Geometric Registration for Deformable Shapes

1.1 Introduction

Overview · Data Sources and Applications · Problem Statement

Overview

Presenters

Will Chang

University of California at San Diego, USA wychang@cs.ucsd.edu

Hao Li ETH Zürich, EPFL Lausanne Switzerland *hao@inf.ethz.ch*

Niloy Mitra KAUST, Saudi Arabia IIT Delhi, India *niloy@cse.iitd.ernet.in*

Mark Pauly EPFL Lausanne Switzerland mark.pauly@epfl.ch

Michael Wand

Saarland University, MPI Informatik, Germany *mwand@mpi-inf.mpg.de*

Tutorial Outline

Overview

Part I: Introduction	(1.25h)
 Part II: Local Registration 	(1.5h)
 Part III: Global Matching 	(1.75h)
• Part IV: Animation Reconstruction	(1.25h)
 Conclusions and Wrap up 	(0.25h)

Part I: Introduction

Introduction (Michael)

- Problem statement and motivation
- Example data sets and applications

Differential geometry and deformation modeling (Mark)

- Differential geometry background
- Brief introduction to deformation modeling

Kinematic 4D surfaces (Niloy)

- Rigid motion in space-time
- Kinematic 4D surfaces

Part II: Local Registration

ICP and of rigid motions (Niloy)

- Rigid ICP, geometric optimization perspective
- Dynamic geometry registration (Intro)

Deformable Registration (Michael)

- A variational model for deformable shape matching
- Variants of deformable ICP

Subspace Deformation, Robust Registration (Hao)

- Subspace deformations / deformation graphs
- Robust local matching

Part III: Global Matching

Features (Will)

• Key point detection and feature descriptors

Isometric Matching and Quadratic Assignment (Michael)

- Extrinsic vs. intrinsic geometry
- Global matching techniques with example algorithms

Advanced Global Matching (Will)

Global registration algorithms

Probabilistic Techniques (Michael)

Ransac and forward search

Articulated Registration (Will)

• Articulated registration with graph cuts

Part IV: Animation Reconstruction

Dynamic Geometry Registration (Niloy)

• Multi-piece alignment

Deformable Reconstruction (Michael)

- Basic numerical algorithm
- Urshape/Deformation Factorization

Improved Algorithm (Hao)

- Efficient implementation
- Detail transfer

Part V: Conclusions and Wrap-up

Conclusions and Wrap-up (Mark)

- Conclusions
- Future work and open problems

In the end:

- Q&A session with all speakers
- But feel free to ask questions at any time

Problem Statement and Motivation

Deformable Shape Matching

What is the problem?

Settings:

- We have two or more shapes
- The same object, but deformed

Data courtesy of C. Stoll, MPI Informatik

Deformable Shape Matching

What is the problem?

Settings:

- We have two or more shapes
- The same object, but deformed

Question:

• What points correspond?

Data courtesy of C. Stoll, MPI Informatik

Applications

Why is this an interesting problem?

Building Block:

 Correspondences are a building block for higher level geometry processing algorithms

Example Applications:

- Scanner data registration
- Animation reconstruction & 3D video
- Statistical shape analysis (shape spaces)

Applications

Why is this an interesting problem?

Building Block:

 Correspondences are a building block for higher level geometry processing algorithms

Example Applications:

- Scanner data registration
- Animation reconstruction & 3D video
- Statistical shape analysis (shape spaces)

Deformable Scan Registration

Scan registration

• Rigid registration is standard

Why deformation?

- Scanner miscalibrations
 - Sometimes unavoidable, esp. for large acquisition volumes
- Scanned Object might be deformable
 - Elastic / plastic objects
- In particular: Scanning people, animals
 - Need multiple scans
 - Impossible to maintain constant pose

Example: Full Body Scanner

Applications

Why is this an interesting problem?

