Geometric Registration for Deformable Shapes

2.1 ICP + Tangent Space optimization for Rigid Motions

31st Annual Conference of the European Association for Computer Graphics

euro <mark>graphics 2010</mark>

Registration Problem

Given

Two point cloud data sets **P** (model) and **Q** (data) sampled from surfaces $\Phi_{\mathbf{P}}$ and $\Phi_{\mathbf{Q}}$ respectively.

Assume
$$\Phi_{\mathbf{Q}}$$
 is a part of $\Phi_{\mathbf{P}}$.

Registration Problem

Given

Two point cloud data sets **P** and **Q**.

Goal

Register **Q** against **P** by minimizing the squared distance between the underlying surfaces using only *rigid transforms*.

Notations

Registration with known Correspondence

 $\{p_i\}$ and $\{q_i\}$ such that $p_i \rightarrow q_i$

Registration with known Correspondence

$$\{p_i\}$$
 and $\{q_i\}$ such that $p_i \rightarrow q_i$

$$p_i \rightarrow Rp_i + t \implies \min_{R,t} \sum_i ||Rp_i + t - q_i||^2$$

R obtained using SVD of covariance matrix.

Registration with known Correspondence

$$\{p_i\}$$
 and $\{q_i\}$ such that $p_i \rightarrow q_i$

$$p_i \rightarrow Rp_i + t \implies \min_{R,t} \sum_i ||Rp_i + t - q_i||^2$$

R obtained using SVD of covariance matrix.

$$t = \overline{\mathbf{q}} - R\overline{p}$$

ICP (Iterated Closest Point)

Iterative minimization algorithms (ICP)

[Besl 92, Chen 92]

1. Build a set of corresponding points

2. Align corresponding points

3. Iterate

Properties

- Dense correspondence sets
- Converges if starting positions are "close"

No (explicit) Correspondence

Squared Distance Function (F)

Eurographics 2010 Course – Geometric Registration for Deformable Shapes

Squared Distance Function (F)

Registration Problem

Rigid transform α that takes points $q_i \rightarrow \alpha(q_i)$

Our goal is to solve for,

$$\min_{\alpha} \sum_{q_i \in Q} F(\alpha(q_i), \Phi_P)$$

An optimization problem in the squared distance field of **P**, the model PCD.

Registration Problem

 α = rotation (*R*) + translation(*t*)

Our goal is to solve for,

$$\min_{R,t} \sum_{q_i \in Q} F(Rq_i + t, \Phi_P)$$

Optimize for **R** and **t**.

Registration in 2D

• Minimize residual error $\mathcal{E}(\theta, t_x, t_y)$

Approximate Squared Distance

For a curve Ψ ,

$$\mathbf{F}(\mathbf{x}, \Psi) = \frac{d}{d \cdot \rho_1} \mathbf{x}_1^2 + \mathbf{x}_2^2 = \delta_1 \mathbf{x}_1^2 + \mathbf{x}_2^2$$

[Pottmann and Hofer 2003]

ICP in Our Framework

• Point-to-point ICP (good for large d)

$$\mathsf{F}(\mathbf{X}, \Phi_{\mathsf{P}}) = (\mathbf{X} - \mathbf{p})^2 \quad \Rightarrow \quad \delta_{\mathsf{j}} = 1$$

• Point-to-plane ICP (good for small d)

$$\mathbf{F}(\mathbf{X}, \Phi_{\mathbf{P}}) = (\vec{\mathbf{n}} \cdot (\mathbf{X} - \mathbf{p}))^2 \quad \Rightarrow \quad \delta_{\mathbf{j}} = 0$$

Example d2trees

2D

Convergence Funnel

Translation in x-z plane. Rotation about y-axis.

Does not converge

Convergence Funnel

Eurographics 2010 Course – Geometric Registration for Deformable Shapes

Descriptors

$$P = \{p_i\}$$

 \bullet closest point \rightarrow based on Euclidean distance

Descriptors

$$P = \{p_i\}$$

 \bullet closest point \rightarrow based on Euclidean distance

$$P = \{p_i, a_i, b_i, \dots\}$$

 closest point → based on Euclidean distance between point + descriptors (attributes)

(Invariant) Descriptors

$$P = \{p_i\}$$

 \bullet closest point \rightarrow based on Euclidean distance

$$P = \{p_i, a_i, b_i, \dots\}$$

 closest point → based on Euclidean distance between point + descriptors (attributes)

Integral Volume Descriptor

Relation to mean curvature

$$V_r(\mathbf{p}) = \frac{2\pi}{3}r^3 - \frac{\pi H}{4}r^4 + O(r^5)$$

When Objects are Poorly Aligned

• Use descriptors for global registrations

global alignment \rightarrow refinement with local (e.g., ICP)

