Geometric Registration for Deformable Shapes

4.2 Animation Reconstruction

Basic Algorithm · Efficiency: Urshape Factorization

33st Annual Conference of the European Association for Computer Graphics Build philos 2010

Overview & Problem Statement

Overview

Two Parallel Topics

- Basic algorithms
- Two systems as a case study

Animation Reconstruction

- Problem Statement
- Basic algorithm (original system)
 - Variational surface reconstruction
 - Adding dynamics
 - Iterative Assembly
 - Results
- Improved algorithm (revised system)

Real-time Scanners

space-time stereo

courtesy of James Davis, UC Santa Cruz

color-coded structured light

courtesy of Phil Fong, Stanford University

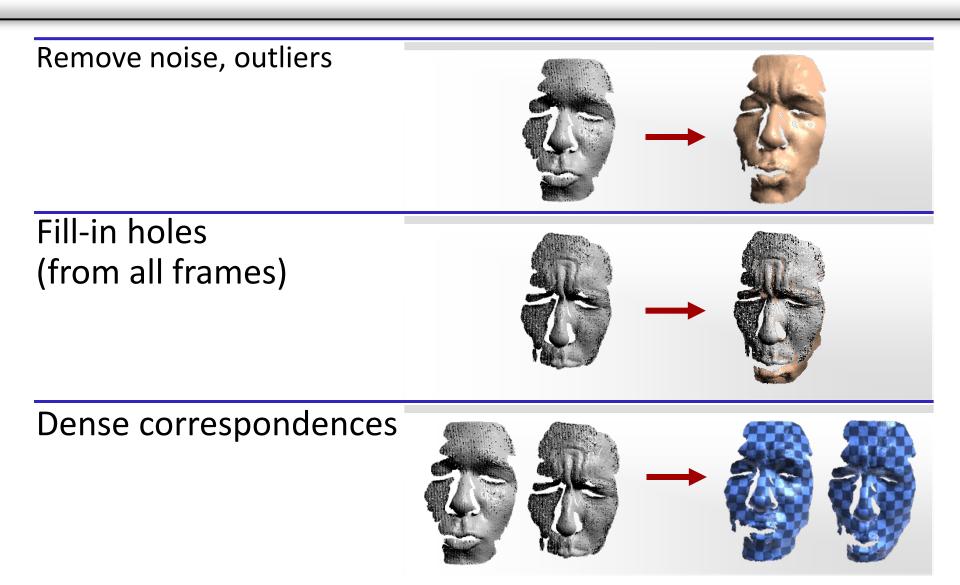
motion compensated structured light

courtesy of Sören König, TU Dresden

Problems

- Noisy data
- Incomplete data (acquisition holes)
- No correspondences

missing correspondences



Surface Reconstruction

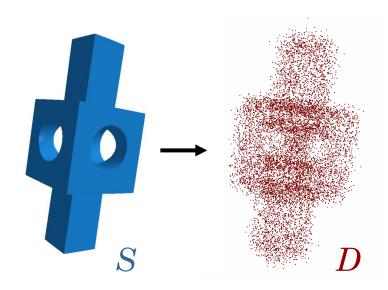
Variational Approach

Variational Approach:

- S original model
 D measurement data
- Variational approach:

$$E(S \mid D) \sim E(D \mid S) + E(S)$$

measurement prior



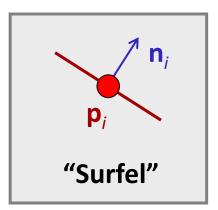
3D Reconstruction

Data fitting
 $E(D \mid S) \sim \Sigma_i \operatorname{dist}(S, d_i)^2$ Image: Constraint of the second secon

Implementation...

Implementation: Point-based model

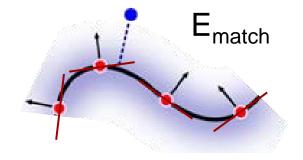
- Our model is a set of points
- "Surfels": Every point has a latent surface normal
- We want to estimate position and normals



Data Term – E(D|S)

Data fitting term:

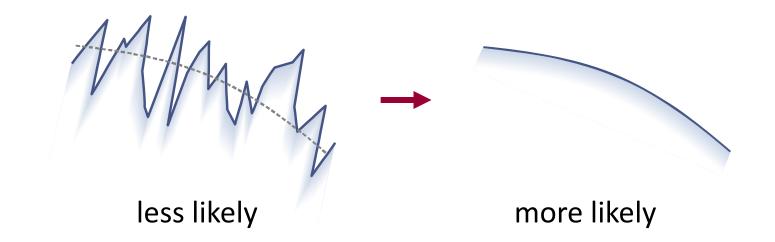
- Surface should be close to data
- Truncated squared distance function



$$E_{match}(D, S) = \sum_{datapts} trunc_{\delta}(dist(S, \mathbf{d}_i)^2)$$

- Sum of distances² of data points to surfel planes
- Point-to-plane: No exact 1:1 match necessary
- Truncation (M-estimator): Robustness to outliers

Priors – P(S)



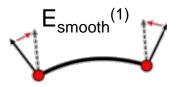
Canonical assumption: smooth surfaces

• Correlations between neighboring points

Point-based Model

Simple Smoothness Priors:

• Similar surfel normals: $E_{smooth}^{(1)}(S) = \sum_{surfels} \sum_{neighbors} (n_i - n_{i_j})^2, ||n_i|| = 1$



• Surfel positions – flat surface:

 $E_{smooth}^{(2)}(S) = \sum_{surfels} \sum_{neighbors} \left\langle \mathbf{s}_i - \mathbf{s}_{ij}, \mathbf{n}(\mathbf{s}_i) \right\rangle^2$

E_{smooth}⁽²⁾

• Uniform density:

$$E_{Laplace}(S) = \sum_{surfels} \sum_{neighbors} \left(\mathbf{s}_i - average \right)^2$$



[c.f. Szeliski et al. 93]

Nasty Normals

Optimizing Normals

- Problem: $E_{smooth}^{(1)}(S) = \sum_{surfels \ neighbors} \sum_{neighbors} (n_i n_{i_j})^2, \ s.t. ||n_i|| = 1$
- Need unit normals: constraint optimization
- Unconstraint: trivial solution (all zeros)

Nasty Normals

Solution: Local Parameterization

- Current normal estimate
- Tangent parameterization
- New variables *u*, *v*
- Renormalize
- Non-linear optimization
- No degeneracies

tangent _v
n ₀ n(u,v)
$n(u, v) = n_0 + u \cdot tangent_u$
$+ v \cdot tangent_v$

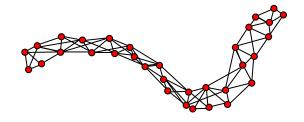
Neighborhoods?

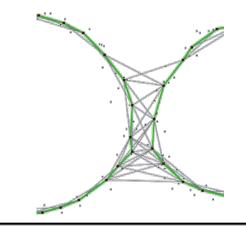
Topology estimation

- Domain of *S*, base shape (topology)
- Here, we assume this is easy to get
- In the following
 - k-nearest neighborhood graph
 - Typically: k = 6..20

Limitations

- This requires dense enough sampling
- Does not work for undersampled data





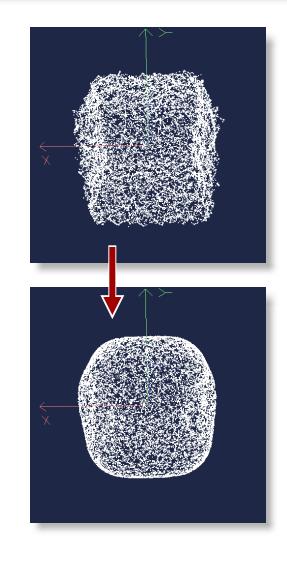
Numerical Optimization

Task:

- Compute most likely "original scene" S
- Nonlinear optimization problem

Solution:

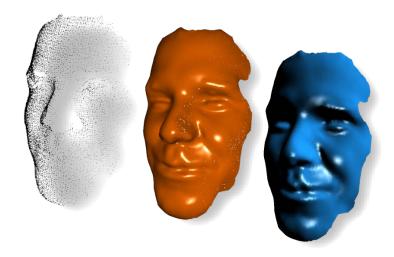
- Create initial guess for S
 - Close to measured data
 - Use original data
- Find local optimum
 - (Conjugate) gradient descent
 - (Gauss-) Newton descent

