Global Shape Matching

Section 3.2: Extrinsic Key Point Detection and Feature Descriptors

Global Shape Matching: Extrinsic Key Point Detection and Feature Descriptors

1

The story so far

Problem statement

 Given pair of shapes/scans, find correspondences between the shapes

Local shape matching

- Solves for an alignment assuming that pose is similar or motion is small between shapes / scans
- Like "tracking" of motion in this respect

In this session: Global Shape Matching

What is Global Matching?

Problem statement

- Find the globally optimal correspondences between a pair of shapes
- Search space = set of all possible correspondences
- Same sense as local minimum vs. global minimum in optimization

- Don't get confused with global registration
 - "Global registration" is commonly used to refer to aligning *multiple scans* together to make a single shape

Local vs. Global

Local Matching vs. G

Global Matching

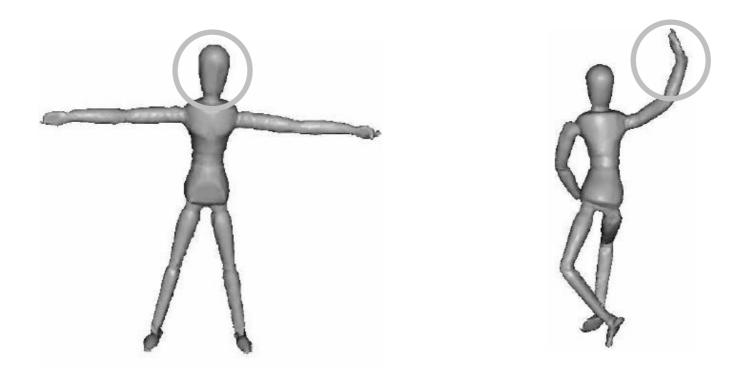
- Search in space of transformations, minimize alignment energy
- Relatively small search space... relatively easy

- Search in the space of all possible correspondences, minimize alignment energy
- Incredibly large search space... nearly impossible?

➔ Features to the rescue!

Our eyes recognize features

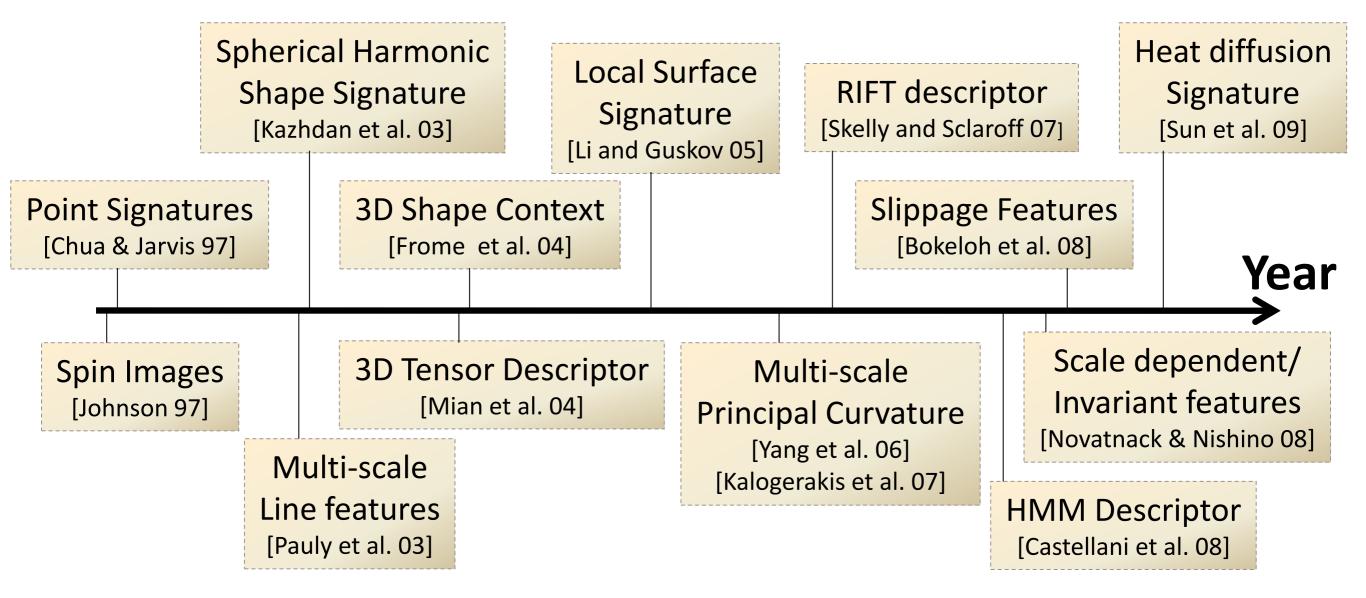
Face ≠ Arm



- Why? It looks different!
- Can dramatically reduce space of possible solutions
- How can we directly compare the geometric content to recognize similarity/dissimilarity?

