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ABSTRACT

The decomposition of a monaural audio recording into mu-
sically meaningful sound sources or voices constitutes a fun-
damental problem in music information retrieval. In this
paper, we consider the task of separating a monaural piano
recording into two sound sources (or voices) that correspond
to the left hand and the right hand. Since in this scenario
the two sources share many physical properties, sound sep-
aration approaches identifying sources based on their spec-
tral envelope are hardly applicable. Instead, we propose a
score-informed approach, where explicit note events speci-
fied by the score are used to parameterize the spectrogram
of a given piano recording. This parameterization then al-
lows for constructing two spectrograms considering only the
notes of the left hand and the right hand, respectively. Fi-
nally, inversion of the two spectrograms yields the separa-
tion result. First experiments show that our approach, which
involves high-resolution music synchronization and para-
metric modeling techniques, yields good results for real-
world non-synthetic piano recordings.

1. INTRODUCTION

In recent years, techniques for the separation of musically
meaningful sound sources from monaural music recordings
have been applied to support many tasks in music infor-
mation retrieval. For example, by extracting the singing
voice, the bassline, or drum and instrument tracks, signif-
icant improvements have been reported for tasks such as in-
strument recognition [7], melody estimation [1], harmonic
analysis [10], or instrument equalization [9]. For the sepa-
ration, most approaches exploit specific spectral or tempo-
ral characteristics of the respective sound sources, for ex-
ample the broadband energy distribution of percussive ele-
ments [10] or the spectral properties unique to the human
vocal tract [1].
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Figure 1. Decomposition of a piano recording into two sound
sources corresponding to the left and right hand as specified by a
musical score. Shown are the first four measures of Chopin Op. 28
No. 15.

In this paper, we present an automated approach for the
decomposition of a monaural piano recording into sound
sources corresponding to the left and the right hand as speci-
fied by a score, see Figure 1. Played on the same instrument
and often being interleaved, the two sources share many
spectral properties. As a consequence, techniques that rely
on statistical differences between the sound sources are not
directly applicable. To make the separation process feasi-
ble, we exploit the fact that a musical score is available for
many pieces. We then use the explicitly given note events
of the score to approximate the spectrogram of the given
piano recording using a parametric model. Characterizing
which part of the spectrogram belongs to a given note event,
the model is then employed to decompose the spectrogram
into parts related to the left hand and to the right hand. As
an application, our goal is to extend the idea of an instru-
ment equalizer as presented in [9] to a voice equalizer that
can not only emphasize or attenuate whole instrument tracks
but also individual voices or even single notes played by the
same instrument. While we restrict the task in this paper
to the left/right hand scenario, our approach is sufficiently
general to isolate any kind of voice (or group of notes) that
is specified by a given score.

So far, score-informed sound separation has received



only little attention in the literature. In [11], the authors
replace the pitch estimation step of a sound separation sys-
tem for stereo recordings with pitch information provided
by an aligned MIDI file. In [6], a score-informed sys-
tem for the elimination of the solo instrument from poly-
phonic audio recordings is presented. For the description
of the spectral envelope of an instrument, the approach re-
lies on pretrained information from a monophonic instru-
ment database. In [4], score information is used as prior
information in a separation system based on probabilistic
latent component analysis (PLCA). This approach is in [8]
compared to a score-informed approach based on paramet-
ric atoms. In [9], a score-informed system for the extraction
of individual instrument tracks is proposed. To counterbal-
ance their harmonic and inharmonic submodels, the authors
have to incorporate complex regulation terms into their ap-
proach. Furthermore, the authors presuppose that, for each
audio recording, a perfectly aligned MIDI file is available,
which is not a realistic assumption.

