Geometric Registration for Deformable Shapes

2.2 Deformable Registration

Variational Model · Deformable ICP

31st Annual Conference of the European Association for Computer Graphics Build Discrete Science 2010

Variational Model

What is deformable shape matching?

Example

What are the Correspondences?

What are we looking for?

Problem Statement:

Given:

• Two surfaces $S_1, S_2 \subseteq \mathbb{R}^3$

We are looking for:

• A *reasonable* deformation function $f: S_1 \rightarrow \mathbb{R}^3$ that brings S_1 close to S_2

Example

This is a Trade-Off

Deformable Shape Matching is a Trade-Off:

• We can match any two shapes using a weird deformation field

- We need to trade-off:
 - Shape matching (close to data)
 - Regularity of the deformation field (reasonable match)

Variational Model

Deformation / rigidity:

Variational Model

Variational Problem:

• Formulate as an energy minimization problem:

Assume:

- Objective Function: $E^{(match)}(f) = dist(f_{1,2}(S_1), S_2)$
- Example: least squares distance

$$E^{(match)}(f) = \int_{x_1 \in S_1} dist(\mathbf{x}_1, S_2)^2 d\mathbf{x}_1$$

- Other distance measures: Hausdorf distance, L_p-distances, etc.
- L₂ measure is frequently used (models Gaussian noise)

Part 1: Shape Matching

Point Cloud Matching

Implementation example: Scan matching

- Given: S₁, S₂ as point clouds
 - $S_1 = \{\mathbf{s}_1^{(1)}, ..., \mathbf{s}_n^{(1)}\}$
 - $S_2 = {\mathbf{s}_1^{(2)}, ..., \mathbf{s}_m^{(2)}}$
- Energy function:

$$E^{(match)}(f) = \frac{|S_1|}{m} \sum_{i=1}^m dist(S_1, \mathbf{s}_i^{(2)})^2$$

- How to measure $dist(S_1, \mathbf{x})$?
 - Estimate distance to a point sampled surface

Surface approximation

Solution #1: Closest point matching

"Point-to-point" energy

$$E^{(match)}(f) = \frac{|S_1|}{m} \sum_{i=1}^m dist(s_i^{(2)}, NN_{inS_1}(s_i^{(2)}))^2$$

Surface approximation

Solution #2: Linear approximation

- "Point-to-plane" energy
- Fit plane to *k*-nearest neighbors
- k proportional to noise level, typically $k \approx 6...20$

Surface approximation

Solution #3: Higher order approximation

- Higher order fitting (e.g. quadratic)
 - Moving least squares

Variational Model

Variational Problem:

• Formulate as an energy minimization problem:

Part II: Deformation Model

What is a "nice" deformation field?

- Isometric "elastic" energies
 - Extrinsic ("volumetric deformation")
 - Intrinsic ("as-isometric-as possible embedding")
- Thin shell model
 - Preserves shape (metric *plus curvature*)
- Thin-plate splines
 - Allowing strong deformations, but keep shape

Elastic Volume Model

Extrinsic Volumetric "As-Rigid-As Possible"

- Embed source surface S₁ in volume
- *f* should preserve 3×3 metric tensor (least squares)

Volume Model

Variant: Thin-Plate-Splines

• Use regularizer that penalizes curved deformation

 $E^{(regularizer)}(f) = \int_{V_1}^{U_1} H_f(x)^2 dx$ second derivative ($\mathbb{R}^{3\times 3}$)

How does the deformation look like?

Eurographics 2010 Course – Geometric Registration for Deformable Shapes

Isometric Regularizer

Intrinsic Matching (2-Manifold)

- Target shape is given and *complete*
- Isometric embedding

$$E^{(regularizer)}(f) = \int_{S_1} \left[\nabla f \nabla f^{\mathrm{T}} - \mathbf{I} \right]^2 dx$$

first fund. form (S₁, intrinsic)
$$\int_{S_1} \int_{S_2} \int_{S_2} \int_{S_2} \int_{S_2} \int_{S_2} \int_{S_2} \int_{S_2} \int_{S_1} \int_{S_1} \int_{S_2} \int_{S_2}$$

Elastic "Thin Shell" Regularizer

"Thin Shell" Energy

- Differential geometry point of view
 - Preserve first fundamental form I
 - Preserve second fundamental form II
 - ...in a least least squares sense
- Complicated to implement
- Usually approximated
 - Volumetric shells (as shown before)
 - Other approximation (next slide)

S ₁	I f
S ₂	

Example Implementation

Example: approximate thin shell model

- Keep locally rigid
 - Will preserve metric & curvature implicitly
- Idea
 - Associate local *rigid* transformation with surface points
 - Keep as similar as possible
 - Optimize simultaneously with deformed surface
- Transformation is *implicitly defined* by deformed surface (*and vice versa*)

Parameterization

Parameterization of S₁

- Surfel graph
- This could be a mesh, but does not need to

Deformation

Orthonormal Matrix A_i

per surfel (neighborhood), latent variable

Deformation

Unconstrained Optimization

Orthonormal matrices

• Local, 1st order, non-degenerate parametrization:

$$\mathbf{C}_{\mathbf{x}_{i}^{(t)}} = \begin{pmatrix} 0 & \alpha & \beta \\ -\alpha & 0 & \gamma \\ -\beta & -\gamma & 0 \end{pmatrix} \qquad \mathbf{A}_{i} = \mathbf{A}_{0} \exp(\mathbf{C}_{\mathbf{x}_{i}}) \\ \doteq \mathbf{A}_{0} (I + \mathbf{C}_{\mathbf{x}_{i}}^{(t)})$$

- Optimize parameters α , β , γ , then recompute A_0
- Compute initial estimate using [Horn 87]

Variational Model

Variational Problem:

• Formulate as an energy minimization problem:

Deformable ICP

Deformable ICP

How to build a deformable ICP algorithm

- Pick a surface distance measure
- Pick an deformation model / regularizer

Deformable ICP

How to build a deformable ICP algorithm

- Pick a surface distance measure
- Pick an deformation model / regularizer
- Initialize f(S₁) with S₁ (i.e., f = id)
- Pick a non-linear optimization algorithm
 - Gradient decent (easy, but bad performance)
 - Preconditioned conjugate gradients (better)
 - Newton or Gauss Newton (recommended, but more work)
 - Always use analytical derivatives!
- Run optimization

Example

Example

- Elastic model
- Local rigid coordinate frames
- Align $A \rightarrow B$, $B \rightarrow A$