Types of Features

Welcome to the world of feature descriptors..



- Many more exist... possibly with different objectives
 - ex) Matching whole shape vs. local patches

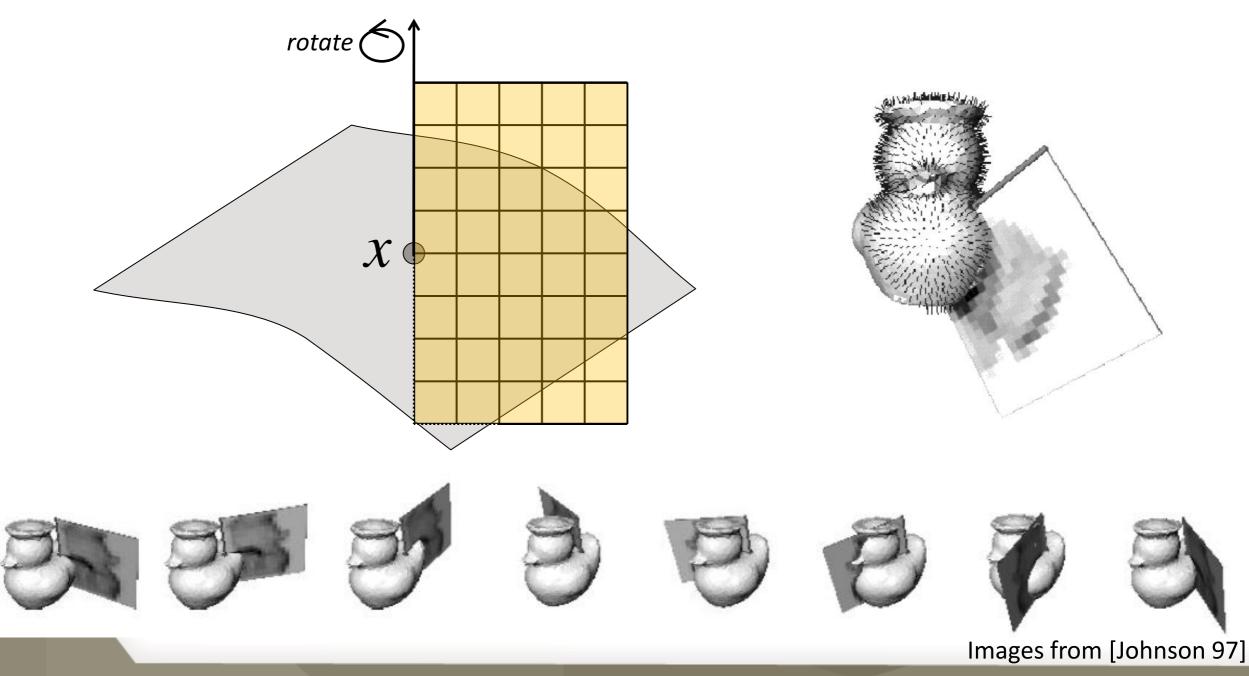
An Example: Spin Images

One of the earliest feature descriptors

- Established, simple, well analyzed
- Clearly illustrates the process of how this type of recognition works
- Also illustrates potential problems & drawbacks common to any type of feature descriptor

