

33" ANNUAL CONFERENCE OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS



## **Dynamic Geometry Processing**

#### EG 2012 Tutorial

#### Will Chang, Hao Li, Niloy Mitra, Mark Pauly, Michael Wand



# **Articulated Global Registration**

#### Introduction and Overview



**Tutorial: Dynamic Geometry Processing** 

## **Articulated Global Registration**

- Complete models from dynamic range scans
- No template, markers, skeleton, segmentation
- Articulated models
  - Movement described by piecewiserigid components

#### Input Range Scans

Reconstructed 3D Model

#### **Features**

- Handles large, fast motion
- Incomplete scans (holes, missing data)
- 1 or 2 simultaneous viewpoints
- Optimization is over all scans

#### Input Range Scans

**Reconstructed 3D Model** 

## **Reconstructing Articulated Models**

#### • For every frame, determine

- Labeling into constituent parts (per-vertex)
- Motion of each part into reference pose (per-label)
- Solve simultaneously for labels, motion, joint constraints







- Initialization
- Global refinement
- Post-process





#### Initialization

-Coarse pairwise registration





#### Initialization

-Coarse pairwise registration

#### **Global refinement**

-Solve global model incorporating all frames





#### Initialization

-Coarse pairwise registration

#### **Global refinement**

-Solve global model incorporating all frames

#### **Post-process**

-Gather frames, reconstruct mesh





## Part I: Initialization



Tutorial: Dynamic Geometry Processing

Goal: To establish initial correspondence of consecutive frames



Frame *i* and *i*+1

**Registered Result** 



 Point correspondence using feature descriptors



#### Spin Image examples





- 1. Point correspondence using feature descriptors
- 2. Transformation (R,t) per correspondence
- 3. Cluster (R,t)



Transformation Space *se(3)* 



- 1. Point correspondence using feature descriptors
- 2. Transformation (R,t) per correspondence
- 3. Cluster (R,t)
- Optimize using "Graph Cuts" [Boykov et al. 2001]





- 1. Point correspondence using feature descriptors
- 2. Transformation (R,t) per correspondence
- 3. Cluster (R,t)
- Optimize using "Graph Cuts" [Boykov et al. 2001]



Frame *i* 

Frame *i*+1



#### **Initialization Result**



#### **Both Frames**



#### **Registered Result**



## Part II: Global Refinement



## **Global Refinement**

#### **Global refinement**

 Solve global model incorporating all frames





## **Dynamic Sample Graph (DSG)**

#### Sparse representation

- Increases efficiency
- Joints: part connectivity

#### **Continuously updating**

 Update samples from new surface data





Dynamic Sample Graph (DSG)

Extracted Joints



## **Global Refinement**

# Fit the DSG to all scans simultaneously (Global Fit)

#### **Alternating Optimization**

- 1. Optimize Transformations
- 2. Optimize Labels
- 3. Update joint locations

#### **Repeat until convergence**

3-5 iterations/frame

Update samples



## **Transformation Optimization**

- Align DSG as closely as possible to all scans
- Labels fixed
- Measure alignment using closest point distance





## **Transformation Optimization**

- Multi-part, multi-frame articulated Iterative Closest Point (ICP)
  - Update closest point
  - Solve for transformation
  - Repeat until convergence
- Gauss-Newton for nonlinear least squares



(Converged)



#### **Joint Constraint**

# Prevents parts from separating

#### Two types of joints

- Ball Joints (3 DOF)
- Hinge Joints (1 DOF)
- Derived from part boundaries & transformations solved so far



#### Reconstructed Joints



#### **Joint Constraint**





## **Label Optimization**

- Change the labels to produce better alignment
- Transformations fixed
- Measure alignment using closest point distance





## **Label Optimization**

- Graph Cuts [Boykov et al. 2002]
- Data constraint: minimize distance
- Smoothness constraint: consolidate labels





### **Global Refinement: Step Through**



Eurographics

OR COMPUTER GRAPHICS



(Converged)

#### **Global Refinement: Fast Forward**

Simultaneous Registration of All Frames (125x Fast Forward)



Idle



## **Post-processing**

- Gather all frames into reference pose
- Resample surface, reconstruct mesh





# Results



Tutorial: Dynamic Geometry Processing

### **Results: Registration**



**Reconstructed Model** 

- Intel Xeon 2.5 GHz
- 90 Frames
- 7 Parts
- 0.84 million points
- 5000 DSG samples
- Total 165 mins
- 110 sec/frame



#### **Results: Registration**





#### **Results: Registration**

Pink Panther (Faster Input Motion) Frame 0 Input Range Scans Reconstructed Model

- Intel Xeon 2.5 GHz
- 40 Frames
- 10 Parts
- 2.4 million points
- 4000 DSG samples
- Total 75 mins
- 113 sec/frame



