Global Shape Matching

Section 3.3: Articulated Matching using Graph Cuts

Articulated Shape Matching

Feature-based matching alone is not enough to find correspondences

- Good for narrowing down search space

In this section: Leverage this idea to perform articulated
shape matching

Correspondence Problem Classification

How many meshes?

- Two: Pairwise registration
- More than two: multi-view registration

Initial registration available?

- Yes: Local optimization methods
- No: Global methods

Class of transformations?

- Rotation and translation: Rigid-body (multiple parts)
- Non-rigid deformations

Basic Idea

Two main steps

1. Motion Sampling: Find small set of transformations describing surface movement
2. Optimization: Figure out where to apply which transformation so that the surfaces match

Basic Idea: Motion Sampling

- Each feature match guesses how that point moved
- Each match = a rigid transformation candidate
- Property of articulated shapes: each rigid part moves according to a single rigid transformation
- Many transformation candidates will be the same!
- Use voting scheme to group similar transformations

Basic Idea: Optimization

- If we know the movement of each part (i.e. extract set of transformations $\{\mathbf{T}\}$)
- Find an assignment of transformations to the points that "minimizes registration error"

Source Shape P

Transformations from finite set

Target Shape Q

Basic Idea: Optimization

Find the assignment of transformations in $\{T\}$ to points in P, that maximizes:

$$
P^{(\text {match })}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P_{i}^{(\text {single })} \prod_{i, j=1}^{n} P_{i, j}^{(\text {compatible })}, x_{i} \in\{T\}
$$

"Data" and "Smoothness" terms evaluate quality of assignment

Source Shape P

Transformations from finite set

Target Shape Q

How to find transformations?

Global search / feature matching strategy [CZ08]

- Sample transformations in advance by feature matching
- Inspired by partial symmetry detection [MGP06]
- Covered later in the course!

Motion Sampling Illustration

Find transformations that move parts of the source to parts of the target

Source Shape

Target Shape

Motion Sampling Illustration

Find transformations that move parts of the source to parts of the target

Source Shape
Target Shape

Motion Sampling Illustration

Find transformations that move parts of the source to parts of the target

Source Shape

Target Shape

Motion Sampling Illustration

Find transformations that move parts of the source to parts of the target

Source Shape
Target Shape
Transformation Space

Motion Sampling Illustration

Find transformations that move parts of the source to parts of the target

Basic idea

Find the assignment of transformations in $\{T\}$ to points in P, that maximizes:

$$
P^{(\text {match })}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P_{i}^{(\text {single })} \prod_{i, j=1}^{n} P_{i, j}^{(\text {compatible })}, x_{i} \in\{T\}
$$

"Data" and "Smoothness" terms evaluate quality of assignment
A discrete labelling problem \rightarrow Graph Cuts for optimization

Source Shape P

Transformations from finite set -

Data Term

For each mesh vertex: Move close to target How to measure distance to target?

- Apply assigned transformation $\mathrm{T}_{p_{i}}$ for all $p_{i} \in P$
- Measure distance to closest point q_{j} in target

Smoothness Term

For each mesh edge: preserve length of edge

$$
V\left(p_{i}, p_{j}, \mathrm{~T}_{p_{i}}, \mathrm{~T}_{p_{j}}\right)=|\underbrace{\left\|p_{i}-p_{j}\right\|}_{\text {Original Length }}-\|\underbrace{\| \mathrm{T}_{p_{i}}\left(p_{i}\right)-\mathrm{T}_{p_{j}}\left(p_{j}\right)}_{\text {Transformed Length }}\||
$$

- Both versions of $\mathrm{T}_{p_{j}}\left(p_{j}\right)$ moved p_{j} close to the target
- Disambiguate by preferring the one that preserves length

Symmetric Cost Function

Swapping source / target can give different results

- Optimize $\{\mathrm{T}\}$ assignment in both meshes
- Assign $\{\mathrm{T}\}$ on source vertices, $\left\{\mathrm{T}^{-1}\right\}$ on target vertices
- Enforce consistent assignment: penalty when $\mathrm{T}_{p_{i}} \neq \mathrm{T}_{q_{j}}$

Optimization Using Graph Cuts

$\boldsymbol{a r g m i n}$ Data $_{\text {Source }}+$ Smoothness $_{\text {Source }}+$
Assignment from a set of transformations

Data $_{\text {Target }}+$ Smoothness $_{\text {Target }}+$ Symmetric Consistency Source \& Target

- Data and smoothness terms apply to both shapes
- Additional symmetric consistency term
- Weights to control relative influence of each term
- Use "graph cuts" to optimize assignment
- [Boykov, Veksler \& Zabih PAMI '01]

Synthetic Dataset Example

Source

Target

Motion Segmentation (from Graph Cuts)

Aligned Result

Synthetic Dataset w/ Holes

Arm Dataset Example

Source

Noisy Target

Arm Dataset Example

Distance (from Target) to the closest point (\% bounding box diagonal)

Motion Segmentation

Performance

Dataset	\#Points	\# Labels	Matching	Clustering	Pruning	Graph Cuts
Horse	8431	1500	2.1 min	3.0 sec	(skip) 1.6 sec	1.1 hr
Arm	11865	1000	55.0 sec	0.9 sec	12.4 min	1.2 hr
Hand (Front)	8339	1500	14.5 sec	0.7 sec	7.4 min	1.2 hr
Hand (Back)	6773	1500	17.3 sec	0.9 sec	9.4 min	1.6 hr

Graph cuts optimization is most time-consuming step

- Symmetric optimization doubles variable count
- Symmetric consistency term introduces many edges Performance improved by subsampling
- Use k-nearest neighbors for connectivity

Pros/Cons

Pro: Feature matching is insensitive to initial pose
Con: May fail to sample transformations properly when too much missing data / non-rigid motion

Con: Hard assignment of transformations

Source

Registration

Conclusions

Global shape matching for articulated shapes

- Features provide candidate transformations describing surface movement
- Optimize the assignment of transformations using graph cuts
- No marker, template, segmentation information needed
- Robust to occlusion \& missing data

Thank you for listening!