Spin Image Construction

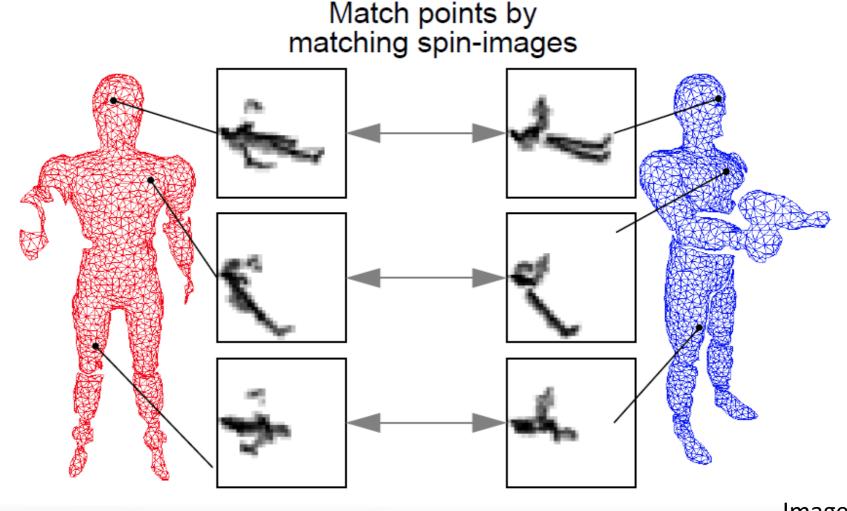
• Converts a local patch of geometry into an image, which we can directly compare to determine similarity



Spin Image Matching

Compare images directly to obtain similarity score

- Linear correlation coefficient \rightarrow Similarity measure
- Compute only in "overlap": when both bins have a value

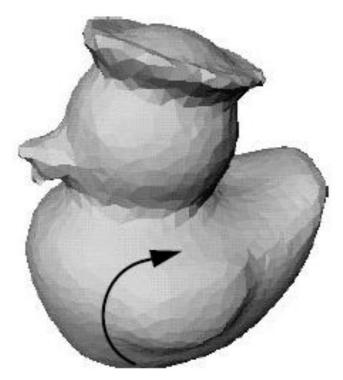


Images from [Johnson 97]

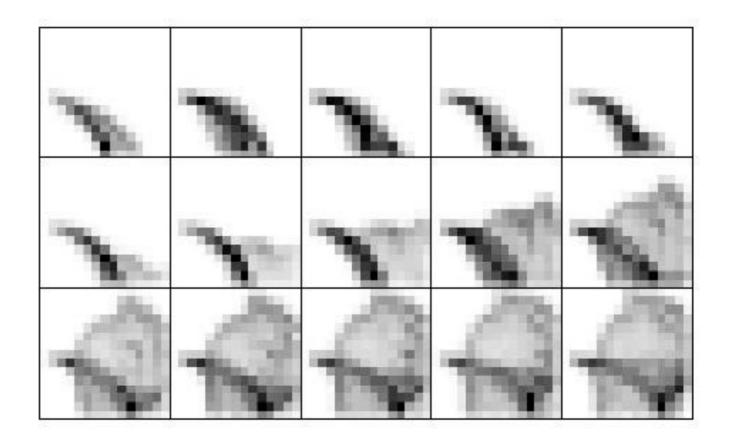
Compressing Spin Images

Spin images from the same model are similar

- Reduce redundancy with PCA compression
- Save space and matching time



Spin images generated from vertices along this curve

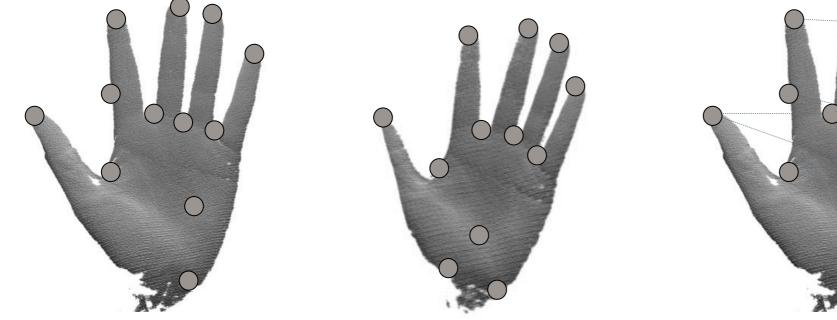


Images from [Johnson 97]

