
34 CHAPTER 2. PROPOSITIONAL LOGIC

commutative, they are equivalent. One or two columns in the truth table for the
two subformulas? Again, saving a column is beneficial but in general, detecting
equivalence of two subformulas may become as difficult as checking whether the
overall formula is valid. A compromise, often performed in practice, are normal
forms that guarantee that certain occurrences of equivalent subformulas can be
found in polynomial time. For the running example, we can simply assume some
ordering on the propositional variables and assume that for a disjunction of two
propositional variables, the smaller variable always comes first. So if P < Q
then the normal form of P ∨Q and Q ∨ P is in fact P ∨Q.

C

In practice, nobody uses truth tables as a reasoning procedure. Worst
case, computing a truth table for checking the status of a formula φ
requires O(2n) steps, where n is the number of different propositional

variables in φ. But this is actually not the reason why the procedure is imprac-
tical, because the worst case behavior of all other procedures for propositional
logic known today is also of exponential complexity. So why are truth tables
not a good procedure? The answer is: because they do not adapt to the inher-
ent structure of a formula. The reasoning mechanism of a truth table for two
formulas φ and ψ sharing the same propositional variables is exactly the same:
we enumerate all valuations. However, if φ is, e.g., of the form φ = P ∧ φ′ and
we are interested in the satisfiability of φ, then φ can only become true for a
valuation A with A(P) = 1. Hence, 2n−1 rows of φ’s truth table are superflu-
ous. All procedures I will introduce in the sequel, automatically detect this (and
further) specific structures of a formula and use it to speed up the reasoning
process.

2.4 Propositional Tableaux

Like resolution, semantic tableaux were developed in the sixties, independently
by Lis [19] and Smullyan [29] on the basis of work by Gentzen in the 30s [13]
and of Beth [3] in the 50s. For an at that time state of the art overview consider
Fitting’s book [12].

In contrast to the calculi introduced in subsequent sections, semantic tableau
does not rely on a normal form of input formulas but actually applies to any
propositional formula. The formulas are divided into α- and β-formulas, where
intuitively an α formula represents an (implicit) conjunction and a β formula
an (implicit) disjunction.

Definition 2.4.1 (α-, β-Formulas). A formula φ is called an α-formula if φ is
a formula ¬¬φ1, φ1 ∧ φ2, φ1 ↔ φ2, ¬(φ1 ∨ φ2), or ¬(φ1 → φ2). A formula φ is
called a β-formula if φ is a formula φ1∨φ2, φ1 → φ2, ¬(φ1∧φ2), or ¬(φ1 ↔ φ2).

A common property of α-, β-formulas is that they can be decomposed into
direct descendants representing (modulo negation) subformulas of the respective

2.4. PROPOSITIONAL TABLEAUX 35

formulas. Then an α-formula is valid iff all its descendants are valid and a β-
formula is valid iff one of its descendants is valid. Therefore, the literature uses
both the notions semantic tableaux and analytic tableaux.

Definition 2.4.2 (Direct Descendant). Given an α- or β-formula φ, Figure 2.4
shows its direct descendants.

Duplicating φ for the α-descendants of ¬¬φ is a trick for conformity. Any
propositional formula is either an α-formula or a β-formula or a literal.

Proposition 2.4.3. For any valuation A: (i) if φ is an α-formula then A(φ) = 1
iff A(φ1) = 1 and A(φ2) = 1 for its descendants φ1, φ2. (ii) if φ is a β-formula
then A(φ) = 1 iff A(φ1) = 1 or A(φ2) = 1 for its descendants φ1, φ2.

The tableau calculus operates on states that are sets of sequences of for-
mulas. Semantically, the set represents a disjunction of sequences that are in-
terpreted as conjunctions of the respective formulas. A sequence of formulas
(φ1, . . . , φn) is called closed if there are two formulas φi and φj in the sequence
where φi = comp(φj). A state is closed if all its formula sequences are closed. A
state actually represents a tree and this tree is called a tableau in the literature.
So if a state is closed, the respective tree, the tableau is closed too. The tableau
calculus is a calculus showing unsatisfiability of a formula. Such calculi are called
refutational calculi. Later on soundness and completeness of the calculus imply
that a formula φ is valid iff the rules of tableau produce a closed state starting
with N = {(¬φ)}.