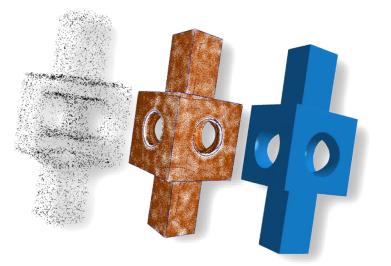


3D Examples

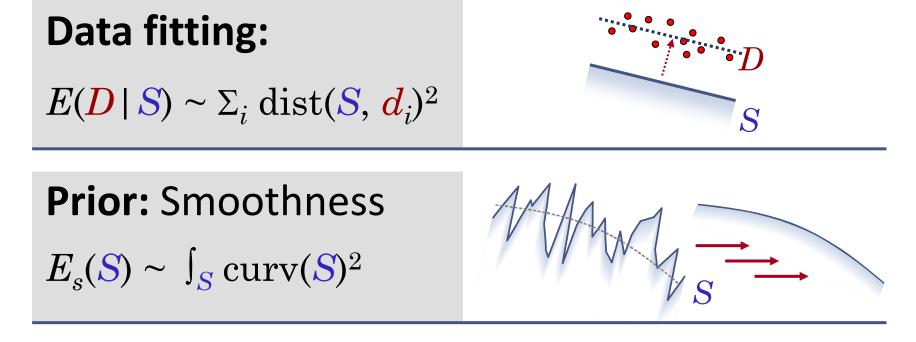
3D reconstruction results:

(With discontinuity lines, not used here):



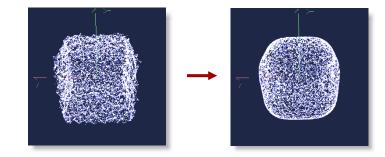


3D Reconstruction Summary



Optimization:

Yields 3D Reconstruction

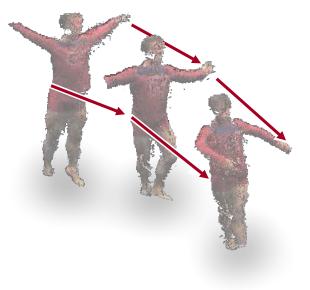


Adding the Dynamics

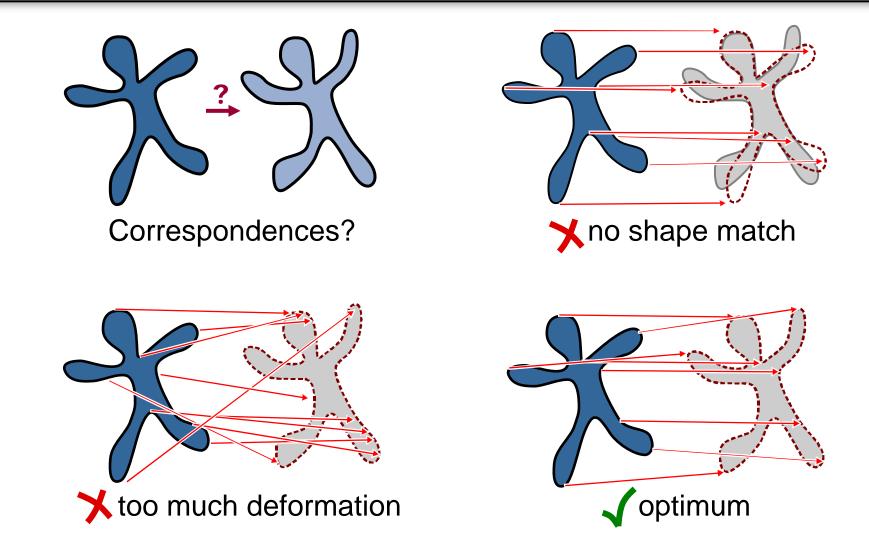
Extension to Animations

Animation Reconstruction

- Not just a 4D version
 - Moving geometry, not just a smooth hypersurface
- Key component: correspondences
- Intuition for "good correspondences":
 - Match target shape
 - Little deformation



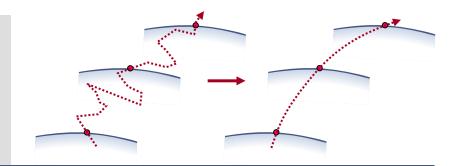
Recap: Correspondences

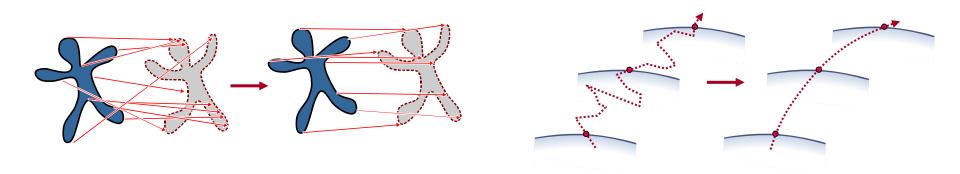


Two additional priors:

Deformation $E_d(S) \sim \int_S \operatorname{deform}(S_t, S_{t+1})^2$

$$E_a(\mathbf{S}) \sim \int_{\mathbf{S},t} \ddot{\mathbf{s}}(x, t)^2$$





Not just smooth 4D reconstruction!

- Minimize
 - Deformation
 - Acceleration
- This is quite different from smoothness of a 4D hypersurface.

Animations

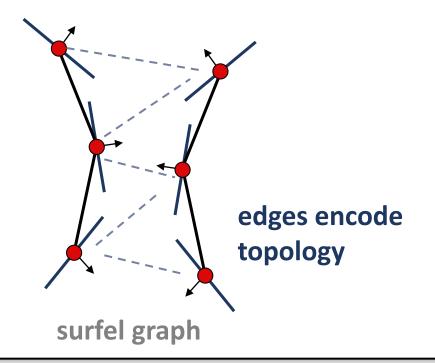
Refined parametrization of reconstruction \$

- Surfel graph (3D)
- Trajectory graph (4D)

Discretization

Refined parametrization of reconstruction **S**

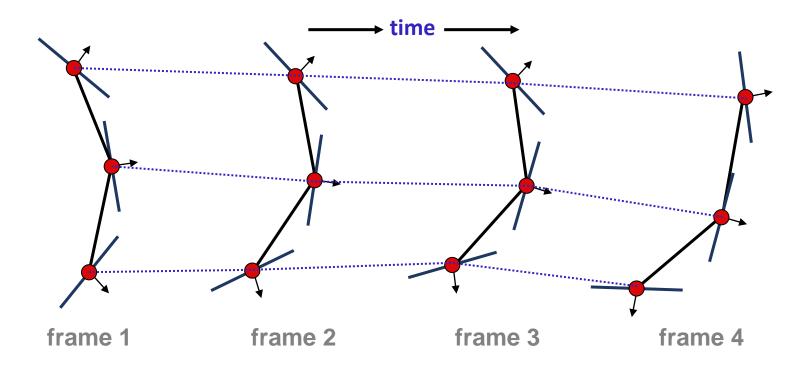
- Surfel graph (3D)
- Trajectory graph (4D)



Discretization

Refined parametrization of reconstruction **S**

- Surfel graph (3D)
- Trajectory graph (4D)



Missing Details...

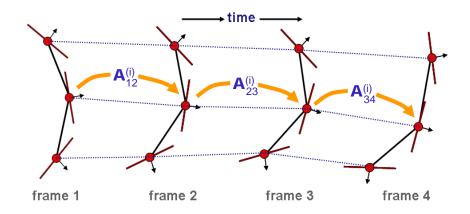
How to implement...

- The deformation priors?
 - We use one of the models previously developed
- Acceleration priors?
 - This is rather simple...

