
54 CHAPTER 2. PROPOSITIONAL LOGIC

Proof. If reduction rules are preferred over inference rules, then the overall
length if a clause cannot exceed n, where n is the number of variables. Mul-
tiple occurrences of the same literal are removed by rule Condensation, multiple
occurrences of the same variable with different sign result in an application of
rule Tautology Deletion. The number of such clauses can be overestimated by
3n because every variable occurs at most once positively, negatively or not at all
in clause. Hence, there are at most 2n3n different resolution applications.

C

Of course, what needs to be shown is that the strategy employed in
Theorem 2.6.5 is still complete. This is not completely trivial and gets
very nasty using semantic trees as the proof method of choice. So I

postpone this proof until superposition is established where this result becomes
a particular instance of superposition completeness. Exercise ?? contains the
completeness part when the reduction rules are preferred over inference rules.

2.7 Propositional Superposition

Superposition was originally developed for first-order logic with equality [1].
Here I introduce its projection to propositional logic. Compared to the resolution
calculus superposition adds (i) ordering and selection restrictions on inferences,
(ii) an abstract redundancy notion, (iii) the notion of a partial model, based
on the ordering for inference guidance, and (iv) a saturation concept.

Definition 2.7.1 (Clause Ordering). Let ≺ be a total strict ordering on Σ.
Then ≺ can be lifted to a total ordering on literals by ≺⊆≺L and P ≺L ¬P and
¬P ≺L Q, ¬P ≺L ¬Q for all P ≺ Q. The ordering ≺L can be lifted to a total
ordering on clauses ≺C by considering the multiset extension of ≺L for clauses.

For example, if P ≺ Q, then P ≺L ¬P ≺L Q ≺L ¬Q and P ∨ Q ≺C
P ∨Q ∨Q ≺C ¬Q because {P,Q} ≺mul

L {P,Q,Q} ≺mul
L {¬Q}.

Proposition 2.7.2 (Properties of the Clause Ordering). (i) The orderings on
literals and clauses are total and well-founded.
(ii) Let C and D be clauses with P = atom(max(C)), Q = atom(max(D)),
where max(C) denotes the maximal literal in C.

1. If Q ≺L P then D ≺C C.

2. If P = Q, P occurs negatively in C but only positively in D, then D ≺C C.

Eventually, I overload ≺ with ≺L and ≺C . So if ≺ is applied to literals it
denotes ≺L, if it is applied to clauses, it denotes ≺C . Note that ≺ is a total
ordering on literals and clauses as well. Eventually we will restrict inferences to
maximal literals with respect to ≺. For a clause set N , I define N≺C = {D ∈
N | D ≺ C}.



2.7. PROPOSITIONAL SUPERPOSITION 55

Definition 2.7.3 (Abstract Redundancy). A clause C is redundant with respect
to a clause set N if N≺C |= C.

Tautologies are redundant. Subsumed clauses are redundant if ⊆ is strict.
Duplicate clauses are anyway eliminated quietly because the calculus operates
on sets of clauses.

C

Note that for finite N , and any C ∈ N redundancy N≺C |= C can
be decided but is as hard as testing unsatisfiability for a clause set
N . So the goal is to invent redundancy notions that can be efficiently
decided and that are useful.

Definition 2.7.4 (Selection Function). The selection function sel maps clauses
to one of its negative literals or ⊥. If sel(C) = ¬P then ¬P is called selected in
C. If sel(C) = ⊥ then no literal in C is selected.

The selection function is, in addition to the ordering, a further means to
restrict superposition inferences. If a negative literal is selected on a clause, any
superposition inference must be on the selected literal.

Definition 2.7.5 (Partial Model Construction). Given a clause set N and an
ordering ≺ we can construct a (partial) Herbrand model NI for N inductively
as follows:

NC :=
⋃
D≺C δD

δD :=


{P} if D = D′ ∨ P, P strictly maximal, no literal

selected in D and ND 6|= D

∅ otherwise

NI :=
⋃
C∈N δC

Clauses C with δC 6= ∅ are called productive.

Proposition 2.7.6. Some properties of the partial model construction.

1. For every D with (C ∨ ¬P ) ≺ D we have δD 6= {P}.

2. If δC = {P} then NC ∪ δC |= C.

3. If NC |= D and D ≺ C then for all C ′ with C ≺ C ′ we have NC′ |= D
and in particular NI |= D.

4. There is no clause C with P ∨ P ≺ C such that δC = {P}.



56 CHAPTER 2. PROPOSITIONAL LOGIC

T Please properly distinguish: N is a set of clauses interpreted as the
conjunction of all clauses. N≺C is of set of clauses from N strictly

smaller than C with respect to ≺. NI , NC are sets of atoms, often called Her-
brand Interpretations. NI is the overall (partial) model for N , whereas NC is
generated from all clauses from N strictly smaller than C. Validity is defined
by NI |= P if P ∈ NI and NI |= ¬P if P 6∈ NI , accordingly for NC .

Given some clause set N the partial model NI can be extended to a valuation
A by defining A(NI) := NI ∪ {¬P | P 6∈ NI}. So we can also define for some
Herbrand interpretation NI (NC) that NI |= φ iff A(NI)(φ) = 1.

Superposition Left (N ] {C1 ∨ P,C2 ∨¬P}) ⇒SUP (N ∪ {C1 ∨ P,C2 ∨
¬P} ∪ {C1 ∨ C2})
where (i) P is strictly maximal in C1 ∨ P (ii) no literal in C1 ∨ P is selected
(iii) ¬P is maximal and no literal selected in C2 ∨ ¬P , or ¬P is selected in
C2 ∨ ¬P

Factoring (N]{C∨P ∨P}) ⇒SUP (N∪{C∨P ∨P}∪{C∨P})
where (i) P is maximal in C ∨ P ∨ P (ii) no literal is selected in C ∨ P ∨ P

Note that the superposition factoring rule differs from the resolution factor-
ing rule in that it only applies to positive literals. Abstract redundancy can also
be lifted to inferences, in the propositional case to Superposition Left applica-
tions. A Superposition Left inference

(N ] {C1 ∨ P,C2 ∨ ¬P})⇒SUP (N ∪ {C1 ∨ P,C2 ∨ ¬P} ∪ {C1 ∨ C2})

is redundant if either one of the clauses C1 ∨ P,C2 ∨ ¬P is redundant, or if
N≺C2∨¬P |= C1∨C2. For a Factoring inference, the conclusion C ∨P makes the
premise C ∨P ∨P , so it is sufficient to require that C ∨P ∨P is not redundant
in order to guarantee C ∨ P to be non-redundant.

Definition 2.7.7 (Saturation). A set N of clauses is called saturated up to
redundancy, if any inference from non-redundant clauses in N yields a redundant
clause with respect to N or is already contained in N .

Alternatively, saturation can be defined on the basis of redundant inferences:
a set N is saturated up to redundancy if all inferences from clauses from N are
redundant. Examples for specific redundancy rules that can be efficiently decided
are

Subsumption (N ] {C1, C2}) ⇒SUP (N ∪ {C1})
provided C1 ⊂ C2

Tautology Dele-
tion

(N ] {C ∨ P ∨ ¬P}) ⇒SUP (N)

Condensation (N ] {C1 ∨ L ∨ L}) ⇒SUP (N ∪ {C1 ∨ L})


