Perceptual Effects in Real-time Tone Mapping

G. Krawczyk K. Myszkowski H.-P. Seidel

Max-Planck-Institute für Informatik Saarbrücken, Germany

SCCG 2005

글 > - < 글 >

HDR Imaging Display of HDR content Perceptual Effects Statement

High Dynamic Range (HDR)

イロト イポト イヨト イヨト

Introduction

Method mplementation Summarv HDR Imaging Display of HDR content Perceptual Effects Statement

Sample HDR Frame

Figure: Sample frame from the HDR movie player [Mantiuk et al. 2004]

[Mantiuk et al. 2004] Perception-motivated high dynamic range video encoding, Proc. of SIGGRAPH 2004

< ロ > < 同 > < 回 > < 回 >

HDR Imaging Display of HDR content Perceptual Effects Statement

Display of HDR content (1)

Figure: Gamma corrected mapping to the displayable range

HDR Imaging Display of HDR content Perceptual Effects Statement

Display of HDR content (2)

Figure: Adaptive logarithmic mapping (global operator)

[Drago et al. 2003] Adaptive Logarithmic Mapping For Displaying High Contrast Scenes, Proc. of Eurographics 2003

HDR Imaging Display of HDR content Perceptual Effects Statement

Display of HDR content (3)

Figure: Photographic tone reproduction (local operator)

[Reinhard et al. 2002] Photographic Tone Reproduction for Digital Images, Proc. of Siggraph 2002

HDR Imaging Display of HDR content Perceptual Effects Statement

Perceptual Effects: Night Vision

Figure: Lack of color vision and loss of visual acuity in night scenes, comparing to daylight vision.

Image: Image:

HDR Imaging Display of HDR content **Perceptual Effects** Statement

Perceptual Effects: Veiling Luminance (Glare)

Figure: Sample frame from the RNL demo [1] illustrating the veiling luminance effect (glare).

[1] Debevec et al. Rendering with Natural Light Demo, www.debevec.org

Introduction HDR I Method Display Implementation Percep Summary Statem

HDR Imaging Display of HDR content Perceptual Effects Statement

Statement

Objectives for the display of HDR content:

- contrast reduction
- good local details visibility
- perceptual effects to convey realistic impression
 - scotopic vision (no color perception)
 - visual acuity
 - veiling luminance

Assumption: HDR data calibrated to $\frac{cd}{m^2}$ units.

4 B 6 4 B

Introduction Method Implementation Statement

Previous Work

Majority of tone mapping algorithms neglect perceptual effects.

Perceptual effects addressed solely:

- night vision [Ferwerda02]
- veiling luminance [Spencer95]

Perceptual effects in offline TM [Ferwerda96, Ward97, Durand00], \rightarrow but each effect approached separately. Effects applied globally to increase performance.

GPU implementation of TM without perceptual effects:

- global tone mapping [Drago03] (real-time)
- local tone mapping [Goodnight03] (interactive)

- A - E - A

HDR Imaging Display of HDR conten Perceptual Effects Statement

Contribution

Real-time implementation

of local tone mapping with perceptual effects.

Contribution:

- real-time tone mapping with perceptual effects
- efficient way to combine these effects
- effects applied in correct domain: local/global
- tone mapping embedded in a stand-alone module

Tone Mapping Night Vision Veiling Luminance

Methods Overview

Following methods contribute to the final result:

- tone mapping
 - global mapping curve
 - local detail preservation
 - temporal adaptation
- night vision
 - scotopic vision (lack of color discrimination)
 - loss of visual acuity
- veiling luminance (glare)

医下子 医

Tone Mapping Night Vision Veiling Luminance

Global Tone Mapping

Tone mapping by [Reinhard et al. 2002]

• relate luminance to middle gray

$$Y_r = \frac{\alpha \cdot Y}{\bar{Y}}$$

• global mapping function

$$L = \frac{Y_r}{1+Y_r}$$

 α key value, Y HDR luminance, \overline{Y} adapting luminance, Y_r relative luminance, L displayable pixel intensities

[Reinhard et al. 2002] Photographic Tone Reproduction for Digital Images, Proc. of Siggraph 2002

- 4 周 ト 4 戸 ト 4 戸 ト

Preserve local details using

Tone Mapping

Local Tone Mapping

Gaussian Pyramid

Adaptation map used for local tone mapping:

spatially variant adaptation map V.

