
2.5. NORMAL FORMS 39

COn the other hand, checking the unsatisfiability of CNF formulas or
the validity of DNF formulas is coNP-complete. For any propositional
formula φ there is an equivalent formula in CNF and DNF and I will prove this
below by actually providing an effective procedure for the transformation. How-
ever, also because of the above comment on validity and satisfiability checking
for CNF and DNF formulas, respectively, the transformation is costly. In gen-
eral, a CNF or DNF of a formula φ is exponentially larger than φ as long as
the normal forms need to be logically equivalent. If this is not needed, then by
the introduction of fresh propositional variables, CNF normal forms for φ can
be computed in linear time in the size of φ. More concretely, given a formula φ
instead of checking validity the unsatisfiability of ¬φ can be considered. Then
the linear time CNF normal form algorithm (see Section 2.5.3) is satisfiability
preserving, i.e., the linear time CNF of ¬φ is unsatisfiable iff ¬φ is.

Proposition 2.5.2. For every formula there is an equivalent formula in CNF
and also an equivalent formula in DNF.

Proof. See the rewrite systems⇒BCNF, and⇒ACNF below and the lemmata on
their properties.

2.5.2 Basic CNF/DNF Transformation

The below algorithm bcnf is a basic algorithm for transforming any propositional
formula into CNF, or DNF if the rule PushDisj is replaced by PushConj.

Algorithm 2: bcnf(φ)

Input : A propositional formula φ.
Output: A propositional formula ψ equivalent to φ in CNF.

1 whilerule (ElimEquiv(φ)) do ;
2 whilerule (ElimImp(φ)) do ;
3 whilerule (ElimTB1(φ),. . .,ElimTB6(φ)) do ;
4 whilerule (PushNeg1(φ),. . .,PushNeg3(φ)) do ;
5 whilerule (PushDisj(φ)) do ;
6 return φ;

In the sequel I study only the CNF version of the algorithm. All properties
hold in an analogous way for the DNF version. To start an informal analysis of
the algorithm, consider the following example CNF transformation.

Example 2.5.3. Consider the formula ¬((P ∨Q) ↔ (P → (Q ∧ >))) and the
application of ⇒BCNF depicted in Figure 2.8. Already for this simple formula
the CNF transformation via ⇒BCNF becomes quite messy. Note that the CNF
result in Figure 2.8 is highly redundant. If I remove all disjunctions that are
trivially true, because they contain a propositional literal and its negation, the
result becomes

(P ∨ ¬Q) ∧ (¬Q ∨ ¬P) ∧ (¬Q ∨ ¬Q)

40 CHAPTER 2. PROPOSITIONAL LOGIC

now elimination of duplicate literals beautifies the third clause and the overall
formula into

(P ∨ ¬Q) ∧ (¬Q ∨ ¬P) ∧ ¬Q.
Now let’s inspect this formula a little closer. Any valuation satisfying the formula
must set A(Q) = 0, because of the third clause. But then the first two clauses are
already satisfied. The formula ¬Q subsumes the formulas P ∨¬Q and ¬Q∨¬P
in this sense. The notion of subsumption will be discussed in detail for clauses
in Section 2.6. So it is eventually equivalent to

¬Q.
The correctness of the result is obvious by looking at the original formula and
doing a case analysis. For any valuation A with A(Q) = 1 the two parts of the
equivalence become true, independently of P , so the overall formula is false.
For A(Q) = 0, for any value of P , the truth values of the two sides of the
equivalence are different, so the equivalence becomes false and hence the overall
formula true.

After proving ⇒BCNF correct and terminating, in the succeeding section,
Section 2.5.3, I will present an algorithm ⇒ACNF that actually generates a
much more compact CNF out of ¬((P ∨ Q) ↔ (P → (Q ∧ >))) and does this
without generating the mess of formulas⇒BCNF does, see Figure 2.10. Applying
standard redundancy elimination rules Tautology Deletion, Condensation, and
Subsumption, see Section 2.6 and Section 2.7, then actually generates ¬Q as the
overall result. Please recall that the above rules apply modulo commutativity of
∨, ∧, e.g., the rule ElimTB1 is both applicable to the formulas φ∧> and >∧φ.