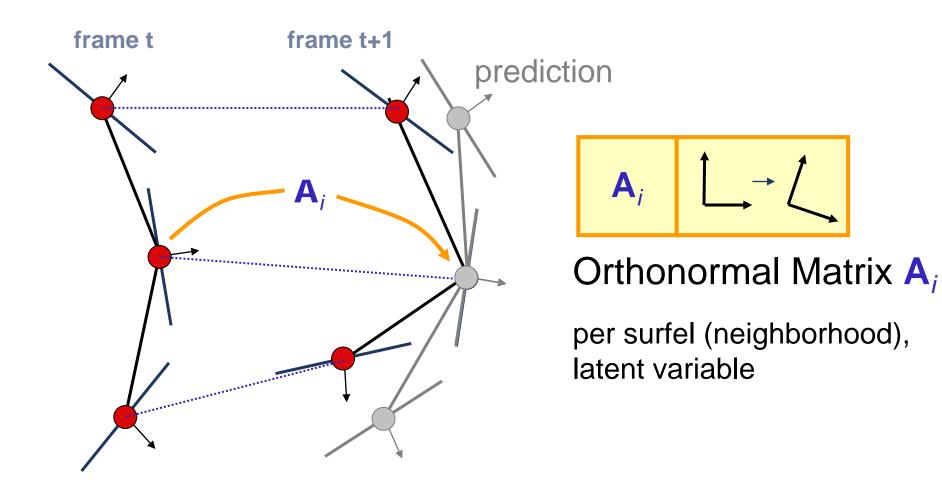
Recap: Elastic Deformation Model

Deformation model

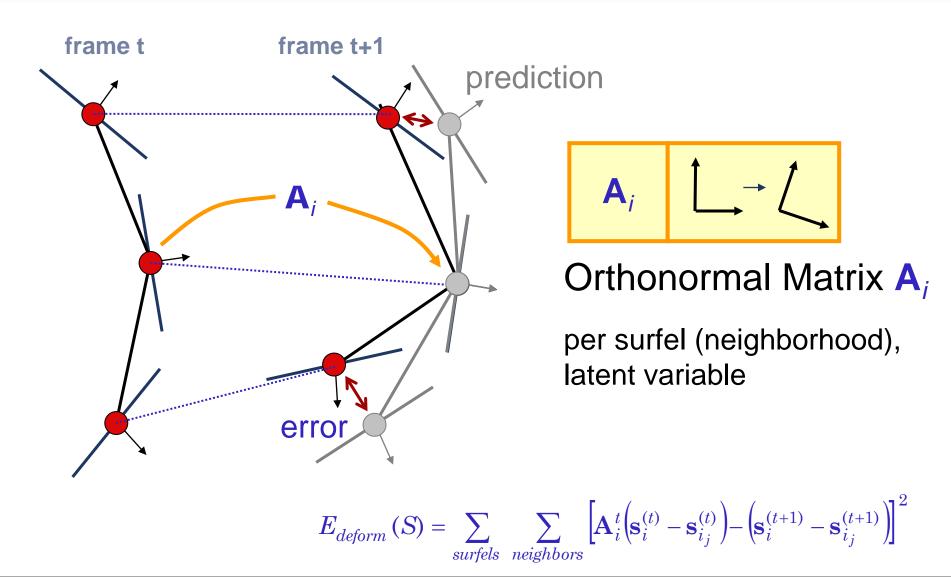
- Latent transformation A⁽ⁱ⁾ per surfel
- Transforms *neighborhood* of *s*_i
- Minimize error (both surfels and A⁽ⁱ⁾)



Recap: Elastic Deformation Model



Recap: Elastic Deformation Model



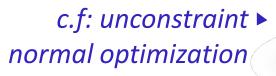
Recap: Unconstrained Optimization

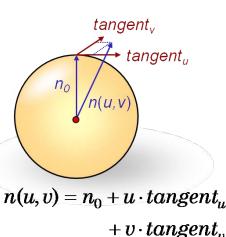
Orthonormal matrices

• Local, 1st order, non-degenerate parametrization:

$$\mathbf{C}_{\mathbf{x}_{i}^{(t)}} = \begin{pmatrix} 0 & \alpha & \beta \\ -\alpha & 0 & \gamma \\ -\beta & -\gamma & 0 \end{pmatrix} \qquad \mathbf{A}_{i} = \mathbf{A}_{0} \exp(\mathbf{C}_{\mathbf{x}_{i}}) \\ \doteq \mathbf{A}_{0} (I + \mathbf{C}_{\mathbf{x}_{i}}^{(t)})$$

- Optimize parameters α , β , γ , then recompute A_0
- Compute initial estimate using [*Horn 87*]

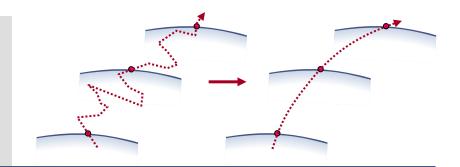




Two additional priors:

Deformation $E_d(S) \sim \int_S \operatorname{deform}(S_t, S_{t+1})^2$

$$E_a(S) \sim \int_{S,t} \ddot{s}(x, t)^2$$



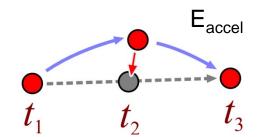
Acceleration

Acceleration priors

• Penalize non-smooth trajectories

$$E_{accel}(A) = \left[\mathbf{s}_i^{t-1} - 2\mathbf{s}_i^t + \mathbf{s}_i^{t+1}\right]^2$$

• Filters out temporal noise



Optimization

For optimization, we need to know:

- The surfel graph
- A (rough) initialization close to correct solution

Optimization:

- Non-linear continuous optimization problem
- Gauss-Newton solver (fast & stable)

How do we get the initialization?

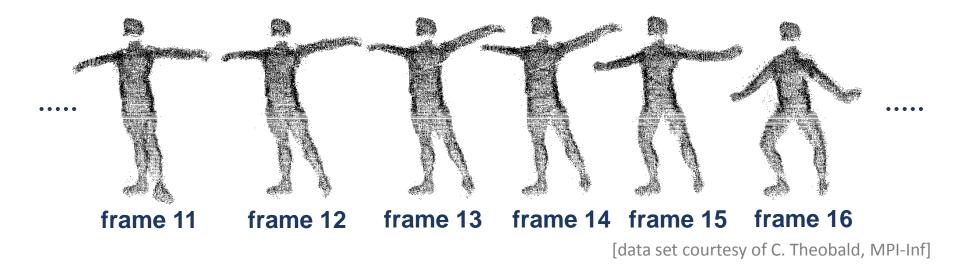
• *Iterative assembly* heuristic to build & init graph

Iterative Assembly

Global Assembly

Assumption: Adjacent frames are similar

- Every frame is a good initialization for the next one
- Solve for frame pairs

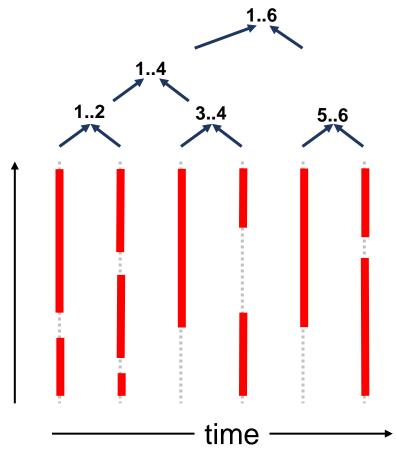


Eurographics 2010 Course – Geometric Registration for Deformable Shapes

Iterative Assembly

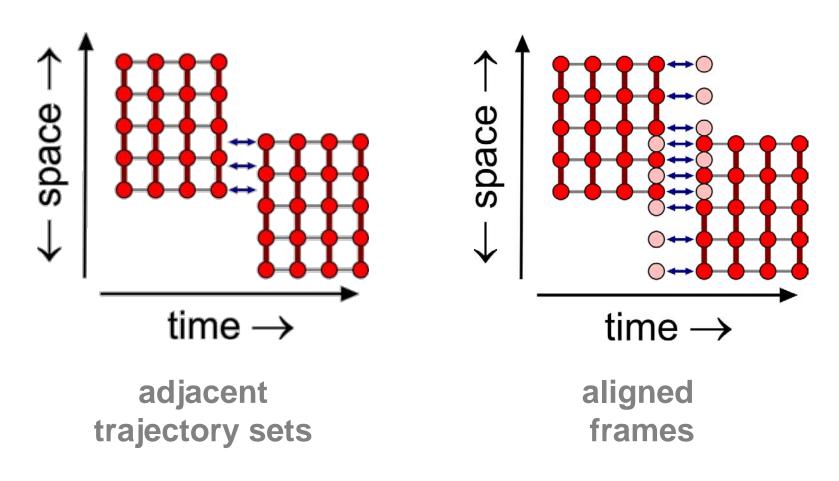
Iterative assembly

- Merge adjacent frames
- Propagate hierarchically
- Global optimization (avoid error propagation)



