Geometric Registration for Deformable Shapes

3.4 Probabilistic Techniques

RANSAC · Forward Search · Efficiency Guarantees

31st Annual Conference of the European Association for Computer Graphics Burphics 2010

Ransac and Forward Search The Basic Idea

Random Sampling Algorithms

Estimation subject to outliers:

- We have candidate correspondences
- But most of them are bad
- Standard vision problem
- Standard tools: Ransac & forward search

RANSAC

"Standard" RANSAC line fitting example:

- Randomly pick two points
- Verify how many others fit
- Repeat many times and pick the best one (most matches)

Forward Search

Forward Search:

- Ransac variant
- Like ransac,

but refine model by "growing"

- Pick best match, then recalculate
- Repeat until threshold is reached

Ransac-Based Correspondence Estimation

RANSAC/FWS Algorithm

Idea

- Starting correspondence
- Add more that are consistent
 - Preserve intrinsic distances
- Importance sampling algorithm

Advantages

- Efficient (small initial set)
- General (arbitrary criteria)

Ransac/FWS Details

Algorithm: Simple Idea

. . .

- Select correspondences with probability proportional to their plausibility
- First correspondence: Descriptors
- Second: Preserve distance (distribution peaks)
- Third: Preserve distance (even fewer choices)
- Rapidly becomes deterministic
- Repeat multiple times (typ.: 100x)
 - Choose the largest solution (larges #correspondences)

Ransac/FWS Details

Provably Efficient:

- Theoretically efficient (details later)
- Faster in practice (using descriptors)

Flexible:

- In later iterations (> 3 correspondences), allow for outlier geodesics
- Can handle topological noise

Forward Search

- Add correspondences incrementally
- Compute match probabilities given the information already decided on
- Iterate until no more matches can found that meet a certain error threshold
- Outer Loop:
 - Iterate the algorithm with random choices
 - Pick the best (i.e., largest) solution

Descriptor matching scores

Step 1:

- Start with one correspondence
 - Target side importance sampling: prefer good descriptor matches
 - Optional source side imp. sampl: prefer unique descriptors

Step 2:

- Compute "posterior" incorporating geodesic distance
 - Target side importance sampling: sample according to descriptor match × distance score
 - Again: optional source side imp. sampl: prefer unique descriptors

Step 2:

- Compute "posterior" incorporating geodesic distance
 - Target side importance sampling: sample according to descriptor match × distance score
 - Again: optional source side imp. sampl: prefer unique descriptors

Step 3:

• Same as step 2, continue sampling...

Step 3:

• Same as step 2, continue sampling...

Another View

Landmark Coordinates

 Distance to already established points give a charting of the manifold

Results

[data sets: Stanford 3D Scanning Repository / Carsten Stoll]

Results: Topological Noise

Spectral Quadratic Assignment [Leordeanu et al. 05] Ransac Algorithm [Tevs et al. 09]

Complexity

How expensive is all of this?

Cost analysis:

• How many rounds of sampling are necessary?

Constraints [Lipman et al. 2009]:

- Assume disc or sphere topology
- An isometric mapping is in particular a conformal mapping
- A conformal mapping is determined by 3 point-to-point correspondences

How expensive is it..?

First correspondence:

- Worst case: *n* trials (*n* feature points)
- In practice: k ≪ n good descriptor matches (typically k ≈ 5-20)

Second correspondence:

- Worst case: *n* trials, expected: \sqrt{n} trials
- In practice: very few (due to descriptor matching, maybe 1-3)

Last match:

• At most two matches

Costs...

Overall costs:

- Worst case: O(n²) matches to explore
- Typical: O(n^{1.5}) matches to explore

Randomization:

- Exploring *m* items costs expected O(*m* log *m*) trials
- Worst case bound of O(n² log n) trials
- Asymptotically sharp: O(c)-times more trials for shrinking failure probability to O(exp(-c²))

Costs...

Surface discretization:

- Assume *E*-sampling of the manifold (no features):
 O(*E*⁻²) sample points
- Worst case O(*E*⁻⁴ log *E*⁻¹) sample correspondences for finding a match with accuracy *E*.
- Expected: $O(\mathcal{E}^{-3} \log \mathcal{E}^{-1})$.

In practice:

- Importance sampling by descriptors is very effective
- Typically: Good results after 100 iterations

General Case

Numerical errors:

 Noise surfaces, imprecise features: reflected in probability maps (we know how little we might know)

Topological noise:

- Use robust constraint potentials
- For example: account for 5 best matches only

Topologically complex cases:

- No analysis beyond disc/spherical topology
- However: the algorithm will work in the general case (potentially, at additional costs)