

33rd ANNUAL CONFERENCE OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Deformable Sequence Reconstruction

EG 2012 Tutorial: Dynamic Geometry Processing

Deformable Shape Matching

Basic Principle

Example

Correspondences?

What are We Looking for?

Problem Statement:

Given:

• Two surfaces S_1 , $S_2 \subseteq \mathbb{R}^3$

We are looking for:

• A *reasonable* deformation function $f: S_1 \rightarrow \mathbb{R}^3$ that brings S_1 close to S_2

Example

correspondences?

🖌 no shape match

This is a Trade-Off

Deformable Shape Matching is a Trade-Off:

 We can match any two shapes using a weird deformation field

- We need to trade-off:
 - Shape matching (close to data)
 - Regularity of the deformation field (reasonable match)

Variational Model

Components:

Matching Distance:

Variational Model

Variational Problem:

• Formulate as an energy minimization problem:

Part 1: Shape Matching

Data Term:

• Objective Function:

 $E^{(match)}(f) = dist(f(S_1, S_2))$

- Distance measures:
 - Least-squares (L₂)
 - Reweighted (robustness)
 - Hausdorf distance
 - L_p -distances, etc.
- L₂ measure is frequently used (models Gaussian noise)
 - Reweighting/truncation for robustness

Surface Approximation

Basic: Closest point matching

- "Point-to-point" energy
- Usually iterated: "Iterated Closest Points (ICP)"
 - Establish nearest-neighbor correspondences
 - Minimize energy (with regularizer)

Surface Approximation

Improvement: Linear approximation

- "Point-to-plane" energy
- Fit plane to *k*-nearest neighbors

Robust Least-Squares

Robustness: Reweighting

- Ignore Outliers
 - Large distance
 - Connection to normal at large angle
 - Many matches to one point

Variational Model

Variational Problem:

• Formulate as an energy minimization problem:

Deformation Model

What is a "nice" deformation field?

- Elastic deformation
 - Volumetric elasticity
 - Thin shell model (more complex)
- Intrinsic
 - Isometric matching
- Smooth deformations
 - "Thin-plate-splines" (TPS)
 - Allowing strong deformations, but keep shape

E ^{(regularize}	(f)

Deformation Model

What is a "nice" deformation field?

- Elastic deformation
 - Volumetric elasticity
 - Thin shell model (more complex)
- Intrinsic
 - Isometric matching
- Smooth deformations
 - "Thin-plate-splines" (TPS)
 - Allowing strong deformations, but keep shape

How to Detect Deformations?

Model

- Map volume to volume
- Function $f: V \to \mathbb{R}^3$

How to Detect Deformations?

Detect deformation

- Look at "deformation gradients"
- Jacobian matrix ∇f
- Function $\nabla f: V \to \mathbb{R}^3$

Criterion

- No deformation: ∇f ort
- Deformation:
- ∇f orthogonal
 - ∇f non-orthogonal

Elastic Volume Model

Extrinsic Volumetric "As-Rigid-As Possible"

- Measure orthogonality
- Integrate over deviation from orthogonality

$$E(f) = \int_{V_1} \left\| \left[\nabla f(\mathbf{x}) \right] \left[\nabla f(\mathbf{x}) \right]^{\mathrm{T}} - \mathbf{I} \right\|_F^2 d\mathbf{x}$$

Deformable ICP

How to build a deformable ICP algorithm

- Pick a surface distance measure
- Pick an deformation model / regularizer

Deformable ICP

Deformable ICP Algorithm

- Select model: *E*^(match), *E*^(regularizer)
- Initialize $f(S_1)$ with S_1 (i.e., f = id)
- (Non-linear) optimization:
 - Newton, Gauss Newton
 - LBGFS (quick & effective)

Animation Reconstruction

Reconstructing Sequences of Deformable Shapes

"Factorization" Approach

Hierarchical Merging

f(*S*)

f S

Hierarchical Merging

f(*S*)

f

Initial Urshapes

f(*S*) f

Initial Urshapes

data

f(*S*)

f

Alignment

data

f(*S*)

f

Alignment

data

f(*S*)

f

Hierarchical Alignment

data

f(*S*)

f

Hierarchical Alignment

data

f(*S*)

f

Global Optimization

Energy Function

 $E(\mathbf{f}, S) = E_{data} + E_{deform} + E_{smooth}$

Components

- *E*_{data}(**f**, **S**)
- E_{deform}(f)

- elastic deformation, smooth trajectory

• E_{smooth}(S)

smooth surface

– data fitting

Final Optimization

Minimize over all frames

Deformation Field

• Elastic energy

• Smooth trajectories

Additional Terms

More Regularization

Acceleration:

$$\boldsymbol{E}_{acc} = \int_{T} \int_{V} |\partial_{t}^{2} \mathbf{f}|^{2}$$

- Smooth trajectories
- Velocity (weak):

- Damping

$$\boldsymbol{E_{vel}} = \int_{T} \int_{V} |\partial_t \mathbf{f}|^2$$

Surface Reconstruction

Data fitting

- Smooth surface
- Fitting to noisy data

Results

(Joint work with: Bart Adams, Maksim Ovsjanikov, Alexander Berner, Martin Bokeloh, Philipp Jenke, Leonidas Guibas, Hans-Peter Seidel, Andreas Schilling)

79 frames, 24M data pts, 21K surfels, 315 nodes

120 frames, 30M data pts, 17K surfels, 1,939 nodes

34 frames, 4M data pts, 23K surfels, 414 nodes

Elastic Deformation Energy

 D_i

E_{deform}(f)

Regularization

- Elastic energy
- Smooth trajectories

Discretization

Example Approach:

- Full resolution *geometry*
- Subsample *deformation*

Discretization

"Subspace" Approach:

- Sample volume
- Place basis functions
- Decouple from resolution of geometry

Surface Reconstruction

 \boldsymbol{D}_i

E_{smooth}(S)

Data fitting

- Smooth surface
- Fitting to noisy data

Example

correspondences?

🖌 no shape match