Building Block:

 Correspondences are a building block for higher level geometry processing algorithms

Example Applications:

- Scanner data registration
- Animation reconstruction & 3D video
- Statistical shape analysis (shape spaces)

3D Animation Scanner

New technology

- 3D animation scanners
- Record 3D video
- Active research area

Ultimate goal

- 3D movie making
- New creative perspectives

Photo: P. Jenke, WSI/GRIS Tübingen

Structured Light Scanners

space-time stereo

courtesy of James Davis, UC Santa Cruz

color-coded structured light

courtesy of Phil Fong, Stanford University

motion compensated structured light

courtesy of Sören König, TU Dresden

Passive Multi-Camera Acquisition

segmentation & belief propagation

[Zitnick et al. 2004] Microsoft Research photo-consistent space carving

Christian Theobald MPI-Informatik

Time-of-Flight / PMD Devices

PMD Time-of-flight camera

Minolta Laser Scanner (static)

Animation Reconstruction

Problems

- Noisy data
- Incomplete data (acquisition holes)
- No correspondences

missing correspondences

Animation Reconstruction

Applications

Why is this an interesting problem?

Building Block:

 Correspondences are a building block for higher level geometry processing algorithms

Example Applications:

- Scanner data registration
- Animation reconstruction & 3D video

• Statistical shape analysis (shape spaces)

Statistical Shape Spaces

Courtesy of N. Hassler, MPI Informatik

Morphable Shape Models

- Scan a large number of individuals
 - Different pose
 - Different people
- Compute correspondences
- Build shape statistics (PCA, non-linear embedding)

Statistical Shape Spaces

Numerous Applications:

- Fitting to ambiguous data (prior knowledge)
- Constraint-based editing
- Recognition, classification, regression

Building such models requires correspondences

Courtesy of N. Hassler, MPI Informatik

Courtesy of N. Hassler, MPI Informatik

Data Characteristics

Scanner Data – Challenges

"Real world data" is more challenging

• 3D Scanners have artifacts

Rules of thumb:

- The faster the worse (real time vs. static scans)
- Active techniques are more accurate (passive stereo is more difficult than laser triangulation)
- There is more than just "Gaussian noise"...

"Noise"

- "Standard" noise types:
 - Gaussian noise (analog signal processing)
 - Quantization noise
- More problematic: Structured noise
 - Structured noise (spatio-temporally correlated)
 - Structured outliers
 - Reflective / transparent surfaces
- Incomplete Acquisition
 - Missing parts
 - Topological noise

Courtesy of J. Davis, UCSC

Courtesy of P. Phong, Stanford University

- "Standard" noise types:
 - Gaussian noise (analog signal processing)
 - Quantization noise
- More problematic: Structured noise
 - Structured noise (spatio-temporally correlated)
 - Structured outliers
 - Reflective / transparent surfaces
- Incomplete Acquisition
 - Missing parts
 - Topological noise

- "Standard" noise types:
 - Gaussian noise (analog signal processing)
 - Quantization noise
- More problematic
 - Structured noise (spatio-temporally correlated)
 - Structured outliers
 - Reflective / transparent surfaces
- Incomplete Acquisition
 - Missing parts
 - Topological noise

- "Standard" noise types:
 - Gaussian noise (analog signal processing)
 - Quantization noise
- More problematic
 - Structured noise (spatio-temporally correlated)
 - Structured outliers
 - Reflective / transparent surfaces
- Incomplete Acquisition
 - Missing parts
 - Topological noise

- "Standard" noise types:
 - Gaussian noise (analog signal processing)
 - Quantization noise
- More problematic
 - Structured noise (spatio-temporally correlated)
 - Structured outliers
 - Reflective / transparent surfaces
- Incomplete Acquisition
 - Missing parts
 - Topological noise

Outlook

This Tutorial

Different aspects of the problem:

- Shape deformation and matching
 - How to quantify deformation?
 - How to define deformable shape matching?
- Local matching
 - Known initialization
- Global matching
 - No initialization
- Animation Reconstruction
 - Matching temporal sequences of scans

Problem Statement: Pairwise Deformable Matching

Problem Statement

Given:

- Two surfaces $S_1, S_2 \subseteq \mathbb{R}^3$
- Discretization:
 - Point clouds $S = \{s_1, \dots, s_n\}, s_i \in \mathbb{R}^3$ or
 - Triangle meshes

We are looking for:

• A deformation function $f_{1,2}: S_1 \to \mathbb{R}^3$ that brings S_1 close to S_2

Problem Statement

We are looking for:

• A deformation function $f_{1,2}: S_1 \to \mathbb{R}^3$ that brings S_1 close to S_2

Open Questions:

- What does "close" mean?
- What properties should *f* have?

Next part:

• We will now look at these questions more in detail

