

33rd ANNUAL CONFERENCE OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Dynamic Geometry Processing

EG 2012 Tutorial

Local, Rigid, Pairwise

The ICP algorithm and its extensions

Niloy J. Mitra

University College London

Geometric Matching

Matching with Translation

Matching with Rigid Transforms

Partial Matching

Local vs. Global Matching

global registration any rigid transform

local registration nearly aligned

Given M_1, \ldots, M_n , find T_2, \ldots, T_n such that $M_1 \approx T_2(M_2) \cdots \approx T_n(M_n)$

ICP: Local, partial, rigid transforms

How many point-pairs are needed to *uniquely* define a rigid transform?

 $\mathbf{p}_1 \rightarrow \mathbf{q}_1$ $\mathbf{p}_2 \rightarrow \mathbf{q}_2$ $\mathbf{p}_3 \rightarrow \mathbf{q}_3$ $R\mathbf{p}_i + t \approx \mathbf{q}_i$ $\mathbf{p}_i \xrightarrow{?} \mathbf{q}_i$

Correspondence problem:

Pairwise Rigid Registration Goal

Align two partially-overlapping meshes, given initial guess for relative transform

Outline

ICP: Iterative Closest Points

Classification of ICP variants

- Faster alignment
- Better robustness

ICP as function minimization

Thin-plate spline (non-rigid ICP)

If correct correspondences are known, can find correct relative rotation/translation

How to find correspondences:

User input? Feature detection? Signatures?

Assume: Closest points as corresponding

$$\mathbf{p}_i
ightarrow \mathcal{C}(\mathbf{p}_i)$$

... and iterate to find alignment

Iterative Closest Points (ICP) [Besl and McKay 92]

Converges if starting poses are *close enough*

Basic ICP

Select (e.g., 1000) random points

Match each to closest point on other scan, using data structure such as *k*-d tree

Reject pairs with distance > *k* times median

Construct error function:

$$E := \sum_{i} (R\mathbf{p}_{i} + t - \mathbf{q}_{i})^{2}$$

Minimize (closed form solution in [Horn 87])

ICP Variants

Variants of basic ICP

- 1. Selecting source points (from one or both meshes)
- 2. Matching to points in the other mesh
- 3. Weighting the correspondences
- 4. Rejecting certain (outlier) point pairs
- 5. Assigning an error metric to the current transform
- 6. Minimizing the error metric w.r.t. transformation

Performance of Variants

Can analyze various aspects of performance:

- Speed
- Stability
- Tolerance of noise and/or outliers
- Maximum initial misalignment

Comparisons of many variants of ICP [Rusinkiewicz & Levoy, 3DIM 2001]

ICP Variants

- 1. Selecting source points (from one or both meshes)
- 2. Matching to points in the other mesh
- **3.** Weighting the correspondences
- 4. Rejecting certain (outlier) point pairs
- 5. Assigning an error metric to the current transform
- 6. Minimizing the error metric w.r.t. transformation

Using point-to-plane distance instead of point-to-point allows flat regions slide along each other [Chen and Medioni 91]

point-to-point

point-to-plane

Error function:

$$E := \sum_{i} ((R\mathbf{p}_i + t - \mathbf{q}_i) \cdot \mathbf{n}_i)^2$$

where R is a rotation matrix, t is translation vector

$$\mathbf{p}_i \to R\mathbf{p}_i + t$$

$$\mathbf{p}_i
ightarrow \mathbf{ar{c}} + \mathbf{p}_i imes \mathbf{c}$$

Overconstrained linear system

$$\mathbf{A} = \begin{pmatrix} \leftarrow p_1 \times n_1 \rightarrow \leftarrow n_1 \rightarrow \\ \leftarrow p_2 \times n_2 \rightarrow \leftarrow n_2 \rightarrow \\ \vdots & \vdots & \end{pmatrix}, \qquad x = \begin{pmatrix} r_x \\ r_y \\ r_z \\ t_x \\ t_y \\ t_z \end{pmatrix}, \qquad b = \begin{pmatrix} -(p_1 - q_1) \cdot n_1 \\ -(p_2 - q_2) \cdot n_2 \\ \vdots & \end{pmatrix}$$

Ax = b,

Solve using least squares

$$\mathbf{A}^T \mathbf{A} x = \mathbf{A}^T b$$
$$x = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T b$$

Improving ICP Stability

Closest *compatible* point

Stable sampling

ICP Variants

1. Selecting source points (from one or both meshes)

2. Matching to points in the other mesh

- 3. Weighting the correspondences
- 4. Rejecting certain (outlier) point pairs
- 5. Assigning an error metric to the current transform
- 6. Minimizing the error metric w.r.t. transformation

Closest Compatible Point

Closest points are often bad as corresponding points

Can improve matching effectiveness by restricting match to compatible points

- Compatibility of colors [Godin et al. 94]
- Compatibility of normals [Pulli 99]
- Other possibilities:

curvatures, higher-order derivatives, and other local features

ICP Variants

1. Selecting source points (from one or both meshes)

- 2. Matching to points in the other mesh
- 3. Weighting the correspondences
- 4. Rejecting certain (outlier) point pairs
- 5. Assigning an error metric to the current transform
- 6. Minimizing the error metric w.r.t. transformation

Selecting Source Points

Use all points

Uniform subsampling

Random sampling

Stable sampling [Gelfand et al. 2003]