 $L(x,y) = \frac{Y_r(x,y)}{1 + V(x,y)}$

< ロ > < 同 > < 回 > < 回 >

Krawczyk, Myszkowski, Seidel Perceptual Effects in Real-time Tone Mapping

Tone Mapping Night Vision Veiling Luminance

Temporal Luminance Adaptation

Temporal adaptation compensates changes in illumination. Simulated by smoothing adapting luminance over time.

$$ar{Y}_{\mathsf{a}}^{\mathsf{new}} = ar{Y}_{\mathsf{a}} + ig(ar{Y} - ar{Y}_{\mathsf{a}}ig) \cdot ig(1 - e^{-rac{T}{ au}}ig)$$

$$au_{rods} = 0.4 \mathrm{sec} \ au_{cones} = 0.1 \mathrm{sec}$$

 \bar{Y} actual adapting luminance, \bar{Y}_a filtered \bar{Y} according to the adaptation processes, τ speed of the adaptation,

T discrete time step between frames

[[]Durand and Dorsey 2002] Interactive Tone Mapping, Rendering Techniques 2000: 11th Eurographics Workshop on Rendering

Tone Mapping Night Vision Veiling Luminance

Night Vision: Lack of Color Perception

Human vision operates in three distinct adaptation conditions:

< ロ > < 同 > < 回 > < 回 >

Tone Mapping Night Vision Veiling Luminance

Night Vision: Visual Acuity

Perception of spatial details is limited with decreasing illumination level.

The highest resolvable spatial frequency for adapting luminance:

 $RF(Y) = 17.25 \cdot \arctan(1.4 \log_{10} Y + 0.35) + 25.72$

Details removed by the convolution with the Gaussian kernel.

Tone Mapping Night Vision Veiling Luminance

Veiling Luminance (Glare)

Scattering of light in the optical system of the eye causes the decrease of contrast in the vicinity of relatively strong light sources.

$$OTF(\rho, d(\bar{Y})) = \exp\left(-\frac{\rho}{20.9 - 2.1 \cdot d}^{1.3 - 0.07 \cdot d}\right)$$

 ρ spatial frequency, d pupil aperture

[Deeley at al. 1991] A simple parametric model of the human ocular modulation transfer function, Ophthalmology and Physiological Optics 1991

Similarities Hardware Implementation Implementation Details Results

Implementation Requirements

Real-time implementation

of local tone mapping with perceptual effects.

Requirements:

- efficient implementation of expensive spatial processing
- prevent redundancy of computations
 - \rightarrow reuse spatially processed data
- a stand-alone rendering module in GPU

Similarities Hardware Implementation Implementation Details Results

Similarities in Spatial Processing

Gaussian Pyramid

Gaussian pyramid from local tone mapping can be reused to compute visual acuity and estimate veiling luminance.

< 口 > < 同 >

→ 3 → < 3</p>

Similarities Hardware Implementation Implementation Details Results

Visual Acuity in Monochromatic Vision

Lack of visual acuity is noticable in scotopic vision \rightarrow spatial processing of luminance is sufficient.

Figure: Correlation between scotopic sensitivity and visual acuity

Similarities Hardware Implementation Implementation Details Results

Framework Design

Rendering passes:

- extract luminance
- calculate perceptual data (Gaussian Pyramid)
 - render new scale 2 pass convolution
 - update adaptation map by comparing scales
 - update visual acuity choosing right scale per pixel
 - update glare map choosing right scale per image

< ロ > < 同 > < 三 > < 三 >

tone mapping with perceptual effects

Similarities Hardware Implementation Implementation Details Results

Approximate Convolution

Convolving with large kernels:

down-sample \rightarrow convolve H \rightarrow convolve V \rightarrow up-sample

Figure: Effective Gaussian kernel due to down-sampling.