#### **Ground truth comparison**





#### Red: Ground-truth Blue: Reconstructed



#### **Results: Inverse Kinematics**





#### Limitations

#### **Piecewise rigid approximation**

Non-Rigid Datasets from Wand et al. [2009]



Hand-2



Popcorn Tin



#### Limitations

#### **Needs sufficient overlap**



#### Limitations

#### **Needs sufficient overlap**





# **Articulated Global Registration**

## **Implementation Details**



**Tutorial: Dynamic Geometry Processing** 

#### **Major Implementation Issues**

#### **Global registration T-step**

Simple outline of the essential steps

Setting up the non-linear system for optimization

#### **Global registration W-step**

Setting up the graph-cut optimization



## The algorithm in essence

**At the end of the day:** we have a huge "database" of closest-point correspondences.

#### Each correspondence has the following info:

- Source point info, including
  - Frame of origin (f)
  - Original vertex position & normal in scan (x, n<sub>x</sub>)
  - Weight (w)
- Target point info, including
  - Frame of origin (g)
  - Original vertex position & normal in scan (y, n<sub>y</sub>)

Always a sample from the DSG!

## Naïve method vs. DSG

#### A simple way to setup the optimization:





#### Naïve method vs. DSG

#### Using the DSG:



## Life of a "sample point"

A sample point has multiple target points

• A target for each frame and for each transformation

Example

ographics

- A sample point from frame *f* has
  - a target point to frame *f*+1
  - a target point to frame *f*+2
  - a target point to frame *f*+3 (etc...)

How to find the target points?

- Transform from frame  $f \rightarrow g$  (using current weight)
- The closest point is the target!

#### How to setup the optimization?

$$\underset{\mathcal{T},\mathcal{W}}{\operatorname{argmin}} \quad \alpha \, \mathcal{E}_{\operatorname{fit}}(\mathcal{T},\mathcal{W}) \, + \, \beta \, \mathcal{E}_{\operatorname{joint}}(\mathcal{T}) \, + \, \gamma \, \mathcal{E}_{\operatorname{weight}}(\mathcal{W})$$

$$\mathcal{E}_{\mathrm{fit}}(\mathcal{T}, \mathcal{W}) = \sum_{\mathbf{x} \in S} \sum_{\substack{\mathbf{x} \in S \\ \mathrm{Valid} \ \mathbf{y}_{j^*}^{(g)}}} d\left(T_{j^*}^{(f \to \mathrm{Ref})}(\mathbf{x}), T_{j^*}^{(g \to \mathrm{Ref})}\left(\mathbf{y}_{j^*}^{(g)}\right)\right)$$

$$\begin{aligned} \mathcal{E}_{\text{joint}}(T) &= \sum_{\text{All} F_f} \sum_{\substack{\text{Valid Joints} \\ (\mathbf{u}_{ij}, \vec{\mathbf{v}}_{ij})}} \sum_{t \in \mathbb{R}^3} \\ & \left\| T_i^{(f \to \text{Ref})^{-1}} (\mathbf{u}_{ij} + t \vec{\mathbf{v}}_{ij}) - T_j^{(f \to \text{Ref})^{-1}} (\mathbf{u}_{ij} + t \vec{\mathbf{v}}_{ij}) \right\|^2 \end{aligned}$$

$$\mathcal{E}_{\text{weight}}(\mathcal{W}) = \sum_{(\mathbf{x}, \mathbf{y}) \in E} I(\mathbf{w}_{\mathbf{x}} \neq \mathbf{w}_{\mathbf{y}})$$



## Non-linear optimization by linearization

#### We solve it by repeatedly linearizing the objective

How to linearize a rigid transformation T = (R,t)?

- $T(\mathbf{x}) = R\mathbf{x} + t$  (R = rotation matrix, t = translation)
- $T(\mathbf{x}) \sim (I + w^{\wedge}) \mathbf{x} + v$ 
  - w^ is a skew-symmetric matrix, v is a translation
  - This approximates the rotation about the identity
- To linearize about an arbitrary rigid transformation?
  - Apply the approximation as a "correction"
  - $T(\mathbf{x})' = T^{corr} * T(\mathbf{x}) = (I + w^{\wedge}) T(\mathbf{x}) + v$

How about an inverse  $T^{-1} = (R^T, -R^T t)$ ?

