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Overview & Problem Statement
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Overview

Two Parallel Topics
• Basic algorithms
• Two systems as a case study

Animation Reconstruction
• Problem Statement
• Basic algorithm (original system)

 Variational surface reconstruction
 Adding dynamics
 Iterative Assembly
 Results

• Improved algorithm (revised system)

3
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Real-time Scanners

space-time
stereo

courtesy of James Davis,
UC Santa Cruz

color-coded
structured light

courtesy of Phil Fong,
Stanford University

motion compensated
structured light

courtesy of Sören König,
TU Dresden
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Animation Reconstruction

Problems
• Noisy data
• Incomplete data (acquisition holes)
• No correspondences

noise

holes

missing correspondences
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Animation Reconstruction
Remove noise, outliers

Fill-in holes
(from all frames)

Dense correspondences



Animation Reconstruction
Surface Reconstruction
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S D

Variational Approach

Variational Approach:
 S – original model

D – measurement data

 Variational approach:

E(S|D)  ~  E(D|S) + E(S)

measurement prior
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3D Reconstruction

D

S

S

Data fitting

E(D|S) ~ Σi dist(S,di)2

Prior: Smoothness

Es(S) ~  ∫S curv(S)2
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Implementation...

Implementation: Point-based model
• Our model is a set of points
• “Surfels”: Every point has

a latent surface normal
• We want to estimate

position and normals

pi

ni

“Surfel”
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Data Term – E(D|S)

Data fitting term:
• Surface should be close to data
• Truncated squared distance

function

• Sum of distances2 of data points to surfel planes
• Point-to-plane: No exact 1:1 match necessary
• Truncation (M-estimator): Robustness to outliers

Ematch

∑=
ptsdata

imatch SdisttruncSDE )),((),( 2dδ
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Priors – P(S)

Canonical assumption: smooth surfaces
• Correlations between neighboring points

more likelyless likely
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Point-based Model

Simple Smoothness Priors:

• Similar surfel normals: 

• Surfel positions – flat surface:

• Uniform density:

Esmooth
(1)

ELaplace

Esmooth
(2)

( )∑ ∑ =−=
surfels neighbors

iiismooth nnnSE
j

1,)( 2)1(

∑ ∑ −=
surfels neighbors

iiismooth j
SE

2
)2( )(,)( snss

( )2)( ∑ ∑ −=
surfels neighbors

iLaplace averageSE s

[c.f. Szeliski et al. 93]
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Nasty Normals

Optimizing Normals
• Problem:

• Need unit normals: constraint optimization

• Unconstraint: trivial solution (all zeros)

( )∑ ∑ =−=
surfels neighbors

iiismooth ntsnnSE
j

1..,)( 2)1(



Eurographics 2010 Course  – Geometric Registration for Deformable Shapes 15

Nasty Normals

Solution: Local Parameterization
• Current normal estimate
• Tangent parameterization
• New variables u, v
• Renormalize
• Non-linear optimization
• No degeneracies

tangentu

tangentv

n0
n(u,v)

v

u

tangentv
tangentunvun

⋅+

⋅+= 0),(

[Hoffer et al. 04]
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Neighborhoods?

Topology estimation
• Domain of S, base shape (topology)
• Here, we assume this is easy to get
• In the following

 k-nearest neighborhood graph
 Typically: k = 6..20

Limitations
• This requires dense enough sampling
• Does not work for undersampled data
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Numerical Optimization

Task:
• Compute most likely “original scene” S
• Nonlinear optimization problem

Solution:
• Create initial guess for S

 Close to measured data
 Use original data

• Find local optimum
 (Conjugate) gradient descent
 (Gauss-) Newton descent
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3D Examples

3D reconstruction results:

(With discontinuity lines,
not used here):
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3D Reconstruction Summary

D

S

S

Optimization: 
Yields 3D Reconstruction

Data fitting:
E(D|S) ~ Σi dist(S, di)2

Prior: Smoothness
Es(S) ~  ∫S curv(S)2



Animation Reconstruction
Adding the Dynamics
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Extension to Animations

Animation Reconstruction
• Not just a 4D version

 Moving geometry,
not just a smooth hypersurface

• Key component: correspondences

• Intuition for “good correspondences”:
 Match target shape
 Little deformation
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Recap: Correspondences

?

Correspondences? no shape match

too much deformation optimum
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Animation Reconstruction

..

Two additional priors:

Deformation

Ed(S) ~  ∫S deform(St , St+1)2

Acceleration

Ea(S) ~  ∫S,t s(x, t)2
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Not just smooth 4D reconstruction!
• Minimize

 Deformation
 Acceleration

• This is quite different from smoothness
of a 4D hypersurface.

