$33^{\text {rd }}$ ANNUAL CONFERENCE OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Real-time Facial Animation

Hao Li
ILM

Mark Pauly EPFL

High-End 3D Scanning

High-End 3D Scanning

Low-Cost Passive Scanning (AGI soft)

stereo pair

Low-Cost Passive Scanning (AGI soft)

stereo pair

3D scan

Low-Cost Active Scanning + Temporal Upsampling

Microsoft Kinect \& Kinect Fusion

Rigging \& Animation

Rigging \& Animation

Typical Facial Animation Workflow in Industry

Typical Facial Animation Workflow in Industry

3D Scanning

Typical Facial Animation Workflow in Industry

3D Scanning
Modeling + Fitting

Typical Facial Animation Workflow in Industry

Modeling

Typical Facial Animation Workflow in Industry

Markerless Facial Capture

3D range sensor

3D range sensor

$$
\begin{aligned}
& \text { Motion can be } \\
& \text { Captured at the } \\
& \text { Same Resolution } \\
& \text { as the Geometry }
\end{aligned}
$$

USC ICT Light Stage 5

USC ICT Light Stage 5

Goal

Goal

Template-Based Tracking

Template-Based Tracking

Template-Based Tracking

analyze
deformation

Template-Based Tracking

analyze

deformation

Template-Based Tracking

Template-Based Tracking

transfer

deformation

Template-Based Tracking

Template-Based Tracking

transfer
deformation

Correspondences Problem

Correspondences Problem

Correspondences Problem

Correspondences Problem

Non-Rigid Registration

Pair of 3D Scans

Pair of 3D Scans

Pair of 3D Scans

target
source

Correspondences are Lost

Correspondences are Lost

Correspondences are Lost

Overlapping Regions are Lost

Non-Rigid Registration

Non-Rigid Registration

Three Ingredients

Three Ingredients

source

Three Ingredients

Challenges

Challenges

detect
overlap

Challenges

Observation

detect

 overlap
Observation

Observation

Observation

Observation

detect

 overlap
Observation

Observation

global optimization via local refinement

Iterative Global Optimization

Iterative Global Optimization

detect overlap
deform

Iterative Global Optimization

detect overlap
deform

Iterative Global Optimization

correspond

detect overlap
deform

Iterative Global Optimization

Iterative Global Optimization

Iterative Global Optimization

closest point
detect overlap
deform

Iterative Global Optimization

closest point
detect overlap
deform

Iterative Global Optimization

Iterative Global Optimization

deform

Iterative Global Optimization

deform

Iterative Global Optimization

deform

Iterative Global Optimization

Embedded Deformation Model

detail preservation global consistency

Embedded Deformation Model

detail preservation global consistency

Embedded Deformation Model

Non-Linear Energy Minimization

$E_{\text {rigid }}$

Non-Linear Energy Minimization

$E_{\text {rigid }}$

Non-Linear Energy Minimization

Non-Linear Energy Minimization

Non-Linear Energy Minimization

$$
E_{\text {rigid }}
$$

Non-Linear Energy Minimization

[Chen \& Medioni '92]

$$
E_{\text {plane }}
$$

$E_{\text {point }}$

Non-Linear Energy Minimization

Non-Linear Energy Minimization

[Chen \& Medioni '92]
$E_{\text {tot }}=E_{\text {plane }}+\alpha_{\text {point }} E_{\text {point }}+\alpha_{\text {rigid }} E_{\text {rigid }}+\alpha_{\text {smooth }} E_{\text {smooth }}$
non-linear least squares
minimization

Non-Linear Energy Minimization

[Chen \& Medioni '92]

$$
E_{\text {tot }}=E_{\text {plane }}+\alpha_{\text {point }} E_{\text {point }}+\alpha_{\text {rigid }} E_{\text {rigid }}+\alpha_{\text {smooth }} E_{\text {smooth }}
$$

non-linear least squares
minimization
Gauss-Newton method

Non-Linear Energy Minimization

Non-Linear Energy Minimization

Non-Linear Energy Minimization

[Chen \& Medioni '92]

$$
E_{\text {tot }}=E_{\text {plane }}+\alpha_{\text {point }} E_{\text {point }}+\alpha_{\text {rigid }} E_{\text {rigid }}+\alpha_{\text {smooth }} E_{\text {smooth }}
$$

non-linear least squares minimization

Gauss-Newton method

Jacobian is
sparse
sparse Cholesky factorization

Template-Based Tracking

Not only for Faces!

Not only for Faces!

template

Not only for Faces!

template

3D scan

Not only for Faces!

Requirements for a Practical System

Requirements for a Practical System

Requirements for a Practical System

1.Real-time performance

Requirements for a Practical System

$\xrightarrow{2}$

1.Real-time performance

2.Robustness to noise

Requirements for a Practical System

$\xrightarrow{2}$

1.Real-time performance
2.Robustness to noise
3.High-level semantics

Real-time Facial Capture

Objective

Building Expression Space

Building Expression Space

tracked template

input scan

Expression PCA for Reduced Dimension

Expression PCA for Reduced Dimension

Expression PCA for Reduced Dimension

Principal Component Analysis

Expression PCA for Reduced Dimension

Principal Component Analysis

Expression PCA for Reduced Dimension

Principal Component Analysis

Expression PCA for Reduced Dimension

Expression PCA for Reduced Dimension

Principal Component Analysis