Spin Image Matching

Can detect geometrically similar parts

• But there are limitations





Detected feature points

Matched points

Problem #1: False positive/negative

False positive

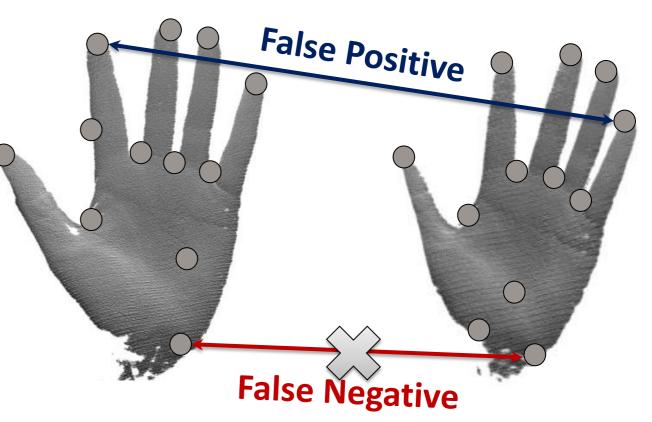
 Saying that two points match when in fact they don't

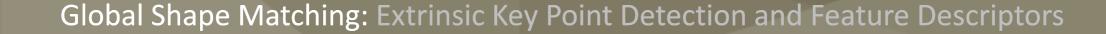
False negative

 Saying that two points don't match when in fact they do

Aka "noise" or "outliers"

 Occurs with any type of descriptor





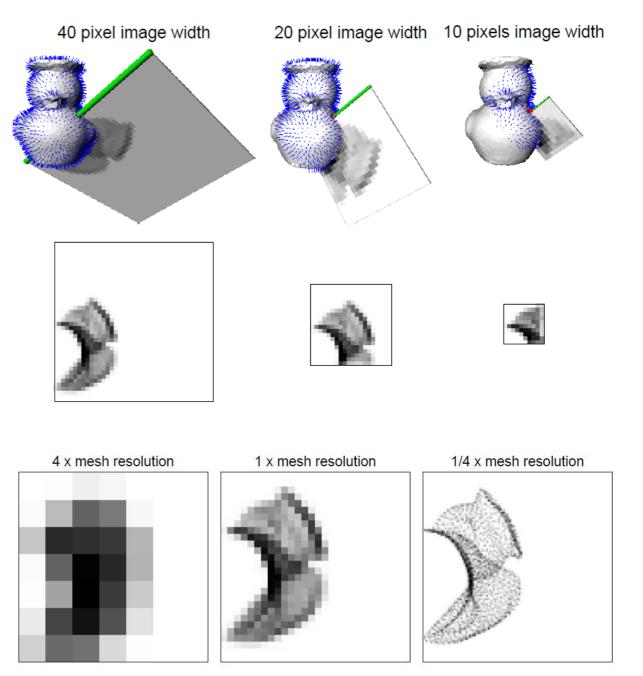
Problem #2: Parameter Selection

Examples of parameters for spin images

- Bin size
- Image width
- Support angle
- Mesh resolution

How to pick the best parameters?

- Fortunately well analyzed for spin images
- Others are studied/analyzed to varying degrees



Images from [Johnson 97]

Problem #3: Non-unique patches

What to do in flat / spherical / cylindrical regions?

- In this case, the region is not "unique" or distinctive
- Does it make sense to compare such regions?
 - Increasing the scale/support

Use multi-scale features, select scale automatically

- Use "Global" features
 - e.g. heat diffusion signature

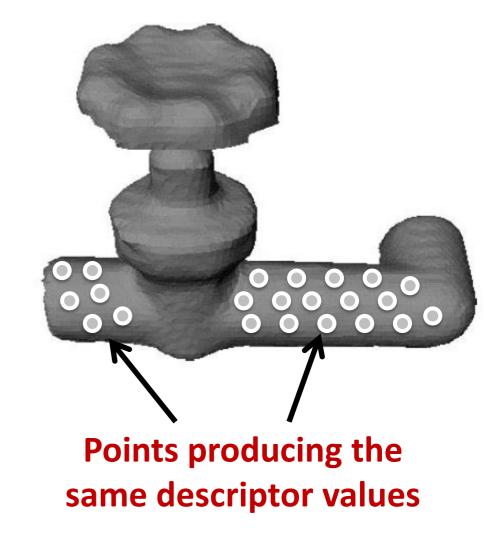


Image from [Johnson 97]

Conclusion

Feature descriptors

- Very useful for narrowing down search space
- Does not solve the problem completely
- Additional optimization in the (reduced) search space is needed → explored in the next few talks!