In this paper, our main contribution is to extend the idea
of an instrument equalizer to a voice equalizer that does
not rely on statistical properties of the sound sources. As
a further contribution, we do no presuppose the existence of
prealigned MIDI files. Instead, we revert to high-resolution
music synchronization techniques [3] to automatically align
an audio recording to a corresponding musical score. Using
the aligned score as an initialization, we follow the paramet-
ric model paradigm [2, 6, 7, 9] to obtain a note-wise param-
eterization of the spectrogram. As another contribution we
show how separation masks that allow for a construction of
voice-specific spectrograms can be derived from our model.
Finally, applying a Griffin-Lim based inversion [5] to the
separated spectrograms yields the final separation result.

The remainder of this paper is organized as follows. In
Section 2, we introduce our parametric spectrogram model.
Then, in Section 3, we describe how our model is employed
to decompose a piano recording into two voices that cor-
respond to the left hand and the right hand. In Section 4,
we report on our systematic experiments using real-world
as well as synthetic piano recordings. Conclusions and
prospects on future work are given in Section 5. Further
related work is discussed in the respective sections.

2. PARAMETRIC MODEL

To describe an audio recording of a piece of music using
a parametric model, one has to consider many musical and
acoustical aspects [7, 9]. For example, parameters are re-
quired to encode the pitch as well as the onset position and
duration of note events. Further parameters might encode
tuning aspects, the timbre of specific instruments, or ampli-
tude progressions. In this section, we describe our model
and show how its parameters can be estimated by an itera-
tive method.
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Figure 2. Illustration of the first iteration of our parameter estima-
tion procedure continuing the example shown in Figure 1 (shown
section corresponds to the first measure).(a): Audio spectrogram
Y to be approximated.(b)-(e) Model spectrogramYλ after cer-
tain parameters are estimated.(b): ParameterS is initialized with
MIDI note events.(c): Note events inS are synchronized with the
audio recording.(d): Activity α and tuning parameterτ are esti-
mated.(e): Partials’ energy distribution parameterγ is estimated.

2.1 Parametric Spectrogram Model

Let X ∈ C
K×N denote the spectrogram andY = |X| the

magnitude spectrogram of a given music recording. Fur-
thermore, letS := {µs | s ∈ [1 :S]} denote a set of
note events as specified by a MIDI file representing a mu-
sical score. Here, each note event is modelled as a triple
µs = (ps, ts, ds), with ps encoding the MIDI pitch,ts the
onset position andds the duration of the note event. Our
strategy is to approximateY by means of a model spectro-
gramY S

λ , whereλ denotes a set of free parameters repre-
senting acoustical properties of the note events. Based on
the note event setS, the model spectrogramY S

λ will be con-
structed as a superposition of note-event spectrogramsY s

λ ,
s ∈ [1 :S]. More precisely, we defineY S

λ at frequency bin
k ∈ [1 :K] and time framen ∈ [1 :N ] as

Y S
λ (k, n) :=

∑

µs∈S

Y s
λ (k, n), (1)



where eachY s
λ denotes the part ofY S

λ that is attributed to
µs. EachY s

λ consists of a component describing the ampli-
tude or activity over time and a component describing the
spectral envelope of a note event. More precisely, we define

Y s
λ (k, n) := αs(n) · ϕτ,γ(ωk, ps), (2)

whereωk denotes the frequency in Hertz associated with the
k-th frequency bin. Furthermore,αs ∈ R

N
≥0 encodes the ac-

tivity of the s-th note event. Here, we setαs(n) := 0, if the
time position associated with framen lies inR\ [ts, ts+ds].
The spectral envelope associated with a note event is de-
scribed using a functionϕτ,γ : R × [1 : P ] → R≥0, where
[1 :P ] with P =127 denotes the set of MIDI pitches. More
precisely, to describe the frequency and energy distribution
of the firstL partials of a specific note event with MIDI
pitch p ∈ [1 :P ], the functionϕτ,γ depends on a parame-
ter τ ∈ [−0.5, 0.5]P related to the tuning and a parameter
γ ∈ [0, 1]L×P related to the energy distribution over theL
partials. We define for a frequencyω given in Hertz the en-
velope function