A formula φ occurring in some sequence is called open if in case φ is an
α-formula not both direct descendants are already part of the sequence and if
it is a β-formula none of its descendants is part of the sequence.

α-Expansion N]{(φ1, . . . , ψ, . . . , φn)} ⇒T N]{(φ1, . . . , ψ, . . . , φn, ψ1, ψ2)}
provided ψ is an open α-formula, ψ1, ψ2 its direct descendants and the sequence
is not closed.

β-Expansion N]{(φ1, . . . , ψ, . . . , φn)} ⇒T N]{(φ1, . . . , ψ, . . . , φn, ψ1)}]
{(φ1, . . . , ψ, . . . , φn, ψ2)}
provided ψ is an open β-formula, ψ1, ψ2 its direct descendants and the sequence
is not closed.

For example, consider proving validity of the formula (P ∧ ¬(Q ∨ ¬R)) →
(Q ∧R). Applying the tableau rules generates the following derivation:

{(¬[(P ∧ ¬(Q ∨ ¬R))→ (Q ∧R)])}
α-Expansion⇒∗T {(¬[(P ∧ ¬(Q ∨ ¬R))→ (Q ∧R)],
P ∧ ¬(Q ∨ ¬R),¬(Q ∧R), P,¬(Q ∨ ¬R),¬Q,¬¬R,R)}

β-Expansion⇒T {(¬[(P ∧ ¬(Q ∨ ¬R))→ (Q ∧R)],
P ∧ ¬(Q ∨ ¬R),¬(Q ∧R), P,¬(Q ∨ ¬R),¬Q,¬¬R,R,¬Q),
(¬[(P ∧ ¬(Q ∨ ¬R))→ (Q ∧R)],
P ∧ ¬(Q ∨ ¬R),¬(Q ∧R), P,¬(Q ∨ ¬R),¬Q,¬¬R,R,¬R)}

36 CHAPTER 2. PROPOSITIONAL LOGIC

The state after β-expansion is final, i.e., no more rule can be applied. The first
sequence is not closed, whereas the second sequence is closed because it contains
R and ¬R. Thus, the formula is not valid but satisfiable. A tree representation,
where common formulas of sequences are shared, can be found in Figure 2.5.
This is the traditional way of tableau presentation.

Theorem 2.4.4 (Propositional Tableau is Sound). If for a formula φ the tableau
calculus computes {(¬φ)} ⇒∗T N and N is closed, then φ is valid.

Proof. It is sufficient to show the following: (i) if N is closed then the disjunction
of the conjunction of all sequence formulas is unsatisfiable (ii) the two tableau
rules preserve satisfiability.

Part (i) is obvious: if N is closed all its sequences are closed. A sequence is
closed if it contains a formula and its negation. The conjunction of two such
formulas is unsatisfiable.

Part (ii) is shown by induction on the length of the derivation and then by
a case analysis for the two rules. α-Expansion: for any valuation A if A(ψ) = 1
then A(ψ1) = A(ψ2) = 1. β-Expansion: for any valuation A if A(ψ) = 1 then
A(ψ1) = 1 or A(ψ2) = 1 (see Proposition 2.4.3).

Theorem 2.4.5 (Propositional Tableau Terminates). Starting from a start
state {(φ)} for some formula φ, the relation ⇒+

T is well-founded.

Proof. Take the two-folded multiset extension of the lexicographic extension of
> on the naturals to triples (n, k, l) generated by the a measure µ. It is first
defined on formulas by µ(φ) := (n, k, l) where n is the number of equivalence
symbols in φ, k is the sum of all disjunction, conjunction, implication symbols
in φ and l is |φ|. On sequences (φ1, . . . , φn) the measure is defined to deliver
a multiset by µ((φ1, . . . , φn)) := {t1, . . . , tn} where ti = µ(φi) if φi is open in
the sequence and ti = (0, 0, 0) otherwise. Finally, µ is extended to states N by
computing the multiset µ(N) := {µ(s) | s ∈ N}.

