

Introduction

- Lighting distance large compared to extent of material sample
- Materials are applied to opaque physical objects (furniture, walls, car interior, cloth, ...)
- Neglect near-field illumination and explicit lighttransport between surface points
- Measure only far-field reflectance field of sample
- Bidirectional Texture Function [Dana et al. 1997]

EG 2007 Tutorial: Capturing Reflectance - From Theory to Practice

Gero Mülle

BTF Camera Array

- Custom built hemi-spherical aluminium gantry (80 cm radius) mounted on aluminium base rack
- 151 Canon Powershot A75 digicams (3.2 mpixel)
 - cheapest consumer camera with powerful SDK
 - built-in light source (supports different intensities)
- USB-controllable 160-port relay box for on/off toggling
- Custom built power supply

EG 2007 Tutorial: Capturing Reflectance - From Theory to Practice

Statistical Data Analysis

• Linear approaches

- Full BTF-matrix factorization [Koudelka et al. 2003] [Liu et al. 2004]
- Per-texel ABRDF factorization
- [Suykens et al. 2003]
- Per-view factorization
- [Sattler et al. 2003]
- Per-cluster factorization [Mueller et al. 2003]
- Tensor approaches
- TensorTextures [Vasilescu et al. 2004]
- Out-of-Core Tensor Approximation [Wang et al. 2005]

5

Gero Mülle

Per-Cluster Factorization Advantages Low-term factored representation suitable for GPU implementation Good compression Reconstruction per cluster reduces quantization artifacts Problems Expensive fitting Mip-Mapping

Storage Requirements

Model	Storage (L , V , T)	V = L =81, T =256 ²
		8-Bit per channel
Raw BTF	L * V * T	1.2 GB
Analytical BRDF-Model	<i>f</i> (k)* T	(k=2) 2.4 MB
Hemispherical Function	$f(k)^{*} V ^{*} T $	(k=2) 95 MB
BTF Factorization	$c^*(V ^* L + T)$	(c=40) 8.6 MB
ABRDF Factorization	$d^*(V {+} L)^* T $	(d=2) 63 MB
Per-View Factorization	$ V ^*c^*(L + T)$	(c=4) 64 MB
Per-Cluster Factorization	$c^{*}(k^{*}(V ^{*} L) + T)$	(k=32, c=8)
		6.6 MB

Practical Issues

EG 2007 Tutorial: Capturing Reflectance - From Theory to Practice

• Factorization approaches require computing SVD of large matrices (up to several GBs)

Gero Mülle

- Use incremental/online SVD methods
 - Arnoldi iteration
 - EM-PCA [Roweis 1998]
 - Online SVD [Brand 2003]

EG 2007 Tutorial: Capturing Reflectance - From Theory to Practice

- ...

Using geometry information

- Fitting local coordinate systems
 - In-between image- and geometry-based BTF representation
- Can be done efficiently using FFT over the group of rotations SO(3) [Müller et al. EG2006]

EG 2007 Tutorial: Capturing Reflectance - From Theory to Practice

Gero Müller

Rendering

Rendering

 Determine color / visible radiance for every point

"Exitant Radiance = Emitted Rad. + Reflected Rad."

$$L_r(\mathbf{x}, \mathbf{v}) = L_e(\mathbf{x}, \mathbf{v}) + L_{ref}(\mathbf{x}, \mathbf{v})$$

"Reflected Rad. = Incoming Rad. combined with reflection properties"

$$L_{ref}\left(\mathbf{x},\mathbf{v}\right) = \int_{\Omega} \rho_{\mathbf{x}}^{*}\left(\mathbf{v},\mathbf{l}\right) \cdot L_{i}\left(\mathbf{x},\mathbf{l}\right) d\mathbf{l}$$

spatially varying reflectance includes foreshortening term

EG 2007 Tutorial: Capturing Reflectance - From Theory to

Hardware Supported Angular Interpolation

- Reparameterization
 - Approximately uniform sampling of hemisphere
 - Suitable for hardware filtering
 - Parabolic Maps

Anti-Aliasing Mip-Mapping compressed BTFs No problem for Eigen-Texture based compression (full-matrix factorization, per-view factorization) Other techniques depend non-linear on compression parameters GPU supported Mip-Mapping not possible

- Standard Mip-Mapping on uncompressed data
- Compression of each individual Mip-Map level

EG 2007 Tutorial: Capturing Reflectance - From Theory to Practice

Decompression on GPU

- Full-BTF Factorization/Per-Cluster Factorization
 - Store 4D ABRDFs in 3D texture
 - Use 4D interpolation and combine in pixel shader
 - Cluster look-up

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice

EG 2007 Tutorial: Capturing Reflectance – From Theory to Practice Gero M

Non-Planar Objects

- BTF techniques can be applied to non-planar objects
 - [Furukawa et al. EGRW 2002]
 - [Matusik et al. SIG 2002]
 - [Mueller et al. VAST 2005]

EG 2007 Tutorial: Capturing Reflectance - From Theory to Practice

 Use 3D reconstructed base-geometry instead of planar base geometry

Gero Mülle

Non-Planar Objects

Conclusions

- BTFs capture 6D-slice of the reflectance field of a complex material
- Represents the "look-and feel" of a material
- Several high-quality acquisition setups
- Effective and appearance preserving compression algorithms available

EG 2007 Tutorial: Capturing Reflectance - From Theory to Practice

• Real-time rendering possible with point light sources and image-based lighting

Gero Mül

Challenges

- Editing and modeling
- [Kautz et al. SIG 2007]
- [Müller et al. EGSR 2007]
- Material Perception
- Time variation (recent work only SVBRDFs)

Gero Mülle

- Spectral measurements
- Highly reflective materials

EG 2007 Tutorial: Capturing Reflectance - From Theory to Practice

