

33rd ANNUAL CONFERENCE OF THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS

Real-time Facial Animation

Hao Li ILM Mark Pauly EPFL

High-End 3D Scanning

High-End 3D Scanning

Low-Cost Passive Scanning (AGI soft)

stereo pair

Low-Cost Passive Scanning (AGI soft)

stereo pair

3D scan

Low-Cost Active Scanning + Temporal Upsampling

Microsoft Kinect & Kinect Fusion

Eurographics 2012, Cagliari, Italy

Rigging & Animation

Rigging & Animation

3D Scanning

Modeling

Markerless Facial Capture

Eurographics 2012, Cagliari, Italy

3D range sensor

3D range sensor Motion can be Captured at the Same Resolution as the Geometry

USC ICT Light Stage 5

USC ICT Light Stage 5

Goal

Goal

Correspondences Problem
Correspondences Problem

Correspondences Problem

Correspondences Problem

Non-Rigid Registration

Eurographics 2012, Cagliari, Italy

Pair of 3D Scans

Eurographics 2012, Cagliari, Italy

Pair of 3D Scans

Pair of 3D Scans

Correspondences are Lost

Correspondences are Lost

Correspondences are Lost

overlapping regions

Non-Rigid Registration

Non-Rigid Registration

source

Challenges

Challenges

Challenges

Challenges

detect overlap

Observation

detect overlap

Observation

detect overlap

Observation

global optimization via local refinement

correspond	
detect overlap	
deform	

correspond	
detect overlap	
deform	

detail preservation global consistency

detail preservation

global consistency

 $E_{\rm smooth}$

[Chen & Medioni '92] $E_{\text{tot}} = \boxed{E_{\text{plane}}} + \alpha_{\text{point}} \boxed{E_{\text{point}}} + \alpha_{\text{rigid}} \boxed{E_{\text{rigid}}} + \alpha_{\text{smooth}} \boxed{E_{\text{smooth}}}$

Template-Based Tracking

template

template

3D scan

1.Real-time performance

1.Real-time performance

2. Robustness to noise

1.Real-time performance

2. Robustness to noise

3. High-level semantics

Real-time Facial Capture

Objective

Building Expression Space

tracked template

input scan

Building Expression Space

tracked template

input scan

Expression PCA for Reduced Dimension