Note, that α-, as well as β-expansion strictly extend sequences. Once a for-
mula is closed in a sequence by applying an expansion rule, it remains closed
forever in the sequence.

An α-expansion on a formula ψ1∧ψ2 on the sequence (φ1, . . . , ψ1∧ψ2, . . . , φn)
results in (φ1, . . . , ψ1 ∧ψ2, . . . , φn, ψ1, ψ2). It needs to be shown µ((φ1, . . . , ψ1 ∧
ψ2, . . . , φn)) >mul µ((φ1, . . . , ψ1 ∧ ψ2, . . . , φn, ψ1, ψ2)). In the second sequence
µ(ψ1 ∧ ψ2) = (0, 0, 0) because the formula is closed. For the triple (n, k, l)
assigned by µ to ψ1 ∧ ψ2 in the first sequence, it holds (n, k, l) >lex µ(ψ1),
(n, k, l) >lex µ(ψ2) and (n, k, l) >lex (0, 0, 0), the former because the ψi are
subformulas and the latter because l 6= 0. This proves the case.

A β-expansion on a formula ψ1∨ψ2 on the sequence (φ1, . . . , ψ1∨ψ2, . . . , φn)
results in (φ1, . . . , ψ1 ∨ψ2, . . . , φn, ψ1), (φ1, . . . , ψ1 ∨ψ2, . . . , φn, ψ2). It needs to
be shown µ((φ1, . . . , ψ1 ∨ψ2, . . . , φn)) >mul µ((φ1, . . . , ψ1 ∨ψ2, . . . , φn, ψ1)) and
µ((φ1, . . . , ψ1∨ψ2, . . . , φn)) >mul µ((φ1, . . . , ψ1∨ψ2, . . . , φn, ψ2)). In the derived
sequences µ(ψ1 ∨ ψ2) = (0, 0, 0) because the formula is closed. For the triple
(n, k, l) assigned by µ to ψ1 ∨ ψ2 in the starting sequence, it holds (n, k, l) >lex

2.4. PROPOSITIONAL TABLEAUX 37

µ(ψ1), (n, k, l) >lex µ(ψ2) and (n, k, l) >lex (0, 0, 0), the former because the ψi
are subformulas and the latter because l 6= 0. This proves the case.

Theorem 2.4.6 (Propositional Tableau is Complete). If φ is valid, tableau
computes a closed state out of {(¬φ)}.

Proof. If φ is valid then ¬φ is unsatisfiable. Now assume after termination the
resulting state and hence at least one sequence is not closed. For this sequence
consider a valuation A consisting of the literals in the sequence. By assumption
there are no opposite literals, so A is well-defined. I prove by contradiction that
A is a model for the sequence. Assume it is not. Then there is a minimal formula
in the sequence, with respect to the ordering on triples considered in the proof
of Theorem 2.4.5, that is not satisfied by A. By definition of A the formula
cannot be a literal. So it is an α-formula or a β-formula. In all cases at least one
descendant formula is contained in the sequence, is smaller than the original
formula, false in A (Proposition 2.4.3) and hence contradicts the assumption.
Therefore, A satisfies the sequence contradicting that ¬φ is unsatisfiable.

Corollary 2.4.7 (Propositional Tableau generates Models). Let φ be a formula,
{(φ)} ⇒∗T N and s ∈ N be a sequence that is not closed and neither α-expansion
nor β-expansion are applicable to s. Then the literals in s form a (partial)
valuation that is a model for φ.

Proof. A consequence of the proof of Theorem 2.4.6

Consider the example tableau shown in Figure 2.5. The open first branch
corresponds to the valuation A = {P,R,¬Q} which is a model of the formula
¬[(P ∧ ¬(Q ∨ ¬R))→ (Q ∧R)].

