Geometric Registration for Deformable Shapes

2.1 ICP + Tangent Space optimization for Rigid Motions

Registration Problem

Given

Two point cloud data sets \mathbf{P} (model) and \mathbf{Q} (data) sampled from surfaces Φ_{P} and Φ_{Q} respectively.

Assume Φ_{Q} is a part of Φ_{p}.

Registration Problem

Given

Two point cloud data sets \mathbf{P} and \mathbf{Q}.

Goal

Register \mathbf{Q} against \mathbf{P} by minimizing the squared distance between the underlying surfaces using only rigid transforms.

Notations

Registration with known Correspondence

$\left\{p_{i}\right\}$ and $\left\{q_{i}\right\}$ such that $p_{i} \rightarrow q_{i}$

Registration with known Correspondence

$\left\{p_{i}\right\}$ and $\left\{q_{i}\right\}$ such that $p_{i} \rightarrow q_{i}$

$$
p_{i} \rightarrow R p_{i}+t \Rightarrow \min _{R, t} \sum_{\mathrm{i}}\left\|R p_{i}+t-q_{i}\right\|^{2}
$$

R obtained using SVD of covariance matrix.

Registration with known Correspondence

$\left\{p_{i}\right\}$ and $\left\{q_{i}\right\}$ such that $p_{i} \rightarrow q_{i}$

$$
p_{i} \rightarrow R p_{i}+t \Rightarrow \min _{R, t} \sum_{\mathrm{i}}\left\|R p_{i}+t-q_{i}\right\|^{2}
$$

R obtained using SVD of covariance matrix.

$$
t=\overline{\mathrm{q}}-R \bar{p}
$$

ICP (Iterated Closest Point)

Iterative minimization algorithms (ICP)

1. Build a set of corresponding points

2. Align corresponding points

3. Iterate

Properties

- Dense correspondence sets
- Converges if starting positions are "close"

No (explicit) Correspondence

Squared Distance Function (F)

Squared Distance Function (F)

$$
F\left(x, \Phi_{P}\right)=d^{2}
$$

Registration Problem

Rigid transform α that takes points $q_{i} \rightarrow \alpha\left(q_{i}\right)$

Our goal is to solve for,

$$
\min _{\alpha} \sum_{q_{i} \in Q} F\left(\alpha\left(q_{i}\right), \Phi_{P}\right)
$$

An optimization problem in the squared distance field of \mathbf{P}, the model PCD.

Registration Problem

$\alpha=\operatorname{rotation}(R)+\operatorname{translation}(t)$

Our goal is to solve for,

$$
\min _{R, t} \sum_{q_{i} \in Q} F\left(R q_{i}+t, \Phi_{P}\right)
$$

Optimize for \mathbf{R} and \mathbf{t}.

Registration in 2D

- Minimize residual error

$$
\varepsilon\left(\theta, \mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}\right)
$$

Approximate Squared Distance

For a curve Ψ,

$$
\mathbf{F}(\mathbf{x}, \Psi)=\frac{d}{d-\rho_{1}} \mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}=\delta_{1} \mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}
$$

[Pottmann and Hofer 2003]

ICP in Our Framework

- Point-to-point ICP (good for large d)

$$
\mathrm{F}\left(\mathbf{x}, \Phi_{\mathbf{p}}\right)=(\mathbf{x}-\mathbf{p})^{2} \Rightarrow \delta_{\mathrm{j}}=1
$$

- Point-to-plane ICP (good for small d)

$$
\mathrm{F}\left(\mathbf{x}, \Phi_{\mathbf{p}}\right)=(\overrightarrow{\mathrm{n}} \cdot(\mathbf{x}-\mathbf{p}))^{2} \Rightarrow \delta_{\mathrm{j}}=0
$$

Example d2trees

2D
3D

Convergence Funnel

Translation in x-z plane. Rotation about y-axis.

Convergence Funnel

Descriptors

$$
P=\left\{p_{i}\right\}
$$

- closest point \rightarrow based on Euclidean distance

Descriptors

$$
P=\left\{p_{i}\right\}
$$

- closest point \rightarrow based on Euclidean distance

$$
P=\left\{p_{i}, a_{i}, b_{i}, \ldots\right\}
$$

- closest point \rightarrow based on Euclidean distance between point + descriptors (attributes)

(Invariant) Descriptors

$$
P=\left\{p_{i}\right\}
$$

- closest point \rightarrow based on Euclidean distance

$$
P=\left\{p_{i}, a_{i}, b_{i}, \ldots\right\}
$$

- closest point \rightarrow based on Euclidean distance between point + descriptors (attributes)

Integral Volume Descriptor

$$
V_{r}(p)=\int_{B_{r}(p) \cap S} d x
$$

Relation to mean curvature

$$
V_{r}(\mathbf{p})=\frac{2 \pi}{3} r^{3}-\frac{\pi H}{4} r^{4}+O\left(r^{5}\right)
$$

When Objects are Poorly Aligned

- Use descriptors for global registrations
global alignment \rightarrow refinement with local (e.g., ICP)