I

The equivalences in Figure 2.1 suggest more potential for simplifi-
cation. For example, the idempotency equivalences (φ ∧ φ) ↔ φ,
(φ∨ φ)↔ φ can be turned into simplification rules by applying them

left to right. However, the way they are stated they can only be applied in
case of identical subformulas. The formula (P ∨ Q) ∧ (Q ∨ P) does this way
not reduce to (Q ∨ P). A solution is to consider identity modulo commuta-
tivity. But then identity modulo commutativity and associativity (AC) as in
((P ∨Q)∨R)∧ (Q∨ (R∨P) is still not detected. On the other hand, in practice,
checking identity modulo AC is often too expensive. An elegant way out of this
situation is to implement AC connectives like ∨ or ∧ with flexible arity, to nor-
malize nested occurrences of the connectives, and finally to sort the arguments
using some total ordering. Applying this to ((P ∨Q) ∨R) ∧ (Q ∨ (R ∨ P) with
ordering R > P > Q the result is (Q ∨ P ∨ R) ∧ (Q ∨ P ∨ R). Now complete
AC simplification is back at the cost of checking for identical subformulas. Note
that in an appropriate implementation, the normalization and ordering process
is only done once at the start and then normalization and argument ordering is
kept as an invariant.

2.5.3 Advanced CNF Transformation

The simple algorithm for CNF transformation Algorithm 2 can be improved in
various ways: (i) more aggressive formula simplification, (ii) renaming, (iii) po-

2.5. NORMAL FORMS 41

larity dependant transformations. The before studied Example 2.5.3 serves al-
ready as a nice motivation for (i) and (iii). Firstly, removing > from the formula
¬((P ∨Q)↔ (P → (Q∧>))) first and not in the middle of the algorithm obvi-
ously shortens the overall process. Secondly, if the equivalence is replaced polar-
ity dependant, i.e., using the equivalence (φ↔ ψ)↔ (φ∧ψ)∨(¬φ∧¬ψ) and not
the one used in rule ElimEquiv applied before, a lot of redundancy generated
by ⇒BCNF is prevented. In general, if ψ[φ1 ↔ φ2]p and pol(ψ, p) = −1 then for
CNF transformation the equivalence is replaced by ψ[(φ1 ∧ φ2)∨ (¬φ1 ∧¬φ2)]p
and if pol(ψ, p) = 1 by ψ[(φ1 → φ2) ∧ (φ2 → φ1)]p in ψ.

Item (ii) can be motivated by a formula

P1 ↔ (P2 ↔ (P3 ↔ (. . . (Pn−1 ↔ Pn) . . .)))

where Algorithm 2 generates a CNF with 2n−1 clauses out of this formula. The
way out of this problem is the introduction of additional fresh propositional
variables that rename subformulas. The price to pay is that a renamed formula
is not equivalent to the original formula due to the extra propositional variables,
but satisfiability preserving. A renamed formula for the above formula is

(P1 ↔ (P2 ↔ Q1)) ∧ (Q1 ↔ (P3 ↔ Q2)) ∧ . . .

where the Qi are additional, fresh propositional variables. The number of clauses
of the CNF of this formula is 4(n−1) where each conjunct (Qi ↔ (Pj ↔ Qi+1))
contributes four clauses.

Proposition 2.5.4. Let P be a propositional variable not occurring in ψ[φ]p.

1. If pol(ψ, p) = 1, then ψ[φ]p is satisfiable if and only if ψ[P]p ∧ (P → φ) is
satisfiable.

2. If pol(ψ, p) = −1, then ψ[φ]p is satisfiable if and only if ψ[P]p ∧ (φ→ P)
is satisfiable.

3. If pol(ψ, p) = 0, then ψ[φ]p is satisfiable if and only if ψ[P]p ∧ (P ↔ φ) is
satisfiable.

Proof. Exercise.

So depending on the formula ψ, the position p where the variable P is in-
troduced, the definition of P is given by

def(ψ, p, P) :=

 (P → ψ|p) if pol(ψ, p) = 1
(ψ|p → P) if pol(ψ, p) = −1
(P ↔ ψ|p) if pol(ψ, p) = 0

42 CHAPTER 2. PROPOSITIONAL LOGIC

C The polarity dependent definition of some predicate P introduces
fewer clauses in case pol(ψ, p) has polarity 1 or -1. Still, even if always

an equivalence is used to define predicates, for a properly chosen renaming the
number of eventually generated clauses remains polynomial. Depending on the
afterwards used calculus the former or latter results in a typically smaller search
space. If a calculus relies on an explicitly building a partial model, e.g., CDCL,
Section 2.9 and Section 2.10, then always defining predicates via equivalences
is to be preferred. It guarantees that once the valuation of all variables in ψ|p
is determined, also the value P is determined by propagation. If a calculus re-
lies on building inferences in a syntactic way, e.g., Resolution, Section 2.6 and
Section 2.12, then using a polarity dependent definition of P results in fewer
inference opportunities.