 Select samples that constrain all degrees of freedom of the rigid-body transformation

Eurographics 2012, Cagliari, Italy

Stable Sampling

Uniform Sampling

Stable Sampling

Covariance Matrix

Aligning transform is given by $A^{T}Ax = A^{T}b$, where

$$\mathbf{A} = \begin{pmatrix} \leftarrow p_1 \times n_1 \rightarrow \leftarrow n_1 \rightarrow \\ \leftarrow p_2 \times n_2 \rightarrow \leftarrow n_2 \rightarrow \\ \vdots & \vdots & \end{pmatrix}, \qquad x = \begin{pmatrix} r_x \\ r_y \\ r_z \\ t_x \\ t_y \\ t_z \end{pmatrix}, \qquad b = \begin{pmatrix} -(p_1 - q_1) \cdot n_1 \\ -(p_2 - q_2) \cdot n_2 \\ \vdots & \end{pmatrix}$$

Covariance matrix $C = A^T A$ determines the change in error when surfaces are moved from optimal alignment

Sliding Directions

Eigenvectors of C with small eigenvalues correspond to sliding transformations

3 small eigenvalues2 translation1 rotation

3 small eigenvalues3 rotation

2 small eigenvalues1 translation1 rotation

1 small eigenvalue 1 translation

Stability Analysis

Sample Selection

Select points to prevent small eigenvalues

Based on C obtained from sparse sampling

Simpler variant: normal-space sampling

- Select points with uniform distribution of normals
- Pro: faster, does not require eigenanalysis
- Con: only constrains translation

Result

Stability-based or normal-space sampling important for smooth areas with small features

Random sampling

Normal-space sampling

Selection vs. Weighting

Could achieve same effect with weighting

Hard to ensure enough samples in features except at high sampling rates

However, have to build special data structure

Preprocessing / run-time cost tradeoff

Improving ICP Speed

Projection-based matching

1. Selecting source points (from one or both meshes)

2. Matching to points in the other mesh

- **3.** Weighting the correspondences
- 4. Rejecting certain (outlier) point pairs
- 5. Assigning an error metric to the current transform
- 6. Minimizing the error metric w.r.t. transformation

Finding Corresponding Points

Finding closest point is most expensive stage of the ICP algorithm

- Brute force search O(n)
- Spatial data structure (e.g., k-d tree) O(log n)

Projection to Find Correspondences

Idea: use a simpler algorithm to find correspondences

For range images, can simply project point [Blais 95]

- Constant-time
- Does not require precomputing a spatial data structure

Projection-Based Matching

Slightly worse performance per iteration

Each iteration is one to two orders of magnitude faster than closest-point

Result: can align two range images in a few *milliseconds*, vs. a *few seconds*

Application

Given:

- A scanner that returns range images in real time
- Fast ICP
- Real-time merging and rendering
- **Result:** 3D model acquisition
 - Tight feedback loop with user
 - Can see and fill holes while scanning

Scanner Layout

Photograph

Real-Time Result

Theoretical Analysis of ICP Variants

One way of studying performance is via empirical tests on various scenes

How to analyze performance analytically?

For example, when does point-to-plane help? Under what conditions does projection-based matching work?

What Does ICP Work?

Two ways of thinking about ICP:

- Solving the correspondence problem
- Minimizing point-to-surface squared distance

ICP is like (Gauss-) Newton method on an approximation of the distance function

What Does ICP Work?

Two ways of thinking about ICP:

- Solving the correspondence problem
- Minimizing point-to-surface squared distance

ICP is like (Gauss-) Newton method on an approximation of the distance function

What Does ICP Do?

Two ways of thinking about ICP:

- Solving the correspondence problem
- Minimizing point-to-surface squared distance

ICP is like Newton's method on an approximation of the distance function

 ICP variants affect shape of global error function or local approximation

Point-to-Surface Distance

Point-to-Point Distance

Point-to-Plane Distance

Point-to-Multiple-Point Distance

Point-to-Multiple-Point Distance

Soft Matching and Distance Functions

Soft matching equivalent to standard ICP on (some) filtered surface

Produces filtered version of distance function ⇒ fewer local minima

Multiresolution minimization [Turk & Levoy 94] or softassign with simulated annealing (good description in [Chui 03])

Distance-field Based Optimization

Precompute piecewise-quadratic approximation to distance field throughout space

Store in "d2tree" data structure

2D

[Mitra et al. 2004]

Distance-field Based Optimization

Precompute piecewise-quadratic approximation to distance field throughout space

Store in "d2tree" data structure

At run time, look up quadratic approximants and optimize using Newton's method

- More robust, wider basin of convergence
- Often fewer iterations, but more precomputation

Convergence Funnel

Translation in x-z plane. Rotation about y-axis.

Convergence Funnel

distance-field formulation

Plane-to-plane ICP

Non-rigid ICP

Thin plate spline [Bookstein '89]

$$J = \int \left(\sum_{i,j} \mathscr{S}_{\mathbf{f}_i \mathbf{f}_j}^2\right) d\mathbf{f}_1 \dots d\mathbf{f}_n$$

Minimize bending energy (second order partial derivatives)

Affine transforms are linear and hence do not contribute to J.

(b) Non-Rigid

(c) Rigid Hair

(d) Non-Rigid

Non-rigid Registration

[Brown and Rusinkiewicz, 2007]