ϕτ,γ(ω, p) :=
∑

ℓ∈[1:L]

γℓ,p · κ(ω − ℓ · f(p+ τp)), (3)

where the functionκ : R → R≥0 is a suitably chosen Gaus-
sian centered at zero, which is used to describe the shape of
a partial in frequency direction, see Figure 3. Furthermore,
f : R → R≥0 defined byf(p) := 2(p−69)/12 · 440 maps the
pitch to the frequency scale. To account for non-standard
tunings, we use the parameterτp to shift the fundamental
frequency upwards or downwards by up to half a semitone.
Finally, λ := (α, τ, γ) denotes the set of free parameters
with α := {αs | s ∈ [1 : S]}. The number of free param-
eters is kept low since the parametersτ andγ only depend
on the pitch but not on the individual note events given by
S. Here, a low number allows for an efficient parameter es-
timation process as described below. Furthermore, sharing
the parameters across the note events prevents model over-
fitting.

Now, finding a meaningful parameterization ofY can be
formulated as the following optimization task:

λ∗ = argmin
λ

‖Y − Y S
λ ‖F , (4)

where‖·‖F denotes the Frobenius norm. In the following,
we illustrate the individual steps in our parameter estima-
tion procedure in Figure 2, where a given audio spectrogram
(Figure 2a) is approximated by our model (Figure 2b-2e).

2.2 Initialization and Adaption of Note Timing
Parameters

To initialize our model, we exploit the available MIDI in-
formation represented byS. For thes-th note eventµs =
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Figure 3. Illustration of the spectral envelope functionϕτ,γ(ω, p)
for p = 60 (middle C),τ = 0 and some example values for pa-
rametersγ.

(ps, ts, ds), we setαs(n) := 1 if the time position associ-
ated with framen lies in [ts, ts + ds] andαs(n) := 0 other-
wise. Furthermore, we setτp := 0, γ1,p := 1 andγℓ,p := 0
for p ∈ [1 : P ], ℓ ∈ [2 : L]. An example model spectrogram
Y S
λ after the initialization is given in Figure 2b.

Next, we need to adapt and refine the model parameters
to approximate the given audio spectrogram as accurately
as possible. This parameter adaption is simplified when the
MIDI file is assumed to be perfectly aligned to the audio
recording as in [9]. However, in most practical scenarios
such a MIDI file is not available. Therefore, in our ap-
proach, we employ a high resolution music synchronization
approach as described in [3] to adapt the onset positions
of the note events setS. Based on Dynamic Time Warp-
ing (DTW) and chroma features, the approach also incor-
porates onset-based features to yield a high alignment accu-
racy. Using the resulting alignment, we determine for each
note event the corresponding position in the audio record-
ing and update the onset positions and durations inS ac-
cordingly. After the synchronization, the note event setS
remains unchanged during all further parameter estimation
steps. Figure 2c shows an example model spectrogram after
the synchronization step.

2.3 Estimation of Model Parameters

To estimate the parameters inλ, we look for (α, τ, γ) that
minimize the functiond(α, τ, γ) := ‖Y − Y S

(α,τ,γ)‖F , thus
minimizing the distance between the audio and the model
spectrogram. Additionally, we need to consider range con-
straints for the parameters. For example,τ is required to be
an element of[−0.5, 0.5]P . To approximatively solve this
constraint optimization problem, we employ a slightly mod-
ified version of approach exerted in [2]. In summary, this
method works iteratively by fixing two parameters and by
minimizingd with regard to the third one using a trust region
based interior-points approach. For example, to get a better
estimate forα, we fix τ andγ and minimized(·, τ, γ). This
process is repeated until convergence similar to the well-
known expectation-maximization algorithm. Figures 2d and
2e illustrate the first iteration of our parameter estimation.
Here, Figure 2d shows the model spectrogramY S

λ after the
estimation of the tuning parameterτ and the activity param-
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Figure 4. Illustration of our voice separation process continuing the example shownin Figure 1. (a) Model spectrogramY S

λ after the
parameter estimation.(b) Derived model spectrogramsY L

λ andY R

λ corresponding to the notes of the left and the right hand.(c) Separation
masksML andMR. (d) Estimated magnitude spectrogramsŶ L andŶ R. (e)Reconstructed audio signalsx̂L andx̂R.

eterα. Figure 2e showsY S
λ after the estimation of the par-

tials’ energy distribution parameterγ.

