Exploring Shape Variations by 3D-Model Decomposition and Part-based Recombination

Arjun Jain ${ }^{1} \quad$ Thorsten Thormählen ${ }^{1} \quad$ Tobias Ritschel $^{2} \quad$ Hans-Peter Seidel ${ }^{1}$
${ }^{1}$ MPI Informatik $\quad{ }^{2}$ Télécom ParisTech (CNRS-LTCI)

Appendix A: Supplemental results

In this supplemental material additional blends results are shown.(Fig. 1 to Fig. 9). We also present additional matrices with blends for several categories: ships (Fig. 10), planes (Fig. 11), and metal machines (Fig. 12). The topmost row and leftmost column of the matrices contain the input examples.

Figure 1: A blend between two robots.

Figure 2: Failure case: In this blend between two cars some parts, such as the side-windows, are not placed correctly because there are too many contact constraints.

Figure 3: A blend between two juicers.

Figure 4: A blend between two kitchen designs.

Figure 5: A blend between two metal machines.

Figure 6: A blend between a street sign pole and a telephone pole.

Figure 7: A blend between two barbecue tables.

Figure 8: A blend between a two bar stools from Google 3D Warehouse. These models have only very few parts and, thus, there are only two generated intermediate shapes.

Figure 9: A blend between a two lamps from Google 3D Warehouse. These models have only very few parts.

Figure 10: Blend matrix for five shapes from the "ship" category

Jain et al. / Exploring Shape Variations by 3D-Model Decomposition and Part-based Recombination

Figure 11: Blend matrix for five shapes from the "plane" category

Jain et al. / Exploring Shape Variations by 3D-Model Decomposition and Part-based Recombination

Figure 12: Blend matrix four shapes from the "metal machines" category