space

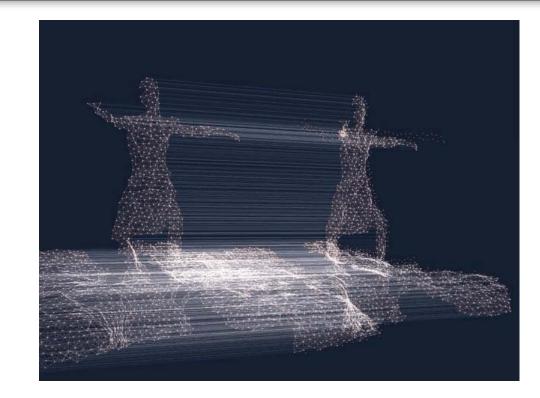
Pairwise alignment



Alignment

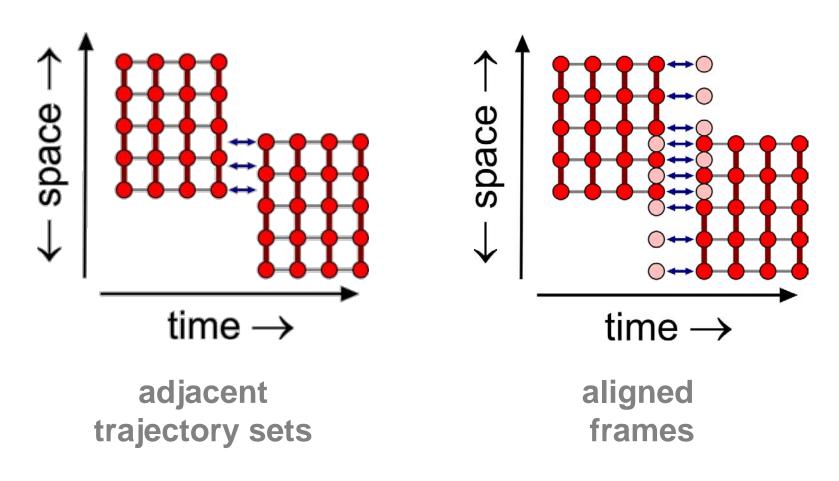
Alignment:

- Two frames
- Use one frame as initialization
- Second frame as "data points"
- Optimize

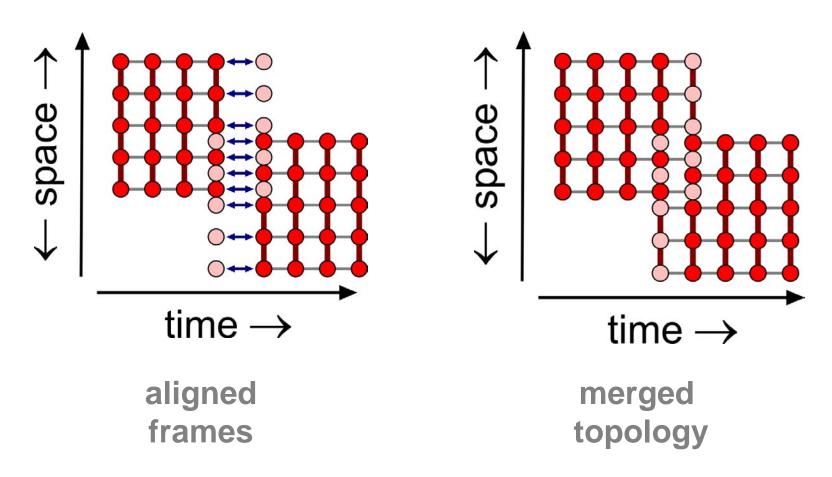


[data set: Zitnick et al., Microsoft Research]

Pairwise alignment



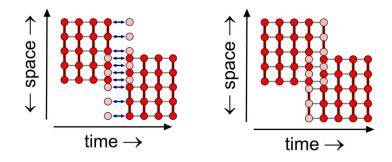
Topology stitching

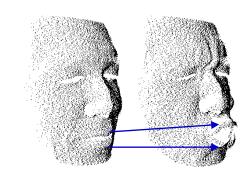


Topology Stitching

Recompute Topology

- Recompute kNN/ε-graph
- Topology is global



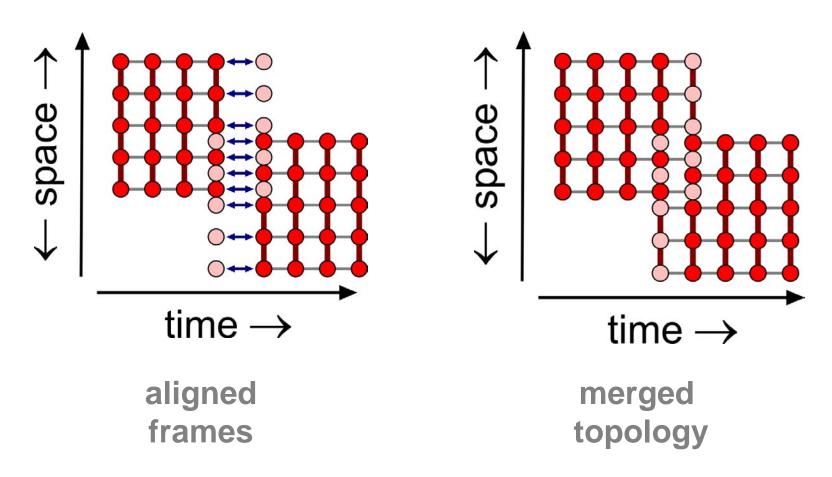


Sanity Check:

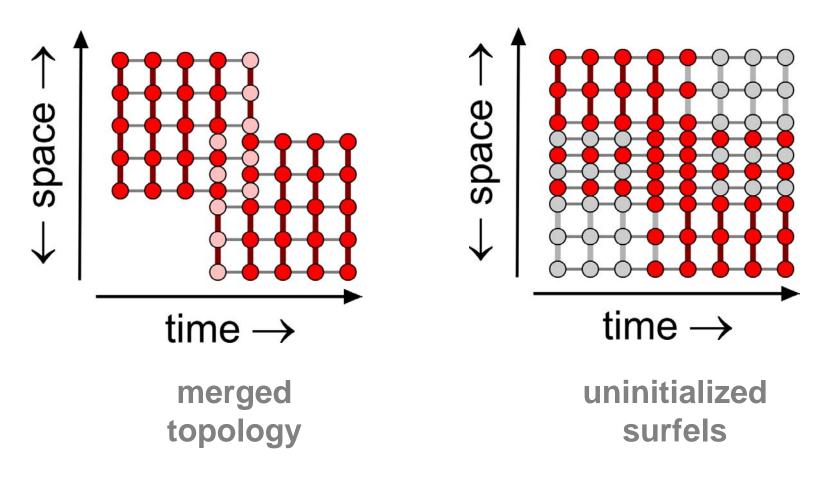
• No connection if distance changes

[data set courtesy of S. König, S. Gumhold, TU Dresden]