- Note  $R^{T} \sim (I + w^{\wedge})^{T} = (I w^{\wedge})$
- Eventually  $T^{-1}(\mathbf{x})' = T^{-1} * T^{corr 1}(\mathbf{x}) = T^{-1}[(\mathbf{x} \mathbf{v}) w^{(\mathbf{x} \mathbf{v})}]$

$$\sim T^{-1}\left[\left(\boldsymbol{x}-\boldsymbol{v}\right)-\boldsymbol{w}^{\boldsymbol{\lambda}}\boldsymbol{x}\right]$$

## **E**<sub>fit</sub> **boils down to:**

$$\begin{bmatrix} -\widehat{(\mathbf{x}')} & I & \widehat{(\mathbf{y}_{j}^{(g)'})} & -I \\ -\left(\widehat{\mathbf{n}}_{y}' \times \mathbf{x}'\right)^{\mathsf{T}} & \widehat{\mathbf{n}}_{y}'^{\mathsf{T}} & \left(\widehat{\mathbf{n}}_{y}' \times \mathbf{y}_{j}^{(g)'}\right)^{\mathsf{T}} & -\widehat{\mathbf{n}}_{y}'^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \boldsymbol{\omega}_{j}^{(f)} \\ \boldsymbol{\nu}_{j}^{(f)} \\ \boldsymbol{\omega}_{j}^{(g)} \\ \boldsymbol{\nu}_{j}^{(g)} \end{bmatrix} = \begin{bmatrix} \mathbf{x}' - \mathbf{y}_{j}^{(g)'} \\ \widehat{\mathbf{n}}_{y}'^{\mathsf{T}} \left(\mathbf{x}' - \mathbf{y}_{j}^{(g)'}\right) \end{bmatrix}$$

First three rows: point-to-point constraint

Fourth row: point-to-plane constraint

- Hat operator  $\land \rightarrow$  "skew-symmetrizes" a vector
- **x'** (or **y'**) = current transformation applied to **x** (or **y**)
- Note: this constraint relates different frames *f* and *g*

$$\mathbf{E}_{\text{joint}} \text{ boils down to:} \\ \begin{bmatrix} R_i^{(f \to \text{Ref})} \mathbf{\hat{u}} & -R_i^{(f \to \text{Ref})} \mathbf{T} & -R_j^{(f \to \text{Ref})} \mathbf{\hat{u}} & R_j^{(f \to \text{Ref})} \end{bmatrix} \begin{bmatrix} \omega_i^{(f)} \\ v_i^{(f)} \\ \omega_j^{(f)} \\ v_i^{(f)} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_i' - \mathbf{u}_j' \end{bmatrix}$$

- $R_i$  and  $R_i$  are the current tfs (before correction)
- **u**' = current transformation applied to **u**
- Note: this constraint doesn't relate different frames

#### **Populating the linear system**

- 1. Simply plug in these formulas
- **2. Put numbers in the right location in the matrix** Example: Suppose we have 3 frames and 2 bones.
  - 2 corresp between  $f_0 \& f_1$  (one for  $b_0$ , one for  $b_1$ )
  - 1 corresp between  $f_0 \& f_2$  (for  $b_0$ )
  - 1 corresp between  $f_1 \& f_2$  (for  $b_1$ )
  - 1 joint between  $b_0$  and  $b_1$  (applies to all frames)





## Solving the system

#### After constructing the matrix:

- (1) Solve for the values of w, v
- (2) Convert them to a rigid tf (exponential map)
- (3) Apply correction
- (4) Repeat until convergence ( $\delta$  error < threshold)

A number of sparse linear solvers exist

-- We used TAUCS



## Setting up the graph-cut optimization

#### We need to solve for the weights

- Evaluate distance to closest point for all transformations and all frames
  - This is different in the previous step, where we found the closest point only for the *current* transformation

**Example** (B = number of bones)

- Each sample point from frame *f* has
  - *B* targets to frame *f*+1 (one per transformation)
  - *B* targets to frame *f*+2
  - *B* targets to frame *f*+3 (etc...)

## Setting up the graph-cut optimization

#### Use the same error term as before

- Data term for assigning bone "b" to a sample point x
  - Sum up the error for all frames, and average using the number of valid correspondences used in the sum
  - Special case: (a) rules for "invalidating" closest points exist. (b) If the closest point using the *current* weight is invalid, exclude all target points for that sample (in that frame). (c) Error in units of distance, not distance<sup>2</sup>
- Smoothness term for assigning similar labels nearby
  - Use the "graph" part of the DSG, with constant error
- Can easily use existing graph-cut minimization code

## Conclusions

#### **Articulated Global Registration**

#### Contributions

- Automatic registration algorithm for dynamic subjects
- No template, markers, skeleton, or segmentation needed
- Final result used directly to produce new animations

#### In the future

- -Add non-rigid motion
- -Reduce parameters
- Real-time



#### Input Range Scans



#### **Reconstructed Poseable 3D Model**

# Thank you for your attention!! Questions?



#### Input Range Scans



**Reconstructed Poseable 3D Model** 





## **Additional Comparisons**



## Sliding window comparison





#### Local vs. global comparison