For renaming there are several choices which subformula to choose. Ob-
viously, since a formula has only linearly many subformulas, renaming every
subformula works [30, 25]. However, this produces a number of renamings that
do even increase the size of an eventual CNF. For example renaming in ψ[¬φ]p
the subformulas ¬φ and φ at positions p, p1, respectively, produces more clauses
than just renaming one position out of the two. This will be captured below by
the notion of an obvious position. Then, in the following section a renaming
variant is introduced that actually produces smallest CNFs. For all variants,
renaming relies on a set of positions {p1, . . . , pn} that are replaced by fresh
propositional variables.

SimpleRenaming φ ⇒SimpRen φ[P1]p1 [P2]p2 . . . [Pn]pn ∧ def(φ, p1, P1) ∧
. . . ∧ def(φ[P1]p1 [P2]p2 . . . [Pn−1]pn−1

, pn, Pn)

provided {p1, . . . , pn} ⊂ pos(φ) and for all i, i + j either pi ‖ pi+j or pi > pi+j
and the Pi are different and new to φ

The term φ[P1]p1 [P2]p2 . . . [Pn]pn is evaluated left to right, i.e., a shorthand
for (. . . ((φ[P1]p1)[P2]p2) . . . [Pn]pn). Actually, the rule SimpleRenaming does not
provide an effective way to compute the set {p1, . . . , pn} of positions in φ to be
renamed. Where are several choices. Following Plaisted and Greenbaum [25], the
set contains all positions from φ that do not point to a propositional variable or
a negation symbol. In addition, renaming position ε does not make sense because
it would generate the formula P ∧ (P → φ) which results in more clauses than
just φ. Choosing the set of Plaisted and Greenbaum prevents the explosion in
the number of clauses during CNF transformation. But not all renamings are
needed to this end.

A smaller set of positions from φ, called obvious positions, is still preventing
the explosion and given by the rules: (i) p is an obvious position if φ|p is an
equivalence and there is a position q < p such that φ|q is either an equivalence
or disjunctive in φ or (ii) pq is an obvious position if φ|pq is a conjunctive formula
in φ, φ|p is a disjunctive formula in φ and for all positions r with p < r < pq
the formula φ|r is not a conjunctive formula.

A formula φ|p is conjunctive in φ if φ|p is a conjunction and pol(φ, p) ∈ {0, 1}
or φ|p is a disjunction or implication and pol(φ, p) ∈ {0,−1}. Analogously,

2.5. NORMAL FORMS 43

a formula φ|p is disjunctive in φ if φ|p is a disjunction or implication and
pol(φ, p) ∈ {0, 1} or φ|p is a conjunction and pol(φ, p) ∈ {0,−1}.

Example 2.5.5. Consider as an example the formula

φ = [¬(¬P ∨ (Q ∧R))]→ [P ∨ (¬Q↔ ¬R)] .

Its tree representation as well as the polarity and position of each node is shown
in Figure 2.9. Then the set of obvious positions is

{22, 112}

where 22 is obvious, because φ|22 is an equivalence and φ|2 is disjunctive, case (i)
of the above definition. The position 112 is obvious, because it is conjunctive
and φ|11 is a disjunctive formula, case (ii) of the above definition. Both positions
are also considered by the Plaisted and Greenbaum definition, but they also add
the positions {11, 2} to this set, resulting in the set

{2, 22, 11, 112}.

Then applying SimpleRenaming to φ with respect to obvious positions results
in

[¬(¬P ∨ P1)]→ [P ∨ P2] ∧ (P1 → (Q ∧R)) ∧ (P2 → (¬Q↔ ¬R))

and applying SimpleRenaming with respect to the Plaisted Greenbaum positions
results in

[¬P3]→ [P4] ∧ (P1 → (Q ∧R)) ∧ (P2 → (¬Q↔ ¬R)) ∧
(P3 → (¬P ∨ P1)) ∧ (P4 → (P ∨ P2))

where I applied in both cases a polarity dependent definition of the freshly in-
troduced propoaitional variables. A CNF generated by bcnf out of the renamed
formula using obvious positions results in 5 clauses, where the renamed formula
using the Plaisted Greenbaum positions results in 7 clauses.