Animation Reconstruction
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Animations

Refined parametrization of reconstruction S
• Surfel graph (3D)
• Trajectory graph (4D)
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Discretization

Refined parametrization of reconstruction S
• Surfel graph (3D)
• Trajectory graph (4D)

edges encode
topology

surfel graph
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Discretization

Refined parametrization of reconstruction S
• Surfel graph (3D)
• Trajectory graph (4D)

frame 1 frame 2 frame 3 frame 4

time
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Missing Details...

How to implement...
• The deformation priors?

 We use one of the models previously developed

• Acceleration priors?
 This is rather simple...
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Recap: Elastic Deformation Model

Deformation model
• Latent transformation A(i) per surfel
• Transforms neighborhood of si

• Minimize error (both surfels and A(i))

A(i)
12 A(i)

23 A(i)
34
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Recap: Elastic Deformation Model

Ai

Orthonormal Matrix Ai

per surfel (neighborhood),
latent variable

Ai

prediction
frame t frame t+1
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Recap: Elastic Deformation Model

Ai

Orthonormal Matrix Ai

per surfel (neighborhood),
latent variable

Ai

prediction

error

( ) ( )[ ]2
)1()1()()()( ∑ ∑ ++ −−−=

surfels neighbors

t
i

t
i

t
i

t
i

t
ideform jj

SE ssssA

frame t frame t+1
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Recap: Unconstrained Optimization

Orthonormal matrices
• Local, 1st order, non-degenerate parametrization:

• Optimize parameters α, β, γ, then recompute A0

• Compute initial estimate using [Horn 87 ]

















−−
−=

0
0

0
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t
i
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×
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c.f: unconstraint
normal optimization
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Animation Reconstruction

..

Two additional priors:

Deformation

Ed(S) ~  ∫S deform(St , St+1)2

Acceleration

Ea(S) ~  ∫S,t s(x, t)2
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Acceleration

Acceleration priors
• Penalize non-smooth trajectories

• Filters out temporal noise

[ ]211 2)( +− +−= t
i

t
i

t
iaccel AE sss

Eaccel
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Optimization

For optimization, we need to know:
• The surfel graph
• A (rough) initialization close to correct solution

Optimization:
• Non-linear continuous optimization problem
• Gauss-Newton solver (fast & stable)

How do we get the initialization?
• Iterative assembly heuristic to build & init graph



Iterative Assembly
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Global Assembly

Assumption: Adjacent frames are similar
• Every frame is a good initialization for the next one
• Solve for frame pairs

[data set courtesy of C. Theobald, MPI-Inf]
frame 11 frame 12 frame 13 frame 14 frame 15 frame 16
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Iterative Assembly

Iterative assembly
• Merge adjacent frames
• Propagate hierarchically
• Global optimization

(avoid error propagation)

time

sp
ac

e

1..2 3..4 5..6

1..4

1..6
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Iterative Assembly

adjacent
trajectory sets

aligned 
frames

Pairwise alignment
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Alignment
Alignment:

• Two frames
• Use one frame

as initialization
• Second frame

as “data points”
• Optimize

[data set: Zitnick et al., Microsoft Research]
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Iterative Assembly

adjacent
trajectory sets

aligned 
frames

Pairwise alignment
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Iterative Assembly

Topology stitching

aligned
frames

merged 
topology
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Topology Stitching

Recompute Topology
• Recompute kNN/ε-graph
• Topology is global

Sanity Check:
• No connection if distance changes

[data set courtesy of S. König, S. Gumhold, TU Dresden]
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Iterative Assembly

Topology stitching

aligned
frames

merged 
topology
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Iterative Assembly

Problem: incomplete trajectories

merged
topology

uninitialized
surfels
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Iterative Assembly

Hole filling

uninitialized
surfels

copy from neighbors,
optimize
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Iterative Assembly

hole filled
result

remove dense surfels
(constant complexity)

Resampling
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Global Optimization

Last step:
• Global optimization
• Optimize over all frames

simultaneously

Improve stability: Urshapes
• Connect hidden “latent” frame

to all other frames 
(deformation prior only)

• Initialize with one of the frames urshape
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Meshing

Last step: create mesh
• After complete surfel graph

is reconstructed
• Pick one frame (or urshape)
• “Marching cubes” meshing

[Hoppe et al. 92, Shen et al. 04]
• Morph according to trajectories

(local weighted sum)

[data set courtesy of O. Schall, MPI Informatik Saarbrücken]



Results



frames surfels data pts preprocessing reconstruction
20 49,500 963,671 6 min 52 sec 4 h 25 min [Pentium-4, 3.4GHz]



frames surfels data pts preprocessing reconstruction
20 32,740 400,000 6 min 59 sec(*) 7 h 31 min [Pentium-4, 3.4GHz / (*)3.0GHz]



Improved Algorithm
Urshape Factorization
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Improved Version

Factorization Model:
• Solving for the geometry in every frame

wastes resources
• Store one urshape and a deformation field

 High resolution geometry
 Low resolution deformation (adaptive)