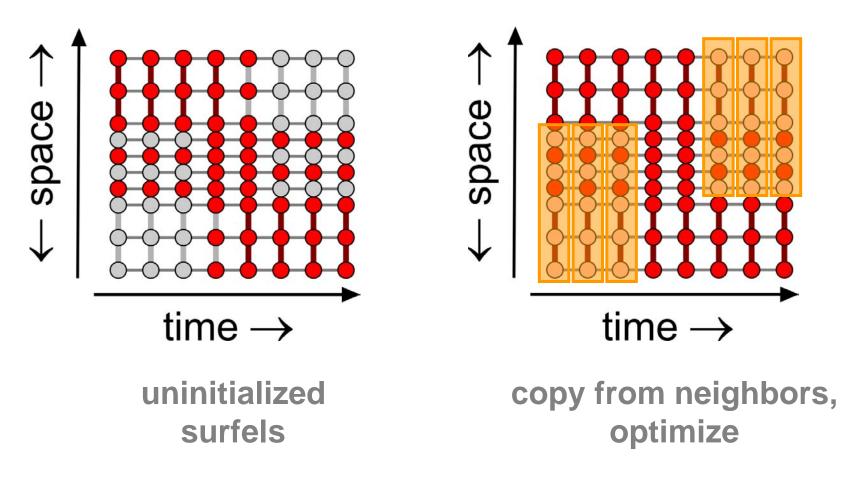
Topology stitching



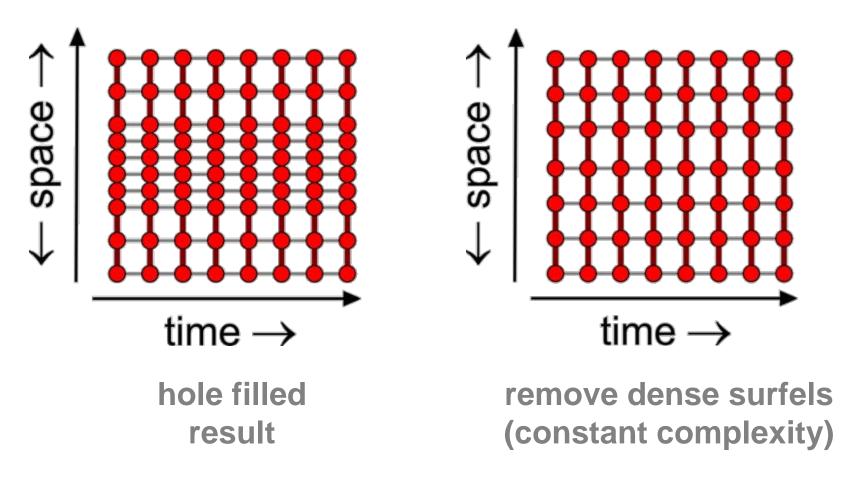
Problem: incomplete trajectories



Hole filling



Resampling



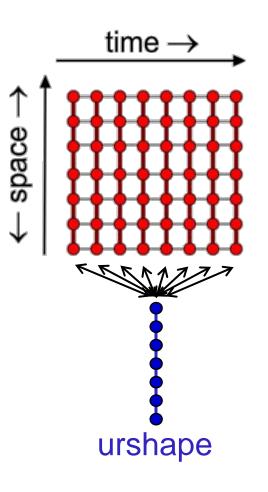
Global Optimization

Last step:

- Global optimization
- Optimize over all frames simultaneously

Improve stability: Urshapes

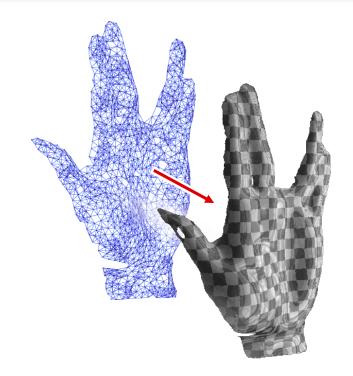
- Connect hidden "latent" frame to all other frames (deformation prior only)
- Initialize with one of the frames



Meshing

Last step: create mesh

- After complete surfel graph is reconstructed
- Pick one frame (or urshape)
- "Marching cubes" meshing
 [Hoppe et al. 92, Shen et al. 04]
- Morph according to trajectories (local weighted sum)



[data set courtesy of O. Schall, MPI Informatik Saarbrücken]

Results

Elephant

deformation & rotation, noise, outliers, large holes

(synthetic data)

frames 20

surfels 49,500

data pts

963,671

preprocessing 6 min 52 sec

reconstruction 4 h 25 min

[Pentium-4, 3.4GHz]

Facial Expression

Dataset courtesy of S. Gumhold, University of Dresden

(high speed structured light scan)

frames 20 surfels 32,740 data pts

400,000

preprocessing 6 min 59 sec^(*)

reconstruction 7 h 31 min

[Pentium-4, 3.4GHz / (*)3.0GHz]

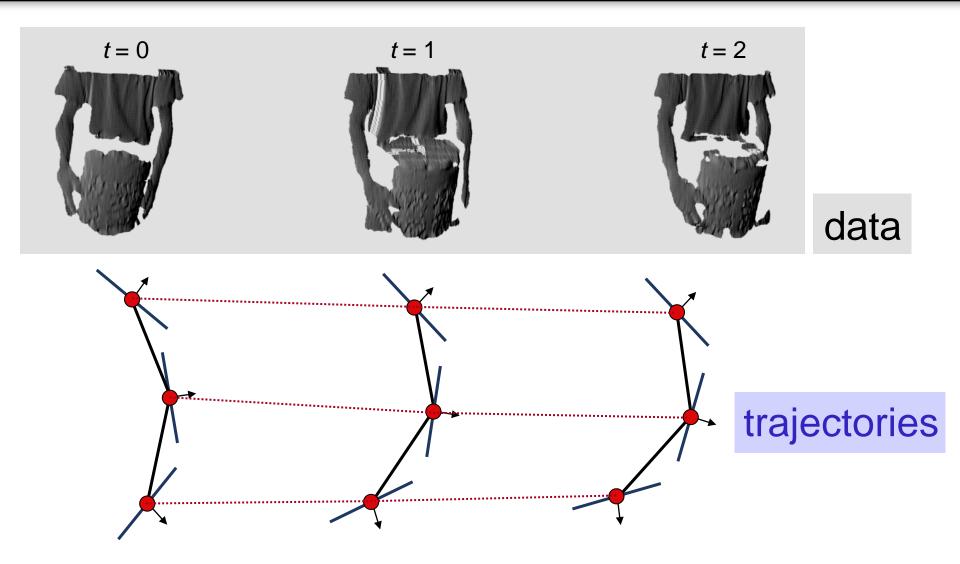
Improved Algorithm Urshape Factorization

Improved Version

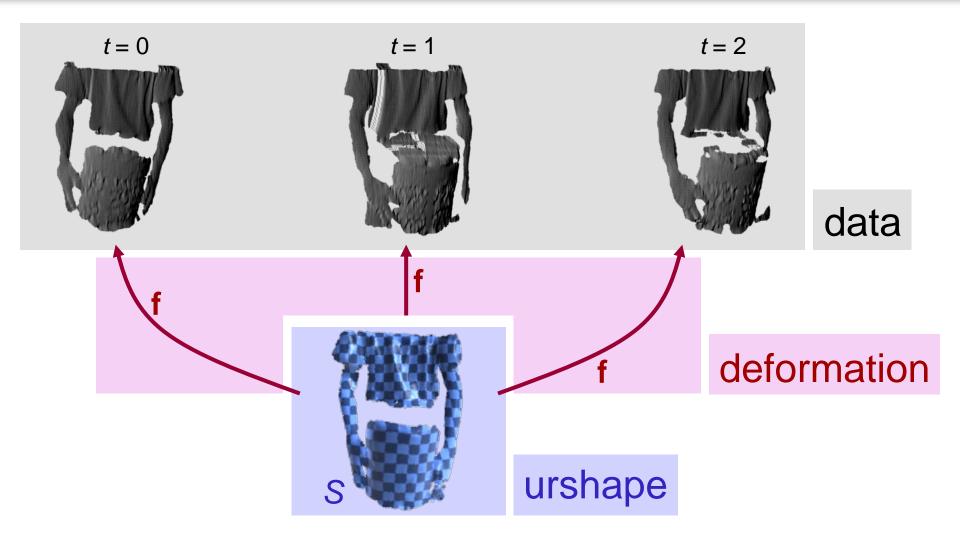
Factorization Model:

- Solving for the geometry in every frame wastes resources
- Store one urshape and a deformation field
 - High resolution geometry
 - Low resolution deformation (adaptive)
- Less memory, faster, and much more stable
- Streaming computation (constant working set)

We have so far...



