor L_n$ is called a *clause*. A clause is identified with the multiset of its literals.
2.1.3 Definition (Position)

A *position* is a word over \mathbb{N}. The set of positions of a formula ϕ is inductively defined by

$$
\begin{align*}
\text{pos}(\phi) &:= \{\epsilon\} \text{ if } \phi \in \{\top, \bot\} \text{ or } \phi \in \Sigma \\
\text{pos}(\neg \phi) &:= \{\epsilon\} \cup \{1p \mid p \in \text{pos}(\phi)\} \\
\text{pos}(\phi \circ \psi) &:= \{\epsilon\} \cup \{1p \mid p \in \text{pos}(\phi)\} \cup \{2p \mid p \in \text{pos}(\psi)\}
\end{align*}
$$

where $\circ \in \{\land, \lor, \to, \leftrightarrow\}$.
The prefix order \leq on positions is defined by $p \leq q$ if there is some p' such that $pp' = q$. Note that the prefix order is partial, e.g., the positions 12 and 21 are not comparable, they are “parallel”, see below.

The relation $<$ is the strict part of \leq, i.e., $p < q$ if $p \leq q$ but not $q \leq p$.

The relation \parallel denotes incomparable, also called parallel positions, i.e., $p \parallel q$ if neither $p \leq q$, nor $q \leq p$.

A position p is above q if $p \leq q$, p is strictly above q if $p < q$, and p and q are parallel if $p \parallel q$.
The size of a formula ϕ is given by the cardinality of $\text{pos}(\phi)$:

$$|\phi| := |\text{pos}(\phi)|.$$

The subformula of ϕ at position $p \in \text{pos}(\phi)$ is inductively defined by $\phi|_{\epsilon} := \phi$, $\neg \phi|_p := \phi|_p$, and $(\phi_1 \circ \phi_2)|_i := \phi_i|_p$ where $i \in \{1, 2\}$, $\circ \in \{\land, \lor, \to, \leftrightarrow\}$.

Finally, the replacement of a subformula at position $p \in \text{pos}(\phi)$ by a formula ψ is inductively defined by $\phi[\psi]_{\epsilon} := \psi$, $(\neg \phi)[\psi]_1 := \neg \phi[\psi]_1$, and $(\phi_1 \circ \phi_2)[\psi]_1 := (\phi_1[\psi]_1 \circ \phi_2)$, $(\phi_1 \circ \phi_2)[\psi]_2 := (\phi_1 \circ \phi_2[\psi]_2)$, where $\circ \in \{\land, \lor, \to, \leftrightarrow\}$.
2.1.5 Definition (Polarity)

The *polarity* of the subformula $\phi|_p$ of ϕ at position $p \in \text{pos}(\phi)$ is inductively defined by

\[
\begin{align*}
\text{pol}(\phi, \epsilon) & := 1 \\
\text{pol}(\neg \phi, 1p) & := - \text{pol}(\phi, p) \\
\text{pol}(\phi_1 \circ \phi_2, ip) & := \text{pol}(\phi_i, p) \quad \text{if } \circ \in \{\land, \lor\}, \ i \in \{1, 2\} \\
\text{pol}(\phi_1 \rightarrow \phi_2, 1p) & := - \text{pol}(\phi_1, p) \\
\text{pol}(\phi_1 \rightarrow \phi_2, 2p) & := \text{pol}(\phi_2, p) \\
\text{pol}(\phi_1 \leftrightarrow \phi_2, ip) & := 0 \quad \text{if } i \in \{1, 2\}
\end{align*}
\]
Valuations can be nicely represented by sets or sequences of literals that do not contain complementary literals nor duplicates.

If \(\mathcal{A} \) is a (partial) valuation of domain \(\Sigma \) then it can be represented by the set
\[
\{ P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 1 \} \cup \{ \neg P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 0 \}.
\]

Another, equivalent representation are *Herbrand* interpretations that are sets of positive literals, where all atoms not contained in an Herbrand interpretation are false. If \(\mathcal{A} \) is a total valuation of domain \(\Sigma \) then it corresponds to the Herbrand interpretation
\[
\{ P \mid P \in \Sigma \text{ and } \mathcal{A}(P) = 1 \}.
\]
2.2.4 Theorem (Deduction Theorem)

\[\phi \models \psi \text{ iff } \models \phi \rightarrow \psi \]
2.2.6 Lemma (Formula Replacement)

Let ϕ be a propositional formula containing a subformula ψ at position p, i.e., $\phi|_p = \psi$. Furthermore, assume $\models \psi \leftrightarrow \chi$. Then $\models \phi \leftrightarrow \phi[\chi]_p$.