3. VOICE SEPARATION

After the parameter estimation,Y S
λ yields a note-wise para-

metric approximation ofY . In a next step, we employ infor-
mation derived from the model to decompose the original
audio spectrogram into separate channels or voices. To this
end, we exploit thatY S

λ is a compound of note-event spec-
trogramsY s

λ . With T ⊂ S, we defineY T
λ as

Y T
λ (k, n) :=

∑

µs∈T

Y s
λ (k, n). (5)

ThenY T
λ approximates the part ofY that can be attributed

to the note events inT . One way to yield an audible separa-
tion result could be to apply a spectrogram inversion directly
to Y T

λ . However, to yield an overall robust approximation
result our model does not attempt to capture every possi-
ble spectral nuance inY . Therefore, an audio recording
deduced directly fromY T

λ would miss these nuances and
would consequently sound rather unnatural. Instead, we re-
vert to the original spectrogram again and useY T

λ only to
extract suitable parts ofY . To this end, we derive asepa-
ration mask MT ∈ [0, 1]K×N from the model which en-
codes how strongly each entry inY should be attributed to
T . More precisely, we define

MT :=
Y T
λ

Y S
λ + ε

, (6)

where the division is understood entrywise. The small con-
stantε > 0 is used to avoid a potential division by zero.
Furthermore,ε prevents that relatively small values inY T

λ

lead to large masking values, which would not be justified
by the model. For our experiments, we setε = 10−2.

For the separation, we applyMT to a magnitude spec-
trogram via

Ŷ T := MT ◦ Y, (7)

where◦ denotes entrywise multiplication (Hadamard prod-
uct). The resultinĝY T is referred to asestimated magnitude
spectrogram. Here, using a mask for the separation allows
for preserving most spectral nuances of the original audio.
In a final step, we apply a spectrogram inversion to yield an
audible separation result. Here, a commonly used approach
is to combineŶ T with the phase information of the origi-
nal spectrogramX in a first step. Then, an inverse FFT in
combination with an overlap-add technique is applied to the
resulting spectrogram [7]. However, this usually leads to
clicking and ringing artifacts in the resulting audio record-
ing. Therefore, we apply a spectrogram inversion approach
originally proposed by Griffin and Lim in [5]. The method
attenuates the inversion artifacts by iteratively modifying the
original phase information. The resultingx̂T constitutes our
final separation result referred to asreconstructed audio sig-
nal (relative to T ).

Next, we transfer these techniques to our left/right hand
scenario. Each step of the full separation process is illus-
trated by Figure 4. Firstly, we assume that the score is
partitioned intoS = L ∪̇R, whereL corresponds to the
note events of the left hand andR to the note events of the
right hand. Starting with the model spectrogramY S

λ (Fig-
ure 4a) we derive the model spectrogramsY L

λ andY R
λ using

Eqn. (5) (Figure 4b) and then the two masksML andMR

using Eqn. (6) (Figure 4c). Applying the two masks to the
original audio spectrogramY , we obtain the estimated mag-
nitude spectrogramŝY L and Ŷ R (Figure 4d). Finally, ap-
plying the Griffin-Lim based spectrogram inversion yields
the reconstructed audio signalsx̂L andx̂R (Figure 4e).