New: Factorization



Components

Variational Model

 Given an initial estimate, improve *urshape* and *deformation*

Numerical Discretization

- Shape
- Deformation

Domain Assembly

- Getting an initial estimate
- Urshape assembly

Components

Variational Model

 Given an initial estimate, improve *urshape* and *deformation*

Numerical Discretization

- Shape
- Deformation

Domain Assembly

- Getting an initial estimate
- Urshape assembly

Optimize *S*, **f** alternatingly

• E_{data}(f, S) – data fitting

- *E_{deform}*(f) elastic deformation, smooth trajectory

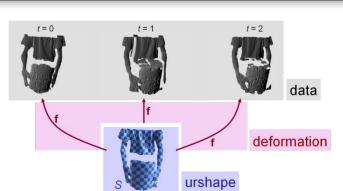
- $E_{\text{smooth}}(S)$ smooth surface

Energy Minimization

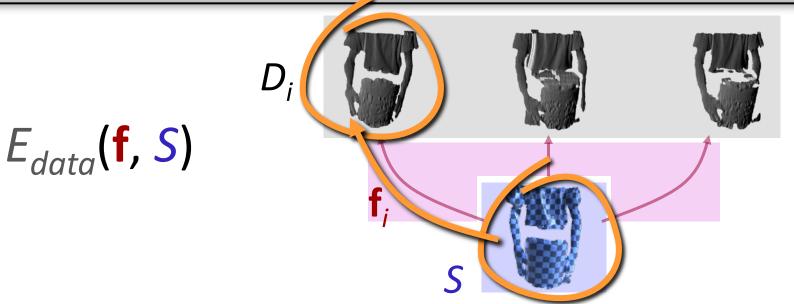
Energy Function

Components

 $E(f, S) = E_{data} + E_{deform} + E_{smooth}$

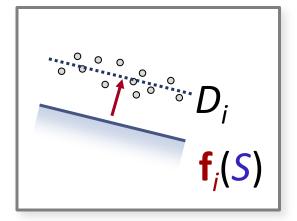


Data Fitting



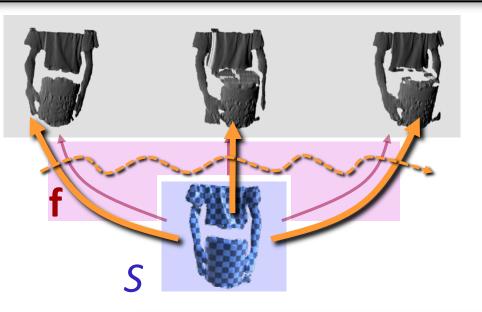
Data fitting

- Necessary: $f_i(S) \approx D_i$
- Truncated squared distance function (point-to-plane)



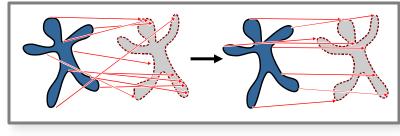
Elastic Deformation Energy

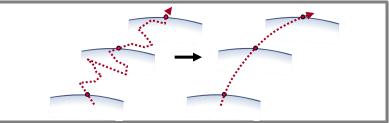
 D_i



Regularization

- Elastic energy
- Smooth trajectories

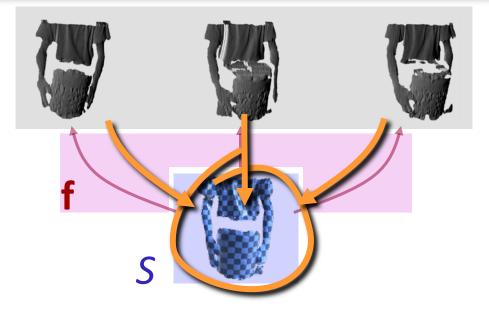




Surface Reconstruction

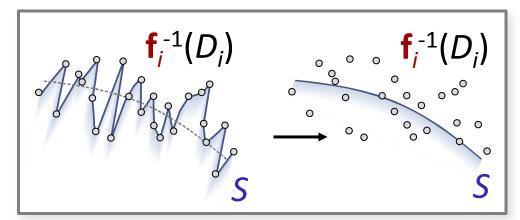
 D_i

E_{smooth}(S)

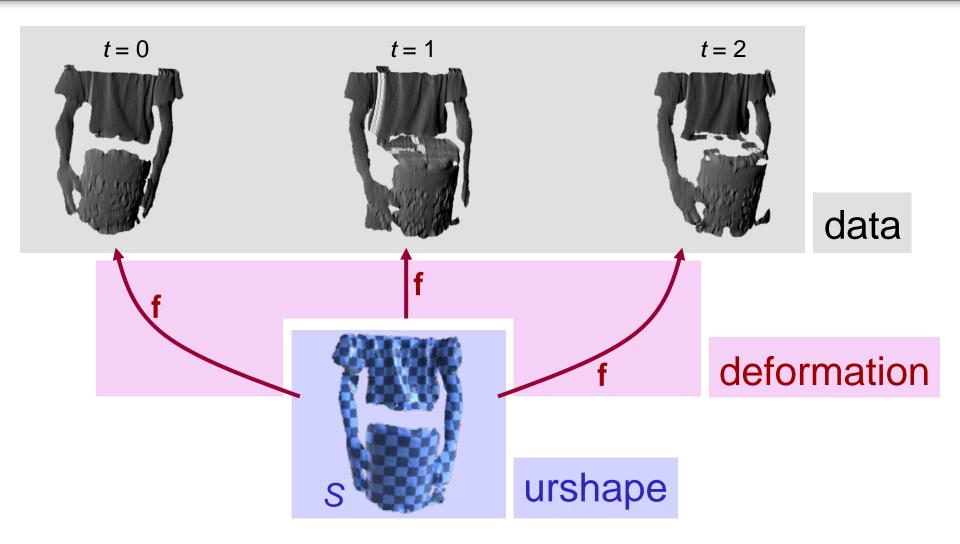


Data fitting

- Smooth surface
- Fitting to noisy data



Factorization



Components

Variational Model

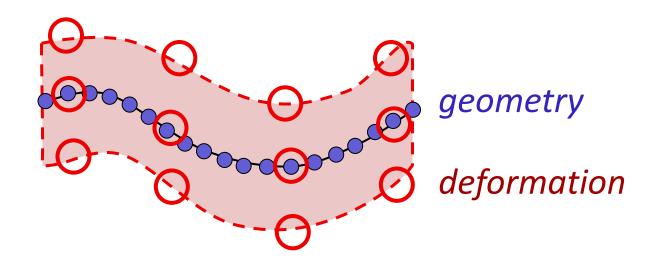
 Given an initial estimate, improve *urshape* and *deformation*

Numerical Discretization

- Shape
- Deformation

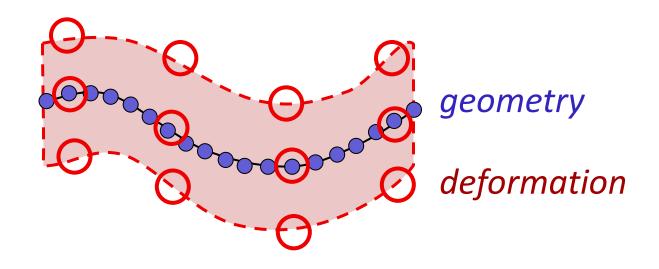
Domain Assembly

- Getting an initial estimate
- Urshape assembly



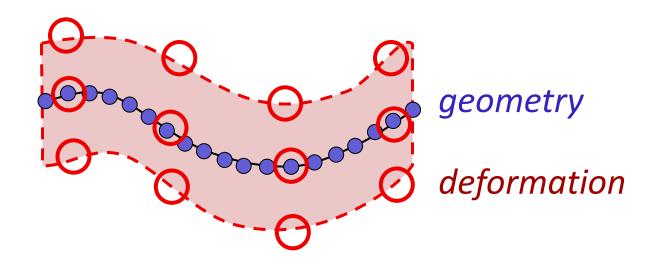
Sampling:

- Full resolution *geometry*
- Subsample *deformation*



Sampling:

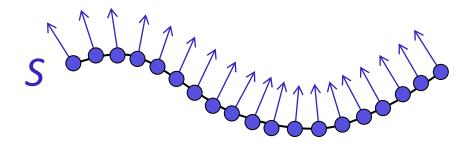
- Full resolution *geometry*
 - High frequency
- Subsample *deformation*
 - Low frequency



Sampling:

- Full resolution *geometry*
 - High frequency, stored once
- Subsample *deformation*
 - Low frequency, all frames ⇒ more costly

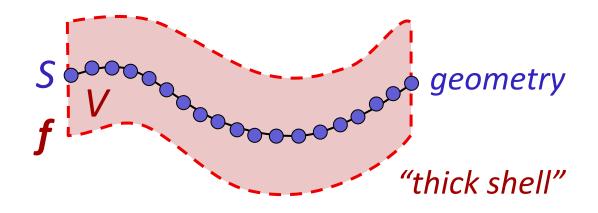
Shape Representation



Shape Representation:

- Graph of *surfels* (point + normal + local connectivity)
- *E_{smooth}* neighboring planes should be similar
- Same as before...