C

The tableau calculus naturally evolves out of the semantics of the
operators. However, from a proof search and proof length point of
view it has severe deficits. Consider, for example, the abstract tableau
in Figure 2.6. Let’s assume it is closed. Let’s further assume that the closedness
does not depend on the Kj , K

′
j literals. Then there is an exponentially smaller

closed tableau for the formula that consists of picking exactly one of the identical
Li, L

′
i subtrees. The calculus does not “learn” from the fact that closedness does

not depend on the Kj , K
′
j literals. Actually, this can be overcome and one way

of looking at CDCL, Section 2.9, is to consider it as a solution to the problem
of unnecessary repetitions of already closed branches. Concerning proof length,
there are clause sets where an exponential blow up compared to resolution,
Section 2.6, or CDCL, Section 2.9, cannot be prevented. For example, on a
clause set where every clause rules out exactly one valuation of n variables,
the shortest resolution proof is exponentially shorter than the shortest tableau
proof. In addition, the resolution proof can be found in a deterministic way by
simplification, see Example 2.6.3. For two variables the respective clause set is
(P ∨Q) ∧ (P ∨ ¬Q) ∧ (¬P ∨Q) ∧ (¬P ∨ ¬Q).

38 CHAPTER 2. PROPOSITIONAL LOGIC

2.5 Normal Forms

In order to check the status of a formula φ via truth tables, the truth table
contains a column for each subformula of φ and all valuations for its variables.
Any shape of φ is fine in order to generate the respective truth table. The
superposition calculus (Section 2.7), The DPLL calculus (Section 2.8), and the
CDCL (Conflict Driven Clause Learning) calculus (Section 2.9) all operate on
a normal form, i.e., the shape of φ is restricted. All those calculi accept only
conjunctions of disjunctions of literals, a particular normal form. It is called
Clause Normal Form or simply CNF. The purpose of this section is to show
that an arbitrary formula φ can be effectively and efficiently transformed into an
formula in CNF, preserving at least satisfiability. Efficient transformations are
typically not equivalence preserving because they introduce fresh propositional
variables. Superposition, DPLL, and CDCL are all refutational calculi, so a
satisfiability preserving normal form transformation is fine.

2.5.1 Conjunctive and Disjunctive Normal Forms

Definition 2.5.1 (CNF, DNF). A formula is in conjunctive normal form (CNF)
or clause normal form if it is a conjunction of disjunctions of literals, or in other
words, a conjunction of clauses.

A formula is in disjunctive normal form (DNF), if it is a disjunction of
conjunctions of literals.

So a CNF has the form
∧
i

∨
j Lj and a DNF the form

∨
i

∧
j Lj where the Lj

are literals. In the sequel the logical notation with ∨ is overloaded with a multiset
notation. Both the disjunction L1 ∨ . . . ∨ Ln and the multiset {L1, . . . , Ln} are
clauses. For clauses the letters C, D, possibly indexed are used. Furthermore, a
conjunction of clauses is considered as a set of clauses. Then, for a set of clauses,
the empty set denotes >. For a clause, the empty multiset denotes ∅ and at the
same time ⊥.

T

Although CNF and DNF are defined in almost any text book on au-
tomated reasoning, the definitions in the literature differ with respect
to the “border” cases: (i) are complementary literals permitted in a

clause? (ii) are duplicated literals permitted in a clause? (iii) are empty dis-
junctions/conjunctions permitted? The above Definition 2.5.1 answers all three
questions with “yes”. A clause containing complementary literals is valid, as in
P ∨Q∨¬P . Duplicate literals may occur, as in P ∨Q∨P . The empty disjunction
is ⊥ and the empty conjunction >, i.e., the empty disjunction is always false
while the empty conjunction is always true.

Checking the validity of CNF formulas or the unsatisfiability of DNF formu-
las is easy: (i) a formula in CNF is valid, if and only if each of its disjunctions
contains a pair of complementary literals P and ¬P , (ii) conversely, a formula
in DNF is unsatisfiable, if and only if each of its conjunctions contains a pair of
complementary literals P and ¬P (see Exercise ??).