4. EXPERIMENTS

In this section, we report on systematically conducted ex-
periments to illustrate the potential of our method. To this
end, we created a database consisting of seven representa-
tive pieces from the Western classical music repertoire, see
Table 1. Using only freely available audio and score data al-



Composer Piece MIDI Audio 1 Audio 2 Identifier
Bach BWV875-01 MUT Synthetic SMD ‘Bach875’
Beethoven Op031No2-01 MUT Synthetic SMD ‘Beet31No2’
Beethoven Op111-01 MUT Synthetic EA ‘BeetOp111’
Chopin Op028-01 MUT Synthetic SMD ‘Chop28-01’
Chopin Op028-04 MUT Synthetic SMD ‘Chop28-04’
Chopin Op028-15 MUT Synthetic SMD ‘Chop28-15’
Chopin Op064No1 MUT Synthetic EA ‘Chop64No1’
Chopin Op066 MUT Synthetic SMD ‘Chop66’

Table 1. Pieces and audio recordings (with identifier) used in our
experiments.

lows for a straightforward replication of our experiments.
Here, we used uninterpreted score-like MIDI files from
the Mutopia Project1 (MUT), high-quality audio recordings
from the Saarland Music Database2 (SMD) as well as dig-
itized versions of historical gramophone and vinyl record-
ings from the European Archive3 (EA).

In a first step, we indicate the quality of our approach
quantitatively using synthetic audio data. To this end, we
used the Mutopia MIDI files to create two additional MIDI
files for each piece using only the notes of the left and the
right hand, respectively. Using a wave table synthesizer,
we then generated audio recordings from these MIDI files
which are used as ground truth separation results in the fol-
lowing experiment. We denote the corresponding magni-
tude spectrograms byY L andY R, respectively. For our
evaluation we use a quality measure based on the signal-to-
noise ratio (SNR)4 . More precisely, to compare a reference
magnitude spectrogramYR ∈ R

K×N
≥0 to an approximation

YA ∈ R
K×N
≥0 we define

SNR(YR, YA) := 10 · log10

∑
k,n YR(k, n)

2

∑
k,n (YR(k, n)− YA(k, n))2

.

The second and third column of Table 2 show SNR val-
ues for all pieces, where the ground truth is compared to
the estimated spectrogram for the left and the right hand.
For example, the left hand SNR for ‘Chop28-15’ is17.79
whereas the right hand SNR is13.35. The reason the SNR
being higher for the left hand than for the right hand is that
the left hand is already dominating the mixture in terms of
overall loudness. Therefore, the left hand segregation is per
se easier compared the the right hand segregation. To indi-
cate which hand is dominating in a recording, we addition-
ally give SNR values comparing the ground truth magnitude
spectrogramsY L andY R to the mixture magnitude spectro-
gramY , see column six and seven of Table 2. For example
for ‘Chop28-15’,SNR(Y L, Y )=3.48 is much higher com-
pared toSNR(Y R, Y )=−2.47 thus revealing the left hand
dominance.

1 http://www.mutopiaproject.org
2 http://www.mpi-inf.mpg.de/resources/SMD/
3 http://www.europarchive.org
4 Even though SNR values are often not perceptually meaningful, they

at least give some tendencies on the quality of separation results.

Identifier SNR SNR SNR SNR SNR SNR
(Y L,Ŷ L) (Y R,Ŷ R) (Y L,Ŷ L) (Y R,Ŷ R) (Y L,Y ) (Y R,Y )

prealigned distorted
Bach875 11.24 12.97 11.17 12.89 -1.99 3.03
Beet31No2 12.65 10.38 12.47 10.23 1.24 -0.09
BeetOp111 13.21 12.26 12.92 11.99 0.16 0.97
Chop28-01 10.52 13.96 10.43 13.84 -3.38 4.48
Chop28-04 17.63 10.48 17.58 10.45 8.65 -7.55
Chop28-15 17.79 13.35 17.56 13.18 3.48 -2.47
Chop64No1 12.93 11.86 12.60 11.55 -0.06 1.31
Chop66 11.61 11.17 11.46 11.03 -0.41 2.01
Average 13.45 12.05 13.27 11.90 0.96 0.21

Table 2. Experimental results using ground truth data consisting
of synthesized versions of the pieces in our database.