• Less memory, faster, and much more stable
• Streaming computation (constant working set)
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We have so far...
t = 0 t = 1 t = 2

data

trajectories
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New: Factorization
t = 0 t = 1 t = 2

data

urshapeS

f

f
f

deformation



Eurographics 2010 Course  – Geometric Registration for Deformable Shapes 58

Components

Variational Model
• Given an initial estimate,

improve urshape and deformation

Numerical Discretization
• Shape
• Deformation

Domain Assembly
• Getting an initial estimate
• Urshape assembly
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Components

Variational Model
• Given an initial estimate,

improve urshape and deformation

Numerical Discretization
• Shape
• Deformation

Domain Assembly
• Getting an initial estimate
• Urshape assembly
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Energy Minimization

Energy Function
E(f, S) = Edata + Edeform + Esmooth

Components
• Edata(f, S)– data fitting
• Edeform(f) – elastic deformation, smooth trajectory
• Esmooth(S)– smooth surface

Optimize S, f alternatingly
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Data Fitting

Data fitting
• Necessary: fi(S) ≈ Di

• Truncated squared distance
function (point-to-plane)

S

Di

fi

Di

fi(S)

Edata(f, S)
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Edeform(f)

Elastic Deformation Energy

S

Di

f

Regularization
• Elastic energy

• Smooth trajectories
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Surface Reconstruction

Data fitting
• Smooth surface
• Fitting to noisy data

S

Di

Esmooth(S)

fi
-1(Di)

S

fi
-1(Di)

S

f
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Factorization
t = 0 t = 1 t = 2

data

urshapeS

f

f
f

deformation
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Components

Variational Model
• Given an initial estimate,

improve urshape and deformation

Numerical Discretization
• Shape
• Deformation

Domain Assembly
• Getting an initial estimate
• Urshape assembly
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geometry

Discretization

Sampling:
• Full resolution geometry
• Subsample deformation

deformation
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geometry

Discretization

Sampling:
• Full resolution geometry

 High frequency

• Subsample deformation
 Low frequency

deformation
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geometry

Discretization

Sampling:
• Full resolution geometry

 High frequency, stored once

• Subsample deformation
 Low frequency, all frames ⇒ more costly

deformation
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Shape Representation

Shape Representation:
• Graph of surfels (point + normal + local connectivity)
• Esmooth – neighboring planes should be similar
• Same as before...

S
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Volumetric Deformation Model
• Surfaces embedded in “stiff” volumes
• Easier to handle than “thin-shell models”
• General – works for non-manifold data

Deformation

geometry

“thick shell”
f
S

V
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Deformation

Deformation Energy
• Keep deformation gradients ∇f as-rigid-as-possible
• This means: ∇fT∇f = I

• Minimize:  Edeform = ∫T ∫V||∇f(x,t)T∇f(x,t) – I||2 dxdt

geometry

f
S

“thick shell”

∇f

V
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Additional Terms

More Regularization
• Volume preservation: Evol = ∫T ∫V||det(∇f) – 1||2

 Stability

• Acceleration: Eacc = ∫T ∫V||∂t
2 f||2

 Smooth trajectories

• Velocity (weak): Evel = ∫T ∫V||∂t f||2

 Damping
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Discretization

How to represent the deformation?
• Goal: efficiency
• Finite basis:

As few basis functions as possible

geometry

deformation
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Discretization

Meshless finite elements
• Partition of unity, smoothness
• Linear precision
• Adaptive sampling is easy

geometry

deformation
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Topology:
• Separate deformation

nodes for disconnected
pieces

• Need to ensure
 Consistency
 Continuity

• Euclidean / intrinsic 
distance-based coupling rule
 See references for details

Meshless Finite Elements
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Adaptive Sampling

Adaptive Sampling
• Bending areas

 Decrease rigidity
 Decrease thickness
 Increase sampling density

• Detecting bending areas: 
residuals over many frames



Eurographics 2010 Course  – Geometric Registration for Deformable Shapes 77

Components

Variational Model
• Given an initial estimate,

improve urshape and deformation

Numerical Discretization
• Deformation
• Shape

Domain Assembly
• Getting an initial estimate
• Urshape assembly
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Urshape Assembly

Adjacent frames are similar
• Solve for frame pairs first
• Assemble urshape step-by-step

frame 11 frame 12 frame 13 frame 14 frame 15 frame 16

[data set courtesy of C. Theobald, MPC-VCC]
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Hierarchical Merging

S

f(S)

data

f
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Hierarchical Merging

S

f(S)

data

f
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Initial Urshapes

S

f(S)

data

f
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Initial Urshapes

S

f(S)

data

f
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Alignment

S

f(S)

data

f
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Align & Optimize

S

f(S)

data

f
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Hierarchical Alignment

S

f(S)

data

f
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Hierarchical Alignment

S

f(S)

data

f



Results
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Quality Improvement

old version new result old version new result
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