2.5. NORMAL FORMS 39

COn the other hand, checking the unsatisfiability of CNF formulas or
the validity of DNF formulas is coNP-complete. For any propositional
formula φ there is an equivalent formula in CNF and DNF and I will prove this
below by actually providing an effective procedure for the transformation. How-
ever, also because of the above comment on validity and satisfiability checking
for CNF and DNF formulas, respectively, the transformation is costly. In gen-
eral, a CNF or DNF of a formula φ is exponentially larger than φ as long as
the normal forms need to be logically equivalent. If this is not needed, then by
the introduction of fresh propositional variables, CNF normal forms for φ can
be computed in linear time in the size of φ. More concretely, given a formula φ
instead of checking validity the unsatisfiability of ¬φ can be considered. Then
the linear time CNF normal form algorithm (see Section 2.5.3) is satisfiability
preserving, i.e., the linear time CNF of ¬φ is unsatisfiable iff ¬φ is.

Proposition 2.5.2. For every formula there is an equivalent formula in CNF
and also an equivalent formula in DNF.

Proof. See the rewrite systems⇒BCNF, and⇒ACNF below and the lemmata on
their properties.

2.5.2 Basic CNF/DNF Transformation

The below algorithm bcnf is a basic algorithm for transforming any propositional
formula into CNF, or DNF if the rule PushDisj is replaced by PushConj.

Algorithm 2: bcnf(φ)

Input : A propositional formula φ.
Output: A propositional formula ψ equivalent to φ in CNF.

1 whilerule (ElimEquiv(φ)) do ;
2 whilerule (ElimImp(φ)) do ;
3 whilerule (ElimTB1(φ),. . .,ElimTB6(φ)) do ;
4 whilerule (PushNeg1(φ),. . .,PushNeg3(φ)) do ;
5 whilerule (PushDisj(φ)) do ;
6 return φ;

In the sequel I study only the CNF version of the algorithm. All properties
hold in an analogous way for the DNF version. To start an informal analysis of
the algorithm, consider the following example CNF transformation.

Example 2.5.3. Consider the formula ¬((P ∨Q) ↔ (P → (Q ∧ >))) and the
application of ⇒BCNF depicted in Figure 2.8. Already for this simple formula
the CNF transformation via ⇒BCNF becomes quite messy. Note that the CNF
result in Figure 2.8 is highly redundant. If I remove all disjunctions that are
trivially true, because they contain a propositional literal and its negation, the
result becomes

(P ∨ ¬Q) ∧ (¬Q ∨ ¬P) ∧ (¬Q ∨ ¬Q)

40 CHAPTER 2. PROPOSITIONAL LOGIC

now elimination of duplicate literals beautifies the third clause and the overall
formula into

(P ∨ ¬Q) ∧ (¬Q ∨ ¬P) ∧ ¬Q.
Now let’s inspect this formula a little closer. Any valuation satisfying the formula
must set A(Q) = 0, because of the third clause. But then the first two clauses are
already satisfied. The formula ¬Q subsumes the formulas P ∨¬Q and ¬Q∨¬P
in this sense. The notion of subsumption will be discussed in detail for clauses
in Section 2.6. So it is eventually equivalent to

¬Q.
The correctness of the result is obvious by looking at the original formula and
doing a case analysis. For any valuation A with A(Q) = 1 the two parts of the
equivalence become true, independently of P , so the overall formula is false.
For A(Q) = 0, for any value of P , the truth values of the two sides of the
equivalence are different, so the equivalence becomes false and hence the overall
formula true.

After proving ⇒BCNF correct and terminating, in the succeeding section,
Section 2.5.3, I will present an algorithm ⇒ACNF that actually generates a
much more compact CNF out of ¬((P ∨ Q) ↔ (P → (Q ∧ >))) and does this
without generating the mess of formulas⇒BCNF does, see Figure 2.10. Applying
standard redundancy elimination rules Tautology Deletion, Condensation, and
Subsumption, see Section 2.6 and Section 2.7, then actually generates ¬Q as the
overall result. Please recall that the above rules apply modulo commutativity of
∨, ∧, e.g., the rule ElimTB1 is both applicable to the formulas φ∧> and >∧φ.