∃ → < ∃</p>

Similarities Hardware Implementation Implementation Details Results

Final Tone Mapping Equations

Tone mapping equation:

$$L(x, y) = \frac{Y_{acuity}(x, y) + Y_{glare}(x, y)}{1 + V(x, y)}$$

Recovering color information:

$$\begin{bmatrix} R_L \\ G_L \\ B_L \end{bmatrix} = \begin{bmatrix} \mathbf{photopic} \\ I \\ \mathbf{F} \\ B \end{bmatrix} \cdot L \cdot (1 - \sigma(Y)) + \begin{bmatrix} \mathbf{scotopic} \\ 1.05 \\ 0.97 \\ 1.27 \end{bmatrix} \cdot L \cdot \sigma(Y)$$

 $\{R, G, B\}$ original HDR values, $\{R_L, G_L, B_L\}$ displayable values σ rods sensitivity, V adaptation map, Y HDR luminance, L tone mapped luminance

Introduction	
Method	Hardware Implementation
Implementation	Implementation Details
Summary	Results

Performance

	320×240	640×480	1024×768
8 scales	8ms (58fps)	25ms (27fps)	80ms (10fps)
6 scales	7ms (62fps)	21ms (30fps)	66ms (12fps)
4 scales	6ms (62fps)	16ms (30fps)	51ms (14fps)

Table: Time-slice required for the display of an HDR frame using perceptual tone mapping.

```
Processor: Pentium4 2GHz
System: CygWIN under WindowsXP
Graphics card: NVIDIA GeForce 6800GT
Implementation: C++ / OpenGL / Cg
```


Introduction Similarit Method Hardwar Implementation Implement Summary Results

Similarities Hardware Implementation Implementation Details Results

Demo

Real-time HDR Video playback with perceptual effects

Bottlenecks and Trade-offs

Performance issues:

- context switching due to multi-pass rendering
- large or high resolution displays may require more scales

Constraints:

- not every tone mapping method can be implemented in framework
- limited choice of PSF models for veiling luminance

Conclusions

Increasing application of HDR images and video raises the issue of displaying them on typical display devices

Summary:

- real-time local tone mapping with perceptual effects
- efficient way to combine these effects
- effects applied in correct domain: local/global
- a plug-able stand-alone framework
- implementation in graphics hardware

THANK YOU

<ロ> <同> <同> < 回> < 回>

Local Tone Mapping

Global tone mapping function may lead to the loss of fine details.

Local details can be preserved using spatially variant adaptation map V.

$$L(x,y) = \frac{Y_r(x,y)}{1+V(x,y)}$$

Local adaptation map could be a low-pass filtered HDR image,

but it leads to halo artifacts.

[Reinhard et al. 2002] Photographic Tone Reproduction for Digital Images, Proc. of Siggraph 2002

Krawczyk, Myszkowski, Seidel Perceptual Effects in Real-time Tone Mapping

Local Adaptation Map

Figure from paper [Reinhard et al. 2002]

Finding appropriate adaptation area

- build a Gaussian Pyramid
- find the largest scale s, which does not cause high variation of local luminance
 V between scales

$$|V_s(x,y) - V_{s-1}(x,y)| < \epsilon$$

[Reinhard et al. 2002] Photographic Tone Reproduction for Digital Images, Proc. of Siggraph 2002

Scotopic Vision

Human vision operates in three distinct adaptation conditions:

Sensitivity of rods σ can be modelled after [Hunt 1995]:

$$\sigma(Y) = \frac{0.04}{0.04 + Y}$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Visual Acuity (1)

Perception of spatial details in human vision becomes limited with decreasing illumination level.

The highest resolvable spatial frequency for given adapting luminance:

 $RF(Y) = 17.25 \cdot \arctan(1.4 \log_{10} Y + 0.35) + 25.72$

On typical displays simulation possible for luminance below $0.5 \frac{cd}{m^2}$

[Shaler 1937] The Relation Between Visual Acuity and Illumination, Journal of General Psychology 1937 [Ward at al. 1997] A Visibility Matching Tone Reproduction Operator for High Dynamic Range Scenes, IEEE TVCG 1997

Visual Acuity (2)

Details can be removed from an image by the convolution with the Gaussian kernel.

Effect dependent on local illumination.

イロト イポト イヨト イヨト