I

Formulas are naturally implemented by trees in the style of the tree
in Figure 2.9. Every node contains the connective of the respective
subtree and an array with pointers to its children. Optionally, there
is also a back-pointer to the father of a node. Then a subformula at a particular
position can be represented by a pointer to the respective subtree. The polarity
or position of a subformula can either be a stored additionally in each node, or,
if back-pointers are available, it can be efficiently computed by traversing all
nodes up to the root.

The before mentioned polarity dependent transformations for equivalences
are realized by the following two rules:

ElimEquiv1 χ[(φ↔ ψ)]p ⇒ACNF χ[(φ→ ψ) ∧ (ψ → φ)]p

provided pol(χ, p) ∈ {0, 1}

44 CHAPTER 2. PROPOSITIONAL LOGIC

ElimEquiv2 χ[(φ↔ ψ)]p ⇒ACNF χ[(φ ∧ ψ) ∨ (¬φ ∧ ¬ψ)]p

provided pol(χ, p) = −1

Furthermore, the advanced algorithm eliminates > and ⊥ before eliminating
↔ and →. Therefore the respective rules are added:

ElimTB7 χ[φ→ ⊥]p ⇒ACNF χ[¬φ]p
ElimTB8 χ[⊥ → φ]p ⇒ACNF χ[>]p
ElimTB9 χ[φ→ >]p ⇒ACNF χ[>]p
ElimTB10 χ[> → φ]p ⇒ACNF χ[φ]p
ElimTB11 χ[φ↔ ⊥]p ⇒ACNF χ[¬φ]p
ElimTB12 χ[φ↔ >]p ⇒ACNF χ[φ]p

where the two rules ElimTB11, ElimTB12 for equivalences are applied with
respect to commutativity of ↔.

Algorithm 3: acnf(φ)

Input : A formula φ.
Output: A formula ψ in CNF satisfiability preserving to φ.

1 whilerule (ElimTB1(φ),. . .,ElimTB12(φ)) do ;
2 SimpleRenaming(φ) on obvious positions;
3 whilerule (ElimEquiv1(φ),ElimEquiv2(φ)) do ;
4 whilerule (ElimImp(φ)) do ;
5 whilerule (PushNeg1(φ),. . .,PushNeg3(φ)) do ;
6 whilerule (PushDisj(φ)) do ;
7 return φ;

I

For an implementation the Algorithm 3 can be further improved. For
example, once equivalences are eliminated the polarity of each literal
is exactly known. So eliminating implications and pushing negations

inside is not needed. Instead the eventual CNF can be directly constructed from
the formula.

Proposition 2.5.6 (Models of Renamed Formulas). Let φ be a formula and
φ′ a renamed CNF of φ computed by acnf. Then any (partial) model A of φ′ is
also a model for φ.

Proof. By an inductive argument it is sufficient to consider one renaming appli-
cation, i.e., φ′ = φ[P]p∧def(φ, p, P). There are three cases depending on the po-
larity. (i) if pol(φ, p) = 1 then φ′ = φ[P]p∧P → φ|p. IfA(P) = 1 thenA(φ|p) = 1
and hence A(φ) = 1. The interesting case is A(P) = 0 and A(φ|p) = 1. But
then because pol(φ, p) = 1 also A(φ) = 1 by Lemma 2.2.7. (ii) if pol(φ, p) = −1
the case is symmetric to the previous one. Finally, (iii) if pol(φ, p) = 0 for any
A satisfying φ′ it holds A(φ|p) = A(P) and hence A(φ) = 1.

2.5. NORMAL FORMS 45

Note that Proposition 2.5.6 does not hold the other way round. Whenever a
formula is manipulated by introducing fresh symbols, the truth of the original
formula does not depend on the truth of the fresh symbols. For example, consider
the formula

φ ∨ ψ

which is renamed to

φ ∨ P ∧ P → ψ

.
Then any interpretation A with A(φ) = 1 is a model for φ ∨ ψ. It is not

necessarily a model for φ ∨ P ∧ P → ψ. If A(P) = 1 and A(ψ) = 0 it does not
satisfy φ ∨ P ∧ P → ψ.