I

The equivalences in Figure 2.1 suggest more potential for simplifi-
cation. For example, the idempotency equivalences (φ ∧ φ) ↔ φ,
(φ∨ φ)↔ φ can be turned into simplification rules by applying them

left to right. However, the way they are stated they can only be applied in
case of identical subformulas. The formula (P ∨ Q) ∧ (Q ∨ P) does this way
not reduce to (Q ∨ P). A solution is to consider identity modulo commuta-
tivity. But then identity modulo commutativity and associativity (AC) as in
((P ∨Q)∨R)∧ (Q∨ (R∨P) is still not detected. On the other hand, in practice,
checking identity modulo AC is often too expensive. An elegant way out of this
situation is to implement AC connectives like ∨ or ∧ with flexible arity, to nor-
malize nested occurrences of the connectives, and finally to sort the arguments
using some total ordering. Applying this to ((P ∨Q) ∨R) ∧ (Q ∨ (R ∨ P) with
ordering R > P > Q the result is (Q ∨ P ∨ R) ∧ (Q ∨ P ∨ R). Now complete
AC simplification is back at the cost of checking for identical subformulas. Note
that in an appropriate implementation, the normalization and ordering process
is only done once at the start and then normalization and argument ordering is
kept as an invariant.

2.5.3 Advanced CNF Transformation

The simple algorithm for CNF transformation Algorithm 2 can be improved in
various ways: (i) more aggressive formula simplification, (ii) renaming, (iii) po-

2.5. NORMAL FORMS 41

larity dependant transformations. The before studied Example 2.5.3 serves al-
ready as a nice motivation for (i) and (iii). Firstly, removing > from the formula
¬((P ∨Q)↔ (P → (Q∧>))) first and not in the middle of the algorithm obvi-
ously shortens the overall process. Secondly, if the equivalence is replaced polar-
ity dependant, i.e., using the equivalence (φ↔ ψ)↔ (φ∧ψ)∨(¬φ∧¬ψ) and not
the one used in rule ElimEquiv applied before, a lot of redundancy generated
by ⇒BCNF is prevented. In general, if ψ[φ1 ↔ φ2]p and pol(ψ, p) = −1 then for
CNF transformation the equivalence is replaced by ψ[(φ1 ∧ φ2)∨ (¬φ1 ∧¬φ2)]p
and if pol(ψ, p) = 1 by ψ[(φ1 → φ2) ∧ (φ2 → φ1)]p in ψ.

Item (ii) can be motivated by a formula

P1 ↔ (P2 ↔ (P3 ↔ (. . . (Pn−1 ↔ Pn) . . .)))

where Algorithm 2 generates a CNF with 2n−1 clauses out of this formula. The
way out of this problem is the introduction of additional fresh propositional
variables that rename subformulas. The price to pay is that a renamed formula
is not equivalent to the original formula due to the extra propositional variables,
but satisfiability preserving. A renamed formula for the above formula is

(P1 ↔ (P2 ↔ Q1)) ∧ (Q1 ↔ (P3 ↔ Q2)) ∧ . . .

where the Qi are additional, fresh propositional variables. The number of clauses
of the CNF of this formula is 4(n−1) where each conjunct (Qi ↔ (Pj ↔ Qi+1))
contributes four clauses.

Proposition 2.5.4. Let P be a propositional variable not occurring in ψ[φ]p.

1. If pol(ψ, p) = 1, then ψ[φ]p is satisfiable if and only if ψ[P]p ∧ (P → φ) is
satisfiable.

2. If pol(ψ, p) = −1, then ψ[φ]p is satisfiable if and only if ψ[P]p ∧ (φ→ P)
is satisfiable.

3. If pol(ψ, p) = 0, then ψ[φ]p is satisfiable if and only if ψ[P]p ∧ (P ↔ φ) is
satisfiable.

Proof. Exercise.

So depending on the formula ψ, the position p where the variable P is in-
troduced, the definition of P is given by

def(ψ, p, P) :=

 (P → ψ|p) if pol(ψ, p) = 1
(ψ|p → P) if pol(ψ, p) = −1
(P ↔ ψ|p) if pol(ψ, p) = 0

42 CHAPTER 2. PROPOSITIONAL LOGIC

C The polarity dependent definition of some predicate P introduces
fewer clauses in case pol(ψ, p) has polarity 1 or -1. Still, even if always

an equivalence is used to define predicates, for a properly chosen renaming the
number of eventually generated clauses remains polynomial. Depending on the
afterwards used calculus the former or latter results in a typically smaller search
space. If a calculus relies on an explicitly building a partial model, e.g., CDCL,
Section 2.9 and Section 2.10, then always defining predicates via equivalences
is to be preferred. It guarantees that once the valuation of all variables in ψ|p
is determined, also the value P is determined by propagation. If a calculus re-
lies on building inferences in a syntactic way, e.g., Resolution, Section 2.6 and
Section 2.12, then using a polarity dependent definition of P results in fewer
inference opportunities.