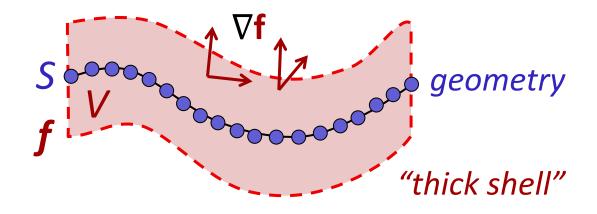
Deformation



Volumetric Deformation Model

- Surfaces embedded in "stiff" volumes
- Easier to handle than "thin-shell models"
- General works for non-manifold data

Deformation



Deformation Energy

- Keep deformation gradients ∇**f** as-rigid-as-possible
- This means: $\nabla \mathbf{f}^{\mathsf{T}} \nabla \mathbf{f} = \mathbf{I}$
- Minimize: $E_{deform} = \int_T \int_V ||\nabla \mathbf{f}(\mathbf{x},t)^T \nabla \mathbf{f}(\mathbf{x},t) \mathbf{I}||^2 d\mathbf{x} dt$

Additional Terms

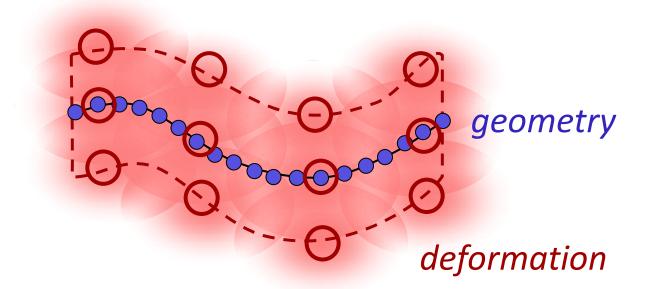
More Regularization

• Volume preservation: $E_{vol} = \int_T \int_V ||\det(\nabla f) - 1||^2$

 $E_{vel} = \int_{T} \int_{V} |\partial_{t} \mathbf{f}||^{2}$

- Stability
- Acceleration: $E_{acc} = \int_T \int_V ||\partial_t^2 \mathbf{f}||^2$
 - Smooth trajectories
- Velocity (weak):
 - Damping

1

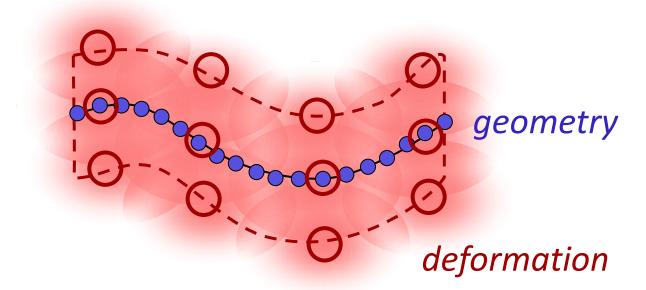


How to represent the deformation?

- Goal: efficiency
- Finite basis:

As few basis functions as possible

Discretization



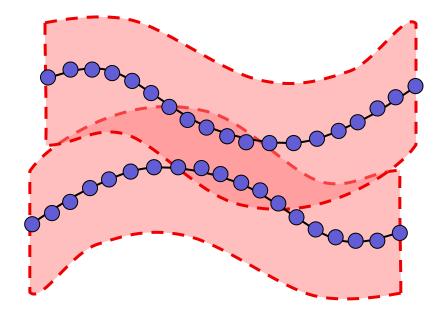
Meshless finite elements

- Partition of unity, smoothness
- Linear precision
- Adaptive sampling is easy

Meshless Finite Elements

Topology:

- Separate deformation nodes for disconnected pieces
- Need to ensure
 - Consistency
 - Continuity
- Euclidean / intrinsic distance-based coupling rule
 - See references for details

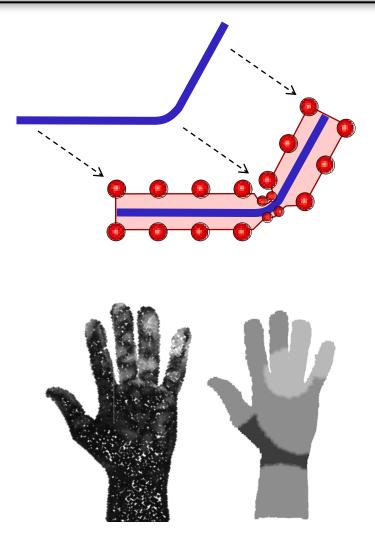




Adaptive Sampling

Adaptive Sampling

- Bending areas
 - Decrease rigidity
 - Decrease thickness
 - Increase sampling density
- Detecting bending areas: residuals over many frames



Components

Variational Model

 Given an initial estimate, improve *urshape* and *deformation*

Numerical Discretization

- Deformation
- Shape

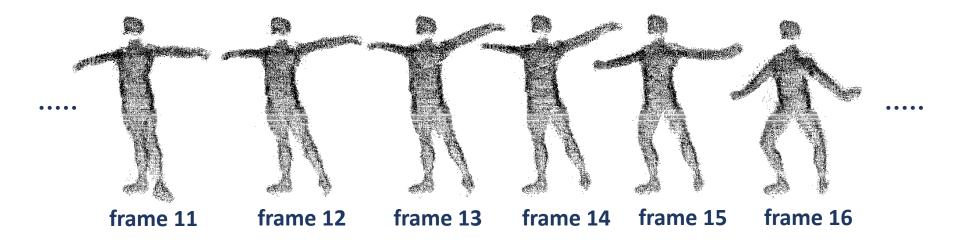
Domain Assembly

- Getting an initial estimate
- Urshape assembly

Urshape Assembly

Adjacent frames are similar

- Solve for frame pairs first
- Assemble urshape step-by-step



[data set courtesy of C. Theobald, MPC-VCC]

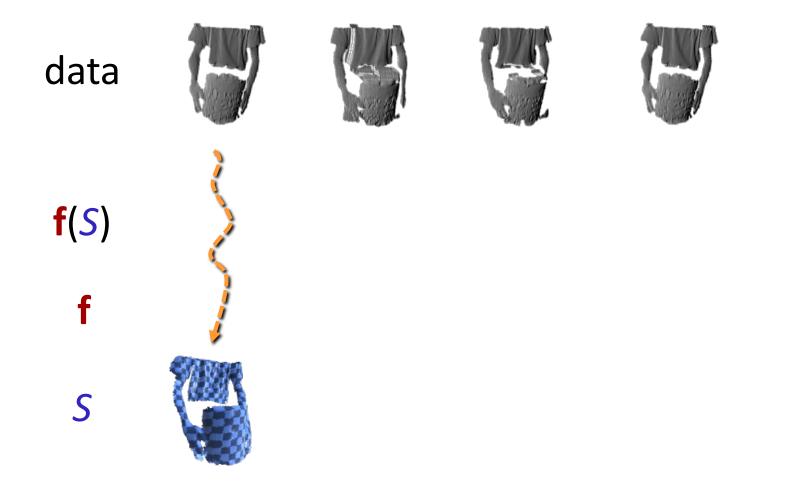
Hierarchical Merging

f(*S*)

