

Contrast Restoration by Adaptive Countershading

Grzegorz Krawczyk, Karol Myszkowski, and Hans-Peter Seidel

MPI Informatik, Saarbrücken, Germany

Eurographics 2007, Sept. 7th, Prague

The Importance of Contrast

- Contrast communicates contents of images
 - objects and their texture
 - changes in illumination
 - separates foreground from background
- Contrast influences judgment of overall image quality

planck institut

informatik

Causes of Poor Contrast

max planck institut

informatik

- Contrast lost during HDR tone mapping
 - tone mapping is essentially contrast compression
 - studied in [Smith et al. 2006]
 - results are numerically optimized
 - further enhancement requires 'non-numerical' knowledge
- Weak contrast in images caused by poor illumination
 - impedes comprehension of spatial organization [Luft et al. 2006]

Purpose: Contrast Restoration max planck institut informatik Measure **Lost Contrast** at Several **Feature Scales** Enhance Lost Contrast in **Tone Mapped Image Reference HDR Image Tone Mapped Image**

communicate lost image contents

maintain image appearance

Purpose: Contrast Restoration

Krawczyk et al., Contrast Restoration by Adaptive Countershading

max planck institut

informatik

Perceptual illusion to enhance contrast – Cornsweet

Countershading

- gradual darkening / brightening towards a contrasting edge
- contrast appears with 'economic' use of dynamic range
- Possible space to enhance a numerically optimized tone mapping solution (!)

Previous Work

- Image Enhancement without Reference
 - histogram equalization, unsharp masking, etc.
 - manual adjustment of parameters
 - substantial change in the image appearance
- Enhancement with Reference
 - depth-darkening [Luft et al. 2006]
 - enhancement with color [Smith et al. 2006]
- Multi-resolution image enhancement
 - substantial change to appearance of the image
 - amplification of certain frequencies
 - knowledge of HVS often applied

Contributions

Better communicate image contents with a minimal change to the image appearance.

- 1. Adaptive countershading (enhancement with reference)
 - generalization of unsharp masking
 - application of contrast illusion to image enhancement
- 2. Multi-resolution contrast metric
 - change in contrast between an image and its reference
 - automatic adjustment of image enhancement
 - considers features at several scales
- 3. Visual detection model
 - based on the perception of countershading
 - masking of profiles in the image

- 1. Contrast between areas caused by brightness profiles
- 2. Properties:
 - shape of the profile matches the shape of the enhanced feature
 - amplitude of the profile defines the perceived contrast
 - noise (texture) does not cancel the illusion
 - profiles must not be discernible

- Well preserved texture in signal is exaggerated by profile
- Improved method for constructing profiles:
 - profile must contain only features that require enhancement

September 10, 2007

- Profile constructed directly from the reference image contains high frequency features which exaggerate texture
- Sub-band components allow to select features
 - high frequency component present only at high contrast edge

Multi-resolution Contrast Metric max planck institut informatik Measure **Lost Contrast** at Several **Feature Scales** $C_l = \frac{|Y - Y_{mean}|}{Y_{mean}}$ **Reference HDR Image Tone Mapped Image** $R_l = \frac{C_l^{inp}}{C_r^{ref}}$ 2 5 7 3 4 6 Contrast ratios at several scales.

- 1. Scale of contrast measure defines the profile size
- 2. Contrast ratio at each scale defines the sub-band amplitude (blue)
- 3. Contrast for larger scales appears also on smaller scales
 - the full profile is always reconstructed (red)

Formula: Countershading Profile

$$P = \sum_{l=1}^{N} \frac{(1 - \uparrow R_l)}{\underset{\text{of profile}}{\text{mplitude}}} \times \frac{(\log Y_{\sigma(l-1)}^{ref} - \log Y_{\sigma(l)}^{ref})}{\underset{\text{of profile}}{\text{sub-band component}}}$$

- 1. Contrast ratio R_l on scale l drives the amplitude of sub-band component of profile at size l
- 2. Sum of N sub-band components gives the countershading profiles P that match the contrasts in the reference image

Adaptive Countershading

final contrast restoration

progress of restoration

Objectionable visibility of countershading profiles

September 10, 2007

Recap

- Adaptive countershading (so far)
 - input image compared to its original (reference)
 - profiles enhance selected features in the input image
 - amplitudes match contrasts in the reference image
- Limits
 - visual: profiles become visible
 - technical: image saturation due to dynamic range
- Solution: Visual Detection Model
 - detect visible profiles and attenuate their amplitude
 - <u>conflict</u>: attenuation reduces the enhancement

Visual Detection Model

- Luminance masking
 - absolute luminance level L
 defines minimum perceivable
 luminance difference \Delta L
 - defined by t.v.i. functions

- Spatial contrast sensitivity
 - reduced sensitivity to low frequencies
 - defined by CSF functions
 - improved by supra-threshold measurements of Cornsweet profile

planck institut

informatik

Hiding Countershading Profiles

- Contrast masking
 - existing contrast masks new signals of similar orientation and frequency
 - defined by a power function of contrast present in an area
- Essential improvement
 - previous models allow for rather small amplitudes of profiles

- Measurements plot for the Cornsweet effect
 - contrast at the profile edge (x) and the matching contrast at the step edge (y)
- Masking allows for stronger enhancement
- Maximum correction depends on profile size
 - natural images unlikely require correction of a large contrast with a small profile

- Profiles which exceed the dynamic range cause loss of details in the image
- To prevent saturation, we limit the amplitudes of larger scale sub-band components

Adaptive Countershading

without visual model

with visual model

Restoration of TM Images (1/3)

(a) global tone mapping

(b) contrast equalization tone mapping

September 10, 2007

Restoration of TM Images (3/3)

reference HDR image (clipped)

countershading profiles

countershading of tone mapping

C-shading vs. Unsharp Mask

max planck institut informatik

Depth Map as Contrast Reference

max planck institut

informatik

September 10, 2007

Conclusions

- Summary
 - application of Cornsweet illusion to image enhancement
 - automatic enhancement given the reference data
 - visual detection model
 - maximize apparent contrast
 - prevent objectionable artifacts
 - generalization of unsharp masking
 - no manual intervention
 - possibility of selective enhancement
- Future work
 - new applications (other reference data for correction)
 - validation with human subjects
 - study the effect in animations

Thank You!

September 10, 2007