C

The introduction of fresh symbols typically does not preserve validity
but only satisfiability of formulas. Hence, it is well-suited for refuta-
tional reasoning based on a CNF, but not for equivalence reasoning
based on a DNF. On the other hand renaming is mandatory to prevent a po-
tential explosion of the formula size by normal form transformation. This is
one explanation while typical automated reasoning calculi rely on a CNF. An
alternative would be to develop automated reasoning calculi like resolution or
CDCL on the formula level. It is an open research question whether this can
lead to more efficient calculi.

I

All techniques in this section ignore redundancy, i.e., it might actu-
ally happen that a renamed formula produces eventually more clauses
than the original formula due to redundancy. Putting it to the ex-
treme, consider a complicated formula composed of only the propositional vari-
able P , e.g., a nested equivalence P ↔ (P ↔ P). Such a formula is always
equivalent to >, ⊥, P , or ¬P by applying the rules (I) and (VII) of Figure 2.1
to the eventual CNF. However, once it is renamed the redundancy is no longer
detected by the mentioned rules, because of the freshly introduced variables.
Therefore, in practice, the renaming techniques introduced in this section are
comnbined with redundancy elimination techniques.

2.5.4 Computing Small CNFs

In the previous chapter obvious positions are a suggestion for smaller CNFs
with respect to the renaming positions suggested by Plaisted and Greenbaum.
In this section I develop a set of renaming positions that is in fact minimal with
respect to the resulting CNF. A subformula is renamed if the eventual number
of generated clauses by bcnf decreases after renaming [6, 24]. If formulas are
checked top-down for this condition, and profitable formulas in the above sense
are renamed, the resulting CNF is optimal in the number of clauses [6]. The

2.6. PROPOSITIONAL RESOLUTION 51

at the result it is already very close to ¬Q, as it contains the clause (¬Q∨¬Q).
Removing duplicate literals in clauses and removing clauses containing comple-
mentary literals from the result yields

(¬P ∨ ¬Q) ∧ (¬Q ∨ P) ∧ ¬Q
which is even closer to just ¬Q. The first two clauses can actually be removed
because they are subsumed by ¬Q, i.e., considered as multisets, ¬Q is a subset
of these clauses. Subsumption will be introduced in Section 2.6. Logically, they
can be removed because ¬Q has to be true for any satisfying assignment of the
formula and then the first two clauses are satisfied anyway.

2.6 Propositional Resolution

The propositional resolution calculus operates on a set of clauses and tests
unsatisfiability. This enables advanced CNF transformation and, in particular,
renaming, see Section 2.5.3. In order to check validity of a formula φ we check
unsatisfiability of the clauses generated from ¬φ.

Recall, see Section 2.1, that for clauses I switch between the notation as a
disjunction, e.g., P ∨Q∨P ∨¬R, and the multiset notation, e.g., {P,Q, P,¬R}.
This makes no difference as we consider ∨ in the context of clauses always
modulo AC. Note that ⊥, the empty disjunction, corresponds to ∅, the empty
multiset. Clauses are typically denoted by letters C, D, possibly with subscript.

The resolution calculus consists of the inference rules Resolution and Fac-
toring. So, if we consider clause sets N as states,] is disjoint union, we get the
inference rules

Resolution (N]{C1∨P,C2∨¬P}) ⇒RES (N∪{C1∨P,C2∨¬P}∪{C1∨C2})

Factoring (N] {C ∨ L ∨ L}) ⇒RES (N ∪ {C ∨ L ∨ L} ∪ {C ∨ L})

Theorem 2.6.1. The resolution calculus is sound and complete:
N is unsatisfiable iff N ⇒∗RES N

′ and ⊥ ∈ N ′ for some N ′

Proof. (⇐) Soundness means for all rules that N |= N ′ where N ′ is the clause
set obtained from N after applying Resolution or Factoring. For Resolution it
is sufficient to show that C1 ∨ P,C2 ∨ ¬P |= C1 ∨ C2. This is obvious by a case
analysis of valuations satisfying C1∨P,C2∨¬P : if P is true in such a valuation
so must be C2, hence C1 ∨ C2. If P is false in some valuation then C1 must
be true and so C1 ∨ C2. Soundness for Factoring is obvious this way because it
simply removes a duplicate literal in the respective clause.