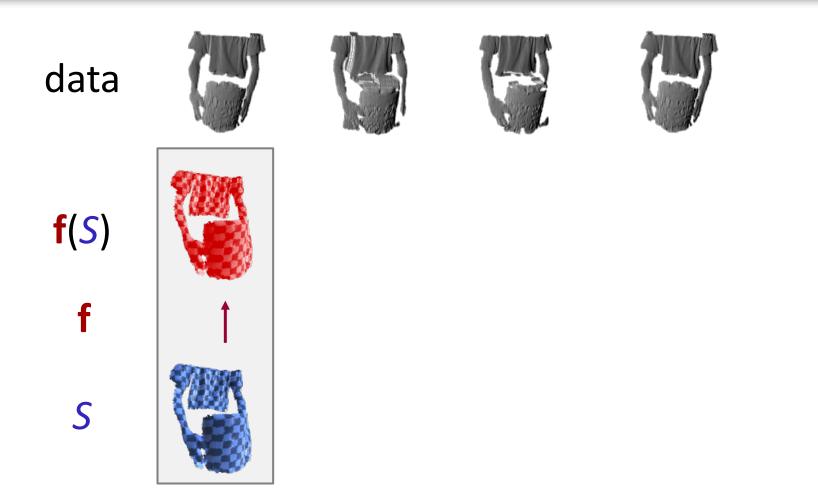
f

S

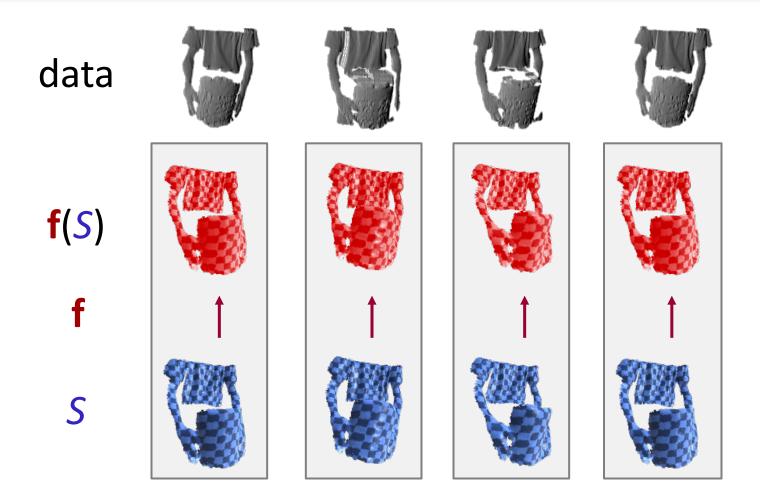
Hierarchical Merging



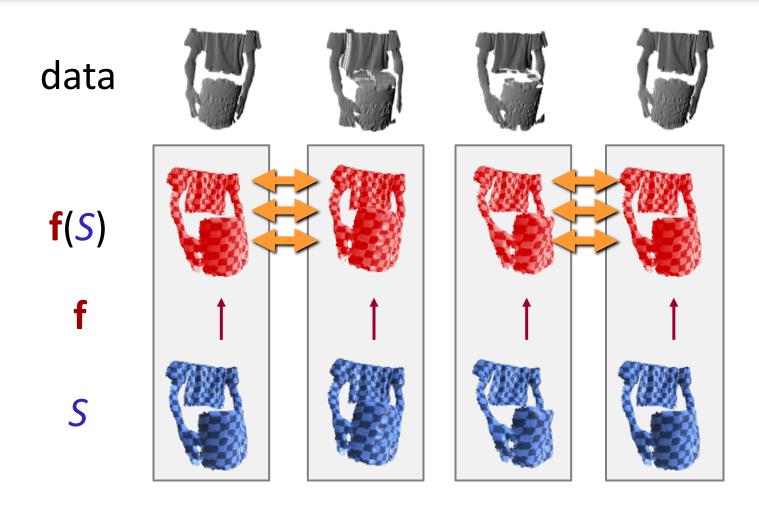
Initial Urshapes



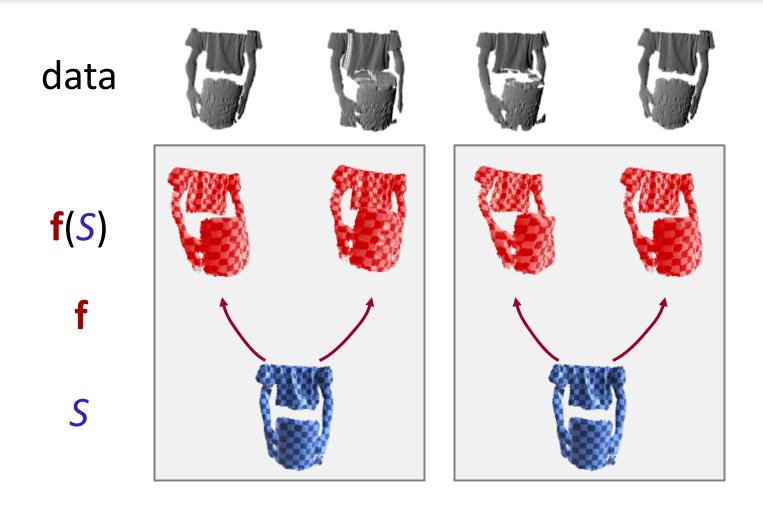
Initial Urshapes



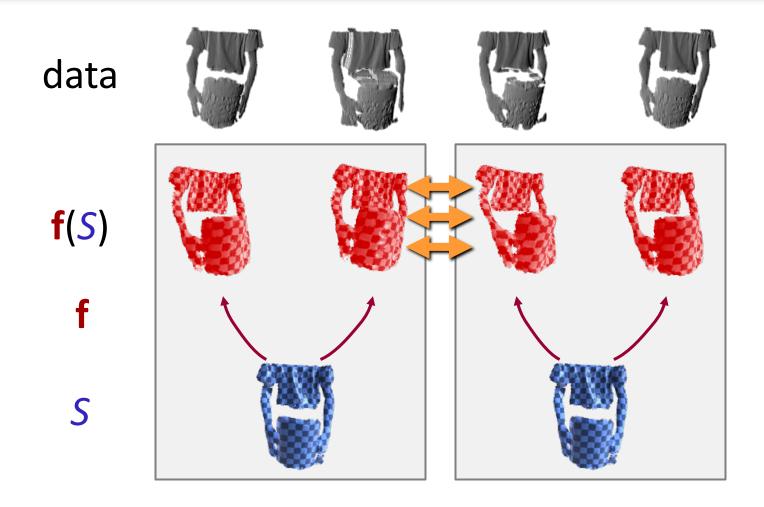
Alignment



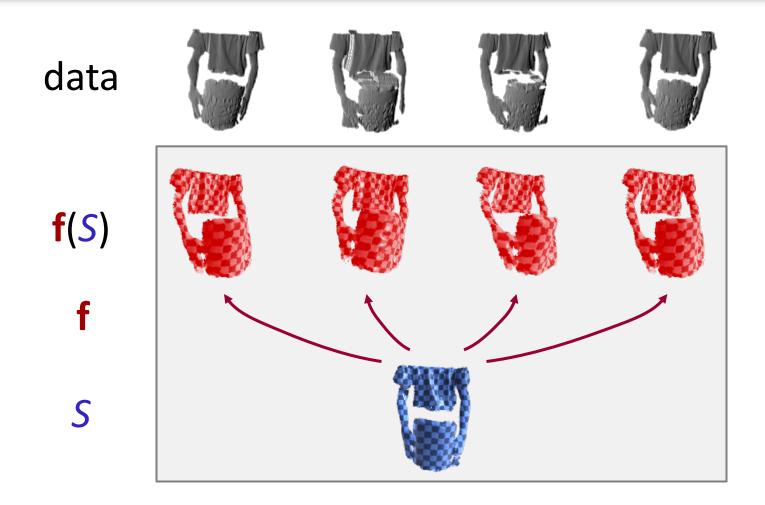
Align & Optimize



Hierarchical Alignment



Hierarchical Alignment



Results

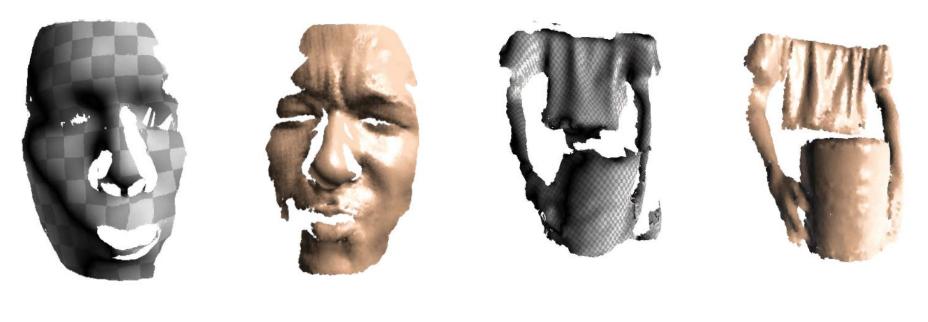
79 frames, 24M data pts, 21K surfels, 315 nodes

98 firames, 5M data pts, 6.4K surfels, 423 nodes

120 frames, 30M data pts, 17K surfels, 1,939 nodes

34 frames, 4M data pts, 23K surfels, 414 nodes

Quality Improvement



old version

new result

old version

new result