Using synthetic data, the audio recordings are already
perfectly aligned to the MIDI files. To further evaluate the
influence of the music synchronization step, we randomly
distorted the MIDI files by splitting them into20 segments
of equal length and by stretching or compressing each seg-
ment by a random factor within an allowed distortion range
(in our experiments we used a range of±50%). The results
for these distorted MIDI files are given in column four and
five of Table 2. Here, the left hand SNR for ‘Chop28-15’
decreases only moderately from17.79 (prealigned MIDI)
to 17.56 (distorted MIDI), and from13.35 to 13.18 for the
right hand. Similarly, the average SNR also decreases mod-
erately from13.45 to 13.27 for the left hand and from12.05
to11.90 for the right hand, which indicates that our synchro-
nization works robustly in these cases. The situation in real
world scenarios becomes more difficult, since here the note
events of the given MIDI may not correspond one-to-one to
the played note events of a specific recording. An example
will be discussed in the next paragraph, see also Figure 5.

As mentioned before, signal-to-noise ratios and similar
measures cannot capture the perceptual separation quality.
Therefore, to give a realistic and perceptually meaningful
impression of the separation quality, we additionally pro-
vide a website5 with audible separation results as well as
visualizations illustrating the intermediate steps in ourpro-
cedure. Here, we only used real, non-synthetic audio record-
ings from the SMD and EA databases to illustrate the per-
formance of our approach in real world scenarios. Lis-
tening to these examples does not only allow to quickly
get an intuition of the method’s properties but also to effi-
ciently locate and analyze local artifacts and separation er-
rors. For example, Figure 5 illustrates the separation pro-
cess for ‘BeetOp111’ using an interpretation by Egon Petri
(European Archive). As a historical recording, the spectro-
gram of this recording (Figure 5c) is rather noisy and reveals
some artifacts typical for vinyl recordings such as rumbling
and cranking glitches. Despite these artifacts, our model
approximates the audio spectrogram well (w.r.t. to the eu-
clidean norm) in most areas (Figure 5d). Also the resulting

5 http://www.mpi-inf.mpg.de/resources/MIR/
2011-ISMIR-VoiceSeparation/
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Figure 5. Illustration of the separation process for ‘BeetOp111’.
(a): Score corresponding to the first two measures.(b): MIDI
representation (Mutopia Project).(c): Spectrogram of an interpre-
tation by Petri (European Archive).(d): Model spectrogram after
parameter estimation.(e): Separation maskML. (f): Estimated
magnitude spectrogram̂Y L. The area corresponding to the funda-
mental frequency of the trills in measure one is indicated using a
green rectangle.

separation results are plausible, with one local exception.
Listening to the separation results reveals that the trillsto-
wards the end of the first measure were assigned to the left
instead of the right hand. Investigating the underlying rea-
sons shows that the trills are not correctly reflected by the
given MIDI file (Figure 5b). As a consequence, our score-
informed approach cannot model this spectrogram area cor-
rectly as can be observed in the marked areas in Figures 5c
and 5d. Applying the resulting separation mask (Figure 5e)
to the original spectrogram leads to the trills being misas-
signed to the left hand in the estimated magnitude spectro-
gram as shown in Figure 5f.

5. CONCLUSIONS

In this paper, we presented a novel method for the decompo-
sition of a monaural audio recording into musically mean-

ingful voices. Here, our goal was to extend the idea of an
instrument equalizer to a voice equalizer which does not
rely on statistical properties of the sound sources and which
is able to emphasize or attenuate even single notes played
by the same instrument. Instead of relying on prealigned
MIDI files, our score-informed approach directly addresses
alignment issues using high-resolution music synchroniza-
tion techniques thus allowing for an adoption in real world
scenarios. Initial experiments showed good results using
synthetic as well as real audio recordings. In the future,
we plan to extend our approach with an onset model while
avoiding the drawbacks discussed in [9].
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