(⇒) The traditional method of proving resolution completeness are semantic
trees. A semantic tree is a binary tree where the edges a labeled with literals
such that: (i) edges of children of the same parent are labeled with L and

52 CHAPTER 2. PROPOSITIONAL LOGIC

comp(L), (ii) any node has either no or two children, and (iii) for any path from
the root to a leave, each propositional variable occurs at most once. Therefore,
each path corresponds to a partial valuation. Now for an unsatisfiable clause
set N there is a finite semantic tree such that for each leaf of the tree there is
a clause from N that is false with respect to the partial valuation at that leaf.
By structural induction on the size of the tree we prove completeness. If the
tree is empty, then ⊥ ∈ N . Now consider two sister leaves of the same parent of
this tree, where the edges are labeled with L and comp(L), respectively. Let C1

and C2 be the two false clauses at the respective leaves. If some Ci does neither
contain L or comp(L) then Ci is also false at the parent and we are done. So
assume both C1 and C2 contain L or comp(L): C1 = C ′1 ∨L and C2 = C ′2 ∨¬L.
If C1 (or C2) contains further occurrences of L (or C2 of comp(L)), then the rule
Factoring is applied to eventually remove all additional occurrences. Therefore,
eventually L 6∈ C ′1 and comp(L) 6∈ C ′2. Note that if some Ci contains both L
and comp(L) it is true, contradicting the assumption that Ci is false at its leaf.
A resolution step between these two clauses on L yields C ′1 ∨ C ′2 which is false
at the parent of the two leaves, because the resolvent neither contains L nor
comp(L). Furthermore, the resulting tree is smaller, proving completeness.

Example 2.6.2 (Resolution Completeness). Consider the clause set

P ∨Q, ¬P ∨Q, P ∨ ¬Q, ¬P ∨ ¬Q ∨ S, ¬P ∨ ¬Q ∨ ¬S

and the corresponding semantic tree as shown in Figure 2.13.

The reduction rules are

Subsumption (N] {C1, C2}) ⇒RES (N ∪ {C1})
provided C1 ⊂ C2

Tautology Dele-
tion

(N] {C ∨ P ∨ ¬P}) ⇒RES (N)

Condensation (N] {C1 ∨ L ∨ L}) ⇒RES (N ∪ {C1 ∨ L})

Subsumption
Resolution

(N] {C1 ∨L,C2 ∨ comp(L)}) ⇒RES (N ∪ {C1 ∨L,C2})

where C1 ⊆ C2

Note the different nature of inference rules and reduction rules. Resolution
and Factorization only add clauses to the set whereas Subsumption, Tautology
Deletion and Condensation delete clauses or replace clauses by “simpler” ones.
In the next section, Section 2.7, I will show what “simpler” means.

Example 2.6.3 (Refutation by Simplification). Consider the clause set

N = {P ∨Q, P ∨ ¬Q, ¬P ∨Q, ¬P ∨ ¬Q}

that can be deterministically refuted by Subsumption Resolution:

2.6. PROPOSITIONAL RESOLUTION 53

({P ∨Q, P ∨ ¬Q, ¬P ∨Q, ¬P ∨ ¬Q})
⇒SubRes

RES ({P ∨Q, P, ¬P ∨Q, ¬P ∨ ¬Q})
⇒Subumption

RES ({P, ¬P ∨Q, ¬P ∨ ¬Q})
⇒SubRes

RES ({P, Q, ¬P ∨ ¬Q})
⇒SubRes

RES ({P, Q, ¬Q})
⇒SubRes

RES ({P, Q, ⊥})

where I abbreviated the rule Subumption Resolution by SubRes.

While the above example can be refuted by the rule Subsumption Resolution,
the Resolution rule itself may derive redundant clauses, e.g., a tautology.

({P ∨Q, P ∨ ¬Q, ¬P ∨Q, ¬P ∨ ¬Q})
⇒Resolution

RES ({P ∨Q, P ∨ ¬Q, ¬P ∨Q, ¬P ∨ ¬Q, Q ∨ ¬Q})

For three variables, the respective clause set is

({P ∨Q ∨R, P ∨ ¬Q ∨R, ¬P ∨Q ∨R, ¬P ∨ ¬Q ∨R,
P ∨Q ∨ ¬R, P ∨ ¬Q ∨ ¬R, ¬P ∨Q ∨ ¬R, ¬P ∨ ¬Q ∨ ¬R})

C

The above deterministic, linear resolution refutation, Example 2.6.3,
cannot be simulated by the tableau calculus without generating an
exponential overhead, see also the comment on page 49. At first, it
looks strange to have the same rule, namely Factorization and Condensation,
both as a reduction rules and as an inference rule. On the propositional level
there is obviously no difference and it is possible to get rid of one of the two.
In Section ?? the resolution calculus is lifted to first-order logic. In first-order
logic Factorization and Condensation are actually different, i.e., a Factoriza-
tion inference is no longer a Condensation simplification, in general. They are
separated here to eventually obtain the same set of rules propositional and first-
order logic. This is needed for a proper lifting proof of first-order completeness
that us actually reduced to the ground fragment of first-order logic that can be
considered as a variant of propositional logic.

Proposition 2.6.4. The reduction rules Subsumption, Tautology Deletion,
Condensation and Subsumption Resolution are sound.

Proof. This is obvious for Tautology Deletion and Condensation. For Subsump-
tion we have to show that C1 |= C2, because this guarantees that if N ∪ {C1}
has a model, N] {C1, C2} has a model too. So assume A(C1) = 1 for an arbi-
trary A. Then there is some literal L ∈ C1 with A(L) = 1. Since C1 ⊆ C2, also
L ∈ C2 and therefore A(C2) = 1. Subsumption Resolution is the combination
of a Resolution application followed by a Subsumption application.

Theorem 2.6.5 (Resolution Termination). If reduction rules are preferred over
inference rules and no inference rule is applied twice to the same clause(s), then
⇒+

RES is well-founded.

54 CHAPTER 2. PROPOSITIONAL LOGIC

Proof. If reduction rules are preferred over inference rules, then the overall
length if a clause cannot exceed n, where n is the number of variables. Mul-
tiple occurrences of the same literal are removed by rule Condensation, multiple
occurrences of the same variable with different sign result in an application of
rule Tautology Deletion. The number of such clauses can be overestimated by
3n because every variable occurs at most once positively, negatively or not at all
in clause. Hence, there are at most 2n3n different resolution applications.

C

Of course, what needs to be shown is that the strategy employed in
Theorem 2.6.5 is still complete. This is not completely trivial and gets
very nasty using semantic trees as the proof method of choice. So let’s

wait until superposition is established where this result becomes a particular
instance of superposition completeness.

2.7 Propositional Superposition

Superposition was originally developed for first-order logic with equality [1].
Here I introduce its projection to propositional logic. Compared to the resolution
calculus superposition adds (i) ordering and selection restrictions on inferences,
(ii) an abstract redundancy notion, (iii) the notion of a partial model, based
on the ordering for inference guidance, and (iv) a saturation concept.

Definition 2.7.1 (Clause Ordering). Let ≺ be a total strict ordering on Σ.
Then ≺ can be lifted to a total ordering on literals by ≺⊆≺L and P ≺L ¬P and
¬P ≺L Q, ¬P ≺L ¬Q for all P ≺ Q. The ordering ≺L can be lifted to a total
ordering on clauses ≺C by considering the multiset extension of ≺L for clauses.

For example, if P ≺ Q, then P ≺L ¬P ≺L Q ≺L ¬Q and P ∨ Q ≺C
P ∨Q ∨Q ≺C ¬Q because {P,Q} ≺mul

L {P,Q,Q} ≺mul
L {¬Q}.

Proposition 2.7.2 (Properties of the Clause Ordering). (i) The orderings on
literals and clauses are total and well-founded.
(ii) Let C and D be clauses with P = |max(C)|, Q = |max(D)|, where max(C)
denotes the maximal literal in C.

1. If Q ≺L P then D ≺C C.

2. If P = Q, P occurs negatively in C but only positively in D, then D ≺C C.

Eventually, I overload ≺ with ≺L and ≺C . So if ≺ is applied to literals it
denotes ≺L, if it is applied to clauses, it denotes ≺C . Note that ≺ is a total
ordering on literals and clauses as well. Eventually we will restrict inferences to
maximal literals with respect to ≺. For a clause set N , I define N≺C = {D ∈
N | D ≺ C}.

Definition 2.7.3 (Abstract Redundancy). A clause C is redundant with respect
to a clause set N if N≺C |= C.