For renaming there are several choices which subformula to choose. Ob-
viously, since a formula has only linearly many subformulas, renaming every
subformula works [30, 25]. However, this produces a number of renamings that
do even increase the size of an eventual CNF. For example renaming in ψ[¬φ]p
the subformulas ¬φ and φ at positions p, p1, respectively, produces more clauses
than just renaming one position out of the two. This will be captured below by
the notion of an obvious position. Then, in the following section a renaming
variant is introduced that actually produces smallest CNFs. For all variants,
renaming relies on a set of positions {p1, . . . , pn} that are replaced by fresh
propositional variables.

SimpleRenaming φ ⇒SimpRen φ[P1]p1 [P2]p2 . . . [Pn]pn ∧ def(φ, p1, P1) ∧
. . . ∧ def(φ[P1]p1 [P2]p2 . . . [Pn−1]pn−1

, pn, Pn)

provided {p1, . . . , pn} ⊂ pos(φ) and for all i, i + j either pi ‖ pi+j or pi > pi+j
and the Pi are different and new to φ

The term φ[P1]p1 [P2]p2 . . . [Pn]pn is evaluated left to right, i.e., a shorthand
for (. . . ((φ[P1]p1)[P2]p2) . . . [Pn]pn). Actually, the rule SimpleRenaming does not
provide an effective way to compute the set {p1, . . . , pn} of positions in φ to be
renamed. Where are several choices. Following Plaisted and Greenbaum [25], the
set contains all positions from φ that do not point to a propositional variable or
a negation symbol. In addition, renaming position ε does not make sense because
it would generate the formula P ∧ (P → φ) which results in more clauses than
just φ. Choosing the set of Plaisted and Greenbaum prevents the explosion in
the number of clauses during CNF transformation. But not all renamings are
needed to this end.

A smaller set of positions from φ, called obvious positions, is still preventing
the explosion and given by the rules: (i) p is an obvious position if φ|p is an
equivalence and there is a position q < p such that φ|q is either an equivalence
or disjunctive in φ or (ii) pq is an obvious position if φ|pq is a conjunctive formula
in φ, φ|p is a disjunctive formula in φ and for all positions r with p < r < pq
the formula φ|r is not a conjunctive formula.

A formula φ|p is conjunctive in φ if φ|p is a conjunction and pol(φ, p) ∈ {0, 1}
or φ|p is a disjunction or implication and pol(φ, p) ∈ {0,−1}. Analogously,

2.5. NORMAL FORMS 43

a formula φ|p is disjunctive in φ if φ|p is a disjunction or implication and
pol(φ, p) ∈ {0, 1} or φ|p is a conjunction and pol(φ, p) ∈ {0,−1}.

Example 2.5.5. Consider as an example the formula

φ = [¬(¬P ∨ (Q ∧R))]→ [P ∨ (¬Q↔ ¬R)] .

Its tree representation as well as the polarity and position of each node is shown
in Figure 2.9. Then the set of obvious positions is

{22, 112}

where 22 is obvious, because φ|22 is an equivalence and φ|2 is disjunctive, case (i)
of the above definition. The position 112 is obvious, because it is conjunctive
and φ|11 is a disjunctive formula, case (ii) of the above definition. Both positions
are also considered by the Plaisted and Greenbaum definition, but they also add
the positions {11, 2} to this set, resulting in the set

{2, 22, 11, 112}.

Then applying SimpleRenaming to φ with respect to obvious positions results
in

[¬(¬P ∨ P1)]→ [P ∨ P2] ∧ (P1 → (Q ∧R)) ∧ (P2 → (¬Q↔ ¬R))

and applying SimpleRenaming with respect to the Plaisted Greenbaum positions
results in

[¬P3]→ [P4] ∧ (P1 → (Q ∧R)) ∧ (P2 → (¬Q↔ ¬R)) ∧
(P3 → (¬P ∨ P1)) ∧ (P4 → (P ∨ P2))

where I applied in both cases a polarity dependent definition of the freshly in-
troduced propoaitional variables. A CNF generated by bcnf out of the renamed
formula using obvious positions results in 5 clauses, where the renamed formula
using the Plaisted Greenbaum positions results in 7 clauses.

I

Formulas are naturally implemented by trees in the style of the tree
in Figure 2.9. Every node contains the connective of the respective
subtree and an array with pointers to its children. Optionally, there
is also a back-pointer to the father of a node. Then a subformula at a particular
position can be represented by a pointer to the respective subtree. The polarity
or position of a subformula can either be a stored additionally in each node, or,
if back-pointers are available, it can be efficiently computed by traversing all
nodes up to the root.

The before mentioned polarity dependent transformations for equivalences
are realized by the following two rules:

ElimEquiv1 χ[(φ↔ ψ)]p ⇒ACNF χ[(φ→ ψ) ∧ (ψ → φ)]p

provided pol(χ, p) ∈ {0, 1}

44 CHAPTER 2. PROPOSITIONAL LOGIC

ElimEquiv2 χ[(φ↔ ψ)]p ⇒ACNF χ[(φ ∧ ψ) ∨ (¬φ ∧ ¬ψ)]p

provided pol(χ, p) = −1

Furthermore, the advanced algorithm eliminates > and ⊥ before eliminating
↔ and →. Therefore the respective rules are added:

ElimTB7 χ[φ→ ⊥]p ⇒ACNF χ[¬φ]p
ElimTB8 χ[⊥ → φ]p ⇒ACNF χ[>]p
ElimTB9 χ[φ→ >]p ⇒ACNF χ[>]p
ElimTB10 χ[> → φ]p ⇒ACNF χ[φ]p
ElimTB11 χ[φ↔ ⊥]p ⇒ACNF χ[¬φ]p
ElimTB12 χ[φ↔ >]p ⇒ACNF χ[φ]p

where the two rules ElimTB11, ElimTB12 for equivalences are applied with
respect to commutativity of ↔.

Algorithm 3: acnf(φ)

Input : A formula φ.
Output: A formula ψ in CNF satisfiability preserving to φ.

1 whilerule (ElimTB1(φ),. . .,ElimTB12(φ)) do ;
2 SimpleRenaming(φ) on obvious positions;
3 whilerule (ElimEquiv1(φ),ElimEquiv2(φ)) do ;
4 whilerule (ElimImp(φ)) do ;
5 whilerule (PushNeg1(φ),. . .,PushNeg3(φ)) do ;
6 whilerule (PushDisj(φ)) do ;
7 return φ;

I

For an implementation the Algorithm 3 can be further improved. For
example, once equivalences are eliminated the polarity of each literal
is exactly known. So eliminating implications and pushing negations

inside is not needed. Instead the eventual CNF can be directly constructed from
the formula.

Proposition 2.5.6 (Models of Renamed Formulas). Let φ be a formula and
φ′ a renamed CNF of φ computed by acnf. Then any (partial) model A of φ′ is
also a model for φ.

Proof. By an inductive argument it is sufficient to consider one renaming appli-
cation, i.e., φ′ = φ[P]p∧def(φ, p, P). There are three cases depending on the po-
larity. (i) if pol(φ, p) = 1 then φ′ = φ[P]p∧P → φ|p. IfA(P) = 1 thenA(φ|p) = 1
and hence A(φ) = 1. The interesting case is A(P) = 0 and A(φ|p) = 1. But
then because pol(φ, p) = 1 also A(φ) = 1 by Lemma 2.2.7. (ii) if pol(φ, p) = −1
the case is symmetric to the previous one. Finally, (iii) if pol(φ, p) = 0 for any
A satisfying φ′ it holds A(φ|p) = A(P) and hence A(